İşlev çağrısı eğiticisi

İşlev çağrısı, üretken modellerden yapılandırılmış veri çıkışları almanızı kolaylaştırır. Ardından bu çıkışları kullanarak diğer API'leri çağırabilir ve yanıt verilerini modele uygun hale getirmemize yardımcı olur. Başka bir deyişle, işlev çağrısı üretken modelleri harici sistemlere bağlarsınız. Böylece, en güncel ve doğru bilgileri içerir.

Gemini modellerine işlevlerin açıklamalarını sağlayabilirsiniz. Bunlar, uygulamanızın dilinde yazdığınız işlevlerdir (yani Google Cloud Functions değildir). Model, sizden bir işlevi çağırmanızı ve sonuç; modelin sorgunuzu ele almasına yardımcı olur.

Henüz yapmadıysanız Öğrenmek için işlev çağrısına giriş daha fazla bilgi verebilir.

Aydınlatma kontrolü için örnek API

Bir uygulama programlaması ile temel bir ışıklandırma kontrol sisteminiz olduğunu düşünün API'sını kullanıyor ve kullanıcıların ışıkları basit bir şekilde kontrol etmesine izin vermek metin istekleri. Işıklandırmayı yorumlamak için İşlev Çağrısı özelliğini kullanabilirsiniz ışıklandırmayı ayarlamak için kullanıcılardan gelen istekleri değiştirme ve bunları API çağrılarına dönüştürme değerler. Bu varsayımsal aydınlatma kontrol sistemi, ışığın parlaklığını ve renk sıcaklığını iki ayrı parametre olarak kontrol etmenize olanak tanır:

Parametre Tür Zorunlu Açıklama
brightness sayı evet 0 ile 100 arasında değişen ışık seviyesi. Sıfır kapalı, 100 tam parlaklık.
colorTemperature dize evet Aydınlatma armatürünün renk sıcaklığı (daylight, cool veya warm).

Basitlik sağlaması açısından, bu hayali aydınlatma sisteminde yalnızca tek bir ışığa sahiptir, böylece kullanıcı bir oda veya yer belirtmesi gerekmiyor. Aşağıda örnek bir JSON isteği verilmiştir ışık seviyesini %50 olarak değiştirmek için ışık kontrolü API'sine gönderebilirsin gün ışığı renk sıcaklığını kullanarak:

{
  "brightness": "50",
  "colorTemperature": "daylight"
}

Bu eğiticide, Gemini API için İşlev Çağrısı'nın nasıl kontrol etmek için kullanıcıların ışıklandırma isteklerini yorumlamak ve API ayarlarıyla eşlemek ışığın parlaklık ve renk sıcaklığı değerlerini yansıtabilir.

Başlamadan önce: Projenizi ve API anahtarınızı oluşturun

Gemini API'yi çağırmadan önce projenizi ayarlamanız ve API anahtarınız.

API işlevi tanımlama

API isteği gönderen bir işlev oluşturun. Bu işlev, uygulamanızın kodunda tanımlanmalıdır ancak uygulamanızın dışındaki hizmetleri veya API'leri çağırabilir. Gemini API doğrudan bu işlevi çağrımaz. Bu nedenle, bu işlevin uygulamanız üzerinden nasıl ve ne zaman yürütüleceğini kontrol edebilir girin. Bu eğitimde, yalnızca istenen aydınlatma değerlerini döndüren bir örnek API işlevi tanımlanmıştır:

Future<Map<String, Object?>> setLightValues(
  Map<String, Object?> arguments,
) async =>
    // This mock API returns the requested lighting values
    {
      'brightness': arguments['brightness'],
      'colorTemperature': arguments['colorTemp'],
    };

İşlev bildirimleri oluşturma

Üretken modele ileteceğiniz işlev tanımını oluşturun. Model tarafından kullanılacak bir işlev tanımlarken işlev ve parametre açıklamalarına mümkün olduğunca fazla ayrıntı eklemeniz gerekir. Üretken model bu bilgiyi, hangi işlevin seçileceğini ve işlevin nasıl sağlanacağını belirlemek için parametre değerlerini içerir. Aşağıdaki kodda, aydınlatma kontrol işlevinin nasıl tanımlanacağı gösterilmektedir:

final lightControlTool = FunctionDeclaration(
    'setLightValues',
    'Set the brightness and color temperature of a room light.',
    Schema(SchemaType.object, properties: {
      'brightness': Schema(SchemaType.number,
          description: 'Light level from 0 to 100. '
              'Zero is off and 100 is full brightness.'),
      'colorTemperature': Schema(SchemaType.string,
          description: 'Color temperature of the light fixture, '
              'which can be `daylight`, `cool` or `warm`.'),
    }, requiredProperties: [
      'brightness',
      'colorTemperature'
    ]));

Model başlatma sırasında işlevleri bildirme

İşlev çağrısını bir modelle kullanmak istediğinizde işlev bildirimlerinin her biri için bir ekran görüntüsü sunar. Modelin tools parametresini ayarlayarak işlevleri tanımlarsınız. Dart SDK'sı ayrıca işlevleri generateContent veya generateContentStream API.

final model = GenerativeModel(
  model: 'gemini-1.5-flash',
  apiKey: apiKey,

  // Specify the function declaration.
  tools: [
    Tool(functionDeclarations: [lightControlTool])
  ],
);

İşlev çağrısı oluşturma

İşlev bildirimlerinizle modeli başlattıktan sonra, tanımlanan işleve sahip modeli kullanır. İşlev çağrısı genellikle önceki istemlerin ve yanıtların bağlamından yararlandığından, sohbet istemi (sendMessage()) kullanarak işlev çağrısı yapmalısınız.

final chat = model.startChat(); final prompt =
  'Dim the lights so the room feels cozy and warm.';

// Send the message to the generative model.
var response = await chat.sendMessage(Content.text(prompt));

final functionCalls = response.functionCalls.toList();
// When the model response with a function call, invoke the function.
if (functionCalls.isNotEmpty) {
  final functionCall = functionCalls.first;
  final result = switch (functionCall.name) {
    // Forward arguments to the hypothetical API.
    'setLightValues' => await setLightValues(functionCall.args),
    // Throw an exception if the model attempted to call a function that was
    // not declared.
    _ => throw UnimplementedError(
        'Function not implemented: ${functionCall.name}')
  };
  // Send the response to the model so that it can use the result to generate
  // text for the user.
  response = await chat
      .sendMessage(Content.functionResponse(functionCall.name, result));
}
// When the model responds with non-null text content, print it.
if (response.text case final text?) {
  print(text);
}