فراخوانی تابع، دریافت خروجی داده های ساختاریافته از مدل های تولیدی را برای شما آسان تر می کند. سپس می توانید از این خروجی ها برای فراخوانی API های دیگر و برگرداندن داده های پاسخ مربوطه به مدل استفاده کنید. به عبارت دیگر، فراخوانی تابع به شما کمک می کند تا مدل های تولیدی را به سیستم های خارجی متصل کنید تا محتوای تولید شده شامل به روزترین و دقیق ترین اطلاعات باشد.
می توانید مدل های Gemini را با توضیحاتی در مورد عملکردها ارائه دهید. اینها توابعی هستند که شما به زبان برنامه خود می نویسید (یعنی توابع Google Cloud نیستند). مدل ممکن است از شما بخواهد که یک تابع را فراخوانی کنید و نتیجه را برای کمک به مدل در رسیدگی به درخواست شما ارسال کنید.
اگر قبلاً این کار را نکردهاید، برای کسب اطلاعات بیشتر ، مقدمه فراخوانی تابع را بررسی کنید.
API مثال برای کنترل روشنایی
تصور کنید یک سیستم کنترل روشنایی اولیه با یک رابط برنامه نویسی کاربردی (API) دارید و می خواهید به کاربران اجازه دهید تا از طریق درخواست های متنی ساده، چراغ ها را کنترل کنند. میتوانید از ویژگی فراخوانی تابع برای تفسیر درخواستهای تغییر نور از سوی کاربران و ترجمه آنها به فراخوانهای API برای تنظیم مقادیر نور استفاده کنید. این سیستم کنترل روشنایی فرضی به شما امکان می دهد روشنایی نور و دمای رنگ آن را کنترل کنید که به عنوان دو پارامتر جداگانه تعریف می شود:
پارامتر | تایپ کنید | مورد نیاز | توضیحات |
---|---|---|---|
brightness | شماره | بله | سطح نور از 0 تا 100. صفر خاموش است و 100 روشنایی کامل است. |
colorTemperature | رشته | بله | دمای رنگ دستگاه نور که می تواند daylight ، cool یا warm باشد. |
برای سادگی، این سیستم نورپردازی خیالی تنها یک نور دارد، بنابراین کاربر مجبور نیست اتاق یا مکان را مشخص کند. در اینجا نمونه ای از درخواست JSON است که می توانید برای تغییر سطح نور با استفاده از دمای رنگ نور روز به API کنترل روشنایی ارسال کنید:
{
"brightness": "50",
"colorTemperature": "daylight"
}
این آموزش به شما نشان میدهد که چگونه یک Function Call را برای Gemini API تنظیم کنید تا درخواستهای روشنایی کاربران را تفسیر کند و آنها را به تنظیمات API برای کنترل مقدار روشنایی و دمای رنگ نور تنظیم کنید.
قبل از شروع: پروژه و کلید API خود را تنظیم کنید
قبل از فراخوانی Gemini API، باید پروژه خود را راه اندازی کرده و کلید API خود را پیکربندی کنید.
کلید API خود را دریافت و ایمن کنید
برای فراخوانی Gemini API به یک کلید API نیاز دارید. اگر قبلاً یکی ندارید، یک کلید در Google AI Studio ایجاد کنید.
اکیداً توصیه می شود که یک کلید API را در سیستم کنترل نسخه خود بررسی نکنید .
شما باید کلید API خود را در یک فروشگاه محرمانه مانند Google Cloud Secret Manager ذخیره کنید.
این آموزش فرض می کند که شما به کلید API خود به عنوان یک متغیر محیطی دسترسی دارید.
بسته SDK را نصب کنید و کلید API خود را پیکربندی کنید
در برنامه خود موارد زیر را انجام دهید:
بسته
GoogleGenerativeAI
را برای Node.js نصب کنید:npm install @google/generative-ai
بسته را وارد کنید و سرویس را با کلید API خود پیکربندی کنید:
const { GoogleGenerativeAI } = require("@google/generative-ai"); // Access your API key as an environment variable const genAI = new GoogleGenerativeAI(process.env.API_KEY);
یک تابع API را تعریف کنید
تابعی بسازید که درخواست API می دهد. این تابع باید در کد برنامه شما تعریف شود، اما می تواند خدمات یا API های خارج از برنامه شما را فراخوانی کند. Gemini API این تابع را مستقیماً فراخوانی نمی کند، بنابراین می توانید نحوه و زمان اجرای این تابع را از طریق کد برنامه خود کنترل کنید. برای اهداف نمایشی، این آموزش یک تابع API ساختگی را تعریف می کند که فقط مقادیر روشنایی درخواستی را برمی گرداند:
async function setLightValues(brightness, colorTemp) {
// This mock API returns the requested lighting values
return {
brightness: brightness,
colorTemperature: colorTemp
};
}
ایجاد اعلان عملکرد
اعلان تابعی را ایجاد کنید که به مدل مولد منتقل می کنید. هنگامی که یک تابع را برای استفاده توسط مدل اعلام می کنید، باید تا حد امکان جزئیات بیشتری را در توضیحات تابع و پارامتر بگنجانید. مدل مولد از این اطلاعات برای تعیین اینکه کدام تابع را انتخاب کند و چگونه مقادیر پارامترهای فراخوانی تابع را ارائه کند، استفاده می کند. کد زیر نحوه اعلام عملکرد کنترل روشنایی را نشان می دهد:
const controlLightFunctionDeclaration = {
name: "controlLight",
parameters: {
type: "OBJECT",
description: "Set the brightness and color temperature of a room light.",
properties: {
brightness: {
type: "NUMBER",
description: "Light level from 0 to 100. Zero is off and 100 is full brightness.",
},
colorTemperature: {
type: "STRING",
description: "Color temperature of the light fixture which can be `daylight`, `cool` or `warm`.",
},
},
required: ["brightness", "colorTemperature"],
},
};
// Executable function code. Put it in a map keyed by the function name
// so that you can call it once you get the name string from the model.
const functions = {
controlLight: ({ brightness, colorTemperature }) => {
return setLightValues( brightness, colorTemperature)
}
};
توابع را در طول اولیه سازی مدل اعلام کنید
هنگامی که می خواهید از فراخوانی تابع با یک مدل استفاده کنید، باید اعلان های تابع خود را هنگام مقداردهی اولیه شی مدل ارائه دهید. شما با تنظیم پارامتر tools
مدل، توابع را اعلام می کنید:
const { GoogleGenerativeAI } = require("@google/generative-ai");
// Access your API key as an environment variable (see "Set up your API key" above)
const genAI = new GoogleGenerativeAI(process.env.API_KEY);
// ...
const generativeModel = genAI.getGenerativeModel({
// Use a model that supports function calling, like a Gemini 1.5 model
model: "gemini-1.5-flash",
// Specify the function declaration.
tools: {
functionDeclarations: [controlLightFunctionDeclaration],
},
});
یک فراخوانی تابع ایجاد کنید
هنگامی که مدل را با اعلان های تابع خود مقداردهی اولیه کردید، می توانید مدل را با تابع تعریف شده درخواست کنید. شما باید از فراخوانی تابع با استفاده از درخواست چت ( sendMessage()
) استفاده کنید، زیرا فراخوانی تابع عموماً از داشتن متن درخواست ها و پاسخ های قبلی سود می برد.
const chat = generativeModel.startChat();
const prompt = "Dim the lights so the room feels cozy and warm.";
// Send the message to the model.
const result = await chat.sendMessage(prompt);
// For simplicity, this uses the first function call found.
const call = result.response.functionCalls()[0];
if (call) {
// Call the executable function named in the function call
// with the arguments specified in the function call and
// let it call the hypothetical API.
const apiResponse = await functions[call.name](call.args);
// Send the API response back to the model so it can generate
// a text response that can be displayed to the user.
const result2 = await chat.sendMessage([{functionResponse: {
name: 'controlLight',
response: apiResponse
}}]);
// Log the text response.
console.log(result2.response.text());
}
،فراخوانی تابع، دریافت خروجی داده های ساختاریافته از مدل های تولیدی را برای شما آسان تر می کند. سپس می توانید از این خروجی ها برای فراخوانی API های دیگر و برگرداندن داده های پاسخ مربوطه به مدل استفاده کنید. به عبارت دیگر، فراخوانی تابع به شما کمک می کند تا مدل های تولیدی را به سیستم های خارجی متصل کنید تا محتوای تولید شده شامل به روزترین و دقیق ترین اطلاعات باشد.
می توانید مدل های Gemini را با توضیحاتی در مورد عملکردها ارائه دهید. اینها توابعی هستند که شما به زبان برنامه خود می نویسید (یعنی توابع Google Cloud نیستند). مدل ممکن است از شما بخواهد که یک تابع را فراخوانی کنید و نتیجه را برای کمک به مدل در رسیدگی به درخواست شما ارسال کنید.
اگر قبلاً این کار را نکردهاید، برای کسب اطلاعات بیشتر ، مقدمه فراخوانی تابع را بررسی کنید.
API مثال برای کنترل روشنایی
تصور کنید یک سیستم کنترل روشنایی اولیه با یک رابط برنامه نویسی کاربردی (API) دارید و می خواهید به کاربران اجازه دهید تا از طریق درخواست های متنی ساده، چراغ ها را کنترل کنند. میتوانید از ویژگی فراخوانی تابع برای تفسیر درخواستهای تغییر نور از سوی کاربران و ترجمه آنها به فراخوانهای API برای تنظیم مقادیر نور استفاده کنید. این سیستم کنترل روشنایی فرضی به شما امکان می دهد روشنایی نور و دمای رنگ آن را کنترل کنید که به عنوان دو پارامتر جداگانه تعریف می شود:
پارامتر | تایپ کنید | مورد نیاز | توضیحات |
---|---|---|---|
brightness | شماره | بله | سطح نور از 0 تا 100. صفر خاموش است و 100 روشنایی کامل است. |
colorTemperature | رشته | بله | دمای رنگ دستگاه نور که می تواند daylight ، cool یا warm باشد. |
برای سادگی، این سیستم نورپردازی خیالی تنها یک نور دارد، بنابراین کاربر مجبور نیست اتاق یا مکان را مشخص کند. در اینجا نمونه ای از درخواست JSON است که می توانید برای تغییر سطح نور با استفاده از دمای رنگ نور روز به API کنترل روشنایی ارسال کنید:
{
"brightness": "50",
"colorTemperature": "daylight"
}
این آموزش به شما نشان میدهد که چگونه یک Function Call را برای Gemini API تنظیم کنید تا درخواستهای روشنایی کاربران را تفسیر کند و آنها را به تنظیمات API برای کنترل مقدار روشنایی و دمای رنگ نور تنظیم کنید.
قبل از شروع: پروژه و کلید API خود را تنظیم کنید
قبل از تماس با Gemini API ، باید پروژه خود را تنظیم کرده و کلید API خود را پیکربندی کنید.
کلید API خود را دریافت و ایمن کنید
برای تماس با API Gemini به یک کلید API نیاز دارید. اگر قبلاً یکی از آنها را ندارید ، در استودیوی Google AI یک کلید ایجاد کنید.
به شدت توصیه می شود که یک کلید API را در سیستم کنترل نسخه خود بررسی نکنید .
شما باید کلید API خود را در یک فروشگاه اسرار مانند Google Cloud Secret Manager ذخیره کنید.
این آموزش فرض می کند که شما به عنوان یک متغیر محیط به کلید API خود دسترسی پیدا می کنید.
بسته SDK را نصب کرده و کلید API خود را پیکربندی کنید
در برنامه خود ، موارد زیر را انجام دهید:
بسته
GoogleGenerativeAI
را برای node.js نصب کنید:npm install @google/generative-ai
بسته را وارد کرده و سرویس را با کلید API خود پیکربندی کنید:
const { GoogleGenerativeAI } = require("@google/generative-ai"); // Access your API key as an environment variable const genAI = new GoogleGenerativeAI(process.env.API_KEY);
یک عملکرد API را تعریف کنید
تابعی را ایجاد کنید که درخواست API را ایجاد کند. این عملکرد باید در کد برنامه شما تعریف شود ، اما می تواند با خدمات یا API در خارج از برنامه شما تماس بگیرد. API Gemini این عملکرد را مستقیماً فراخوانی نمی کند ، بنابراین می توانید نحوه و زمان اجرای این عملکرد را از طریق کد برنامه خود کنترل کنید. برای اهداف تظاهرات ، این آموزش یک تابع API مسخره را تعریف می کند که فقط مقادیر روشنایی درخواستی را برمی گرداند:
async function setLightValues(brightness, colorTemp) {
// This mock API returns the requested lighting values
return {
brightness: brightness,
colorTemperature: colorTemp
};
}
اعلامیه های عملکردی ایجاد کنید
اعلامیه عملکردی را ایجاد کنید که به مدل تولیدی منتقل می شوید. هنگامی که یک تابع را برای استفاده توسط مدل اعلام می کنید ، باید تا حد امکان در توضیحات عملکرد و پارامتر جزئیات را درج کنید. مدل تولیدی از این اطلاعات استفاده می کند تا مشخص شود کدام عملکرد را انتخاب می کند و چگونه می توان مقادیر پارامترهای موجود در تماس عملکرد را ارائه داد. کد زیر نحوه اعلام عملکرد کنترل روشنایی را نشان می دهد:
const controlLightFunctionDeclaration = {
name: "controlLight",
parameters: {
type: "OBJECT",
description: "Set the brightness and color temperature of a room light.",
properties: {
brightness: {
type: "NUMBER",
description: "Light level from 0 to 100. Zero is off and 100 is full brightness.",
},
colorTemperature: {
type: "STRING",
description: "Color temperature of the light fixture which can be `daylight`, `cool` or `warm`.",
},
},
required: ["brightness", "colorTemperature"],
},
};
// Executable function code. Put it in a map keyed by the function name
// so that you can call it once you get the name string from the model.
const functions = {
controlLight: ({ brightness, colorTemperature }) => {
return setLightValues( brightness, colorTemperature)
}
};
در طول اولیه سازی مدل توابع را اعلام کنید
هنگامی که می خواهید از عملکرد فراخوانی با یک مدل استفاده کنید ، باید هنگام تنظیم شیء مدل ، اعلامیه های عملکرد خود را ارائه دهید. شما با تنظیم پارامتر tools
مدل توابع را اعلام می کنید:
const { GoogleGenerativeAI } = require("@google/generative-ai");
// Access your API key as an environment variable (see "Set up your API key" above)
const genAI = new GoogleGenerativeAI(process.env.API_KEY);
// ...
const generativeModel = genAI.getGenerativeModel({
// Use a model that supports function calling, like a Gemini 1.5 model
model: "gemini-1.5-flash",
// Specify the function declaration.
tools: {
functionDeclarations: [controlLightFunctionDeclaration],
},
});
یک تماس عملکردی ایجاد کنید
پس از شروع مدل با اعلامیه های عملکرد خود ، می توانید مدل را با عملکرد تعریف شده فوری کنید. شما باید از عملکرد فراخوانی با استفاده از گپ زدن ( sendMessage()
) استفاده کنید ، زیرا عملکرد فراخوانی به طور کلی از داشتن متن و پاسخ های قبلی سود می برد.
const chat = generativeModel.startChat();
const prompt = "Dim the lights so the room feels cozy and warm.";
// Send the message to the model.
const result = await chat.sendMessage(prompt);
// For simplicity, this uses the first function call found.
const call = result.response.functionCalls()[0];
if (call) {
// Call the executable function named in the function call
// with the arguments specified in the function call and
// let it call the hypothetical API.
const apiResponse = await functions[call.name](call.args);
// Send the API response back to the model so it can generate
// a text response that can be displayed to the user.
const result2 = await chat.sendMessage([{functionResponse: {
name: 'controlLight',
response: apiResponse
}}]);
// Log the text response.
console.log(result2.response.text());
}