函式呼叫可讓您輕鬆取得結構化資料輸出內容 生成式模型您可以運用這些輸出內容呼叫其他 API,並傳回 傳送給模型的相關回應資料換句話說,函式呼叫有助於 必須連結生成式模型與外部系統 內含最新且準確的資訊。
您可以為 Gemini 模型提供函式說明。這些 您以應用程式語言編寫的函式 (換句話說,非 Google Cloud Functions)。模型可能會要求您呼叫函式,然後傳回 以便模型處理查詢
如果您還不瞭解 函式呼叫簡介: 詳情
燈光控制 API 範例
假設您有一個基本的照明控制系統 搭配應用程式設計 介面 (API),並希望使用者能透過簡單的 文字要求您可以使用函式呼叫功能解讀光線 將來自使用者的要求轉譯為 API 呼叫,藉此設定亮度 輕鬆分配獎金這款假設性的照明控制系統 燈光亮度以及色溫,定義為兩個分開的 參數:
參數 | 類型 | 必要 | 說明 |
---|---|---|---|
brightness |
數字 | 是 | 亮度介於 0 到 100 之間。零關閉,100 為全彩。 |
colorTemperature |
字串 | 是 | 燈具的色溫,可能是 daylight 、cool 或 warm 。 |
簡單來說,這個虛構的照明系統只有一盞燈,因此使用者 也不必指定會議室或地點以下是 JSON 要求示例 可以將燈光亮度調到 50% 利用日光色溫:
{
"brightness": "50",
"colorTemperature": "daylight"
}
本教學課程將說明如何設定函式呼叫,供 Gemini API 執行下列操作: 解讀使用者的光源要求並對應至 API 設定, 亮度和色溫值。
事前準備:設定專案和 API 金鑰
呼叫 Gemini API 前,請先設定專案並設定 您的 API 金鑰。
定義 API 函式
建立可提出 API 要求的函式。應定義這個函式 程式碼,但可以在 應用程式Gemini API 不會直接呼叫這個函式,因此你 可以控制透過應用程式執行此函式的方式和時間 再也不是件繁重乏味的工作為方便示範,本教學課程定義了一個模擬 API 函式 只會傳回要求的亮度值:
suspend fun setLightValues(
brightness: Int,
colorTemp: String
): JSONObject {
// This mock API returns the requested lighting values
return JSONObject().apply {
put("brightness", brightness)
put("colorTemperature", colorTemp)
}
}
建立函式宣告
建立您要傳遞至生成式模型的函式宣告。時間 您宣告用於模型的函式,應盡量加入詳細資料 並在函式和參數說明中盡可能顯示這項資訊生成式模型 會依據這些資訊決定要選取哪個函式,以及如何提供 值。以下程式碼說明如何 宣告亮度控制功能:
val lightControlTool = defineFunction(
name = "setLightValues",
description = "Set the brightness and color temperature of a room light.",
Schema.int("brightness", "Light level from 0 to 100. Zero is off and 100" +
" is full brightness."),
Schema.str("colorTemperature", "Color temperature of the light fixture" +
" which can be `daylight`, `cool` or `warm`.")
) { brightness, colorTemp ->
// Call the function you declared above
setLightValues(brightness.toInt(), colorTemp)
}
在模型初始化期間宣告函式
如要透過模型使用函式呼叫,您必須提供
函式宣告。如要宣告函式
設定模型的 tools
參數:
val generativeModel = GenerativeModel(
modelName = "gemini-1.5-flash",
// Access your API key as a Build Configuration variable
apiKey = BuildConfig.apiKey,
// Specify the function declaration.
tools = listOf(Tool(listOf(lightControlTool)))
)
生成函式呼叫
使用函式宣告初始化模型後,您可以
加入已定義函式的模型您應使用
即時通訊提示 (sendMessage()
),因為函式呼叫通常從
並回答先前的提示和回應
val chat = generativeModel.startChat()
val prompt = "Dim the lights so the room feels cozy and warm."
// Send the message to the generative model
var response = chat.sendMessage(prompt)
// Check if the model responded with a function call
response.functionCall?.let { functionCall ->
// Try to retrieve the stored lambda from the model's tools and
// throw an exception if the returned function was not declared
val matchedFunction = generativeModel.tools?.flatMap { it.functionDeclarations }
?.first { it.name == functionCall.name }
?: throw InvalidStateException("Function not found: ${functionCall.name}")
// Call the lambda retrieved above
val apiResponse: JSONObject = matchedFunction.execute(functionCall)
// Send the API response back to the generative model
// so that it generates a text response that can be displayed to the user
response = chat.sendMessage(
content(role = "function") {
part(FunctionResponsePart(functionCall.name, apiResponse))
}
)
}
// Whenever the model responds with text, show it in the UI
response.text?.let { modelResponse ->
println(modelResponse)
}