前往 ai.google.dev 查看 | 试用 Colab 笔记本 | 在 GitHub 上查看笔记本 |
概览
本教程演示了如何使用 Gemini API 中的嵌入检测数据集中的潜在离群值。您将使用 t-SNE 直观呈现 20 个新闻组数据集中的一部分,并检测每个分类聚类中心点的特定半径之外的离群值。
如需详细了解如何开始使用 Gemini API 生成的嵌入,请参阅 Python 快速入门。
前提条件
您可以在 Google Colab 中运行本快速入门。
如需在您自己的开发环境中完成本快速入门,请确保您的环境满足以下要求:
- Python 3.9 及更高版本
- 安装用于运行笔记本的
jupyter
。
设置
首先,下载并安装 Gemini API Python 库。
pip install -U -q google.generativeai
import re
import tqdm
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
import google.generativeai as genai
# Used to securely store your API key
from google.colab import userdata
from sklearn.datasets import fetch_20newsgroups
from sklearn.manifold import TSNE
获取 API 密钥
您必须先获取 API 密钥,然后才能使用 Gemini API。如果您还没有密钥,只需在 Google AI Studio 中点击一下即可创建一个。
在 Colab 中,将密钥添加到 Secret 管理器中的“🔑?”下,。将其命名为 API_KEY
。
获得 API 密钥后,将其传递给 SDK。可以通过以下两种方法实现此目的:
- 将密钥放在
GOOGLE_API_KEY
环境变量中(SDK 会自动从中选取密钥)。 - 将密钥传递给
genai.configure(api_key=...)
genai.configure(api_key=GOOGLE_API_KEY)
for m in genai.list_models():
if 'embedContent' in m.supported_generation_methods:
print(m.name)
models/embedding-001 models/embedding-001
准备数据集
20 Newsgroups Text Dataset(20 Newsgroups 文本数据集)包含 18,000 个新闻组帖子,涵盖 20 个主题(分为训练集和测试集)。训练数据集和测试数据集之间的拆分依据在特定日期之前和之后发布的消息。本教程使用训练子集。
newsgroups_train = fetch_20newsgroups(subset='train')
# View list of class names for dataset
newsgroups_train.target_names
['alt.atheism', 'comp.graphics', 'comp.os.ms-windows.misc', 'comp.sys.ibm.pc.hardware', 'comp.sys.mac.hardware', 'comp.windows.x', 'misc.forsale', 'rec.autos', 'rec.motorcycles', 'rec.sport.baseball', 'rec.sport.hockey', 'sci.crypt', 'sci.electronics', 'sci.med', 'sci.space', 'soc.religion.christian', 'talk.politics.guns', 'talk.politics.mideast', 'talk.politics.misc', 'talk.religion.misc']
这是训练集中的第一个样本。
idx = newsgroups_train.data[0].index('Lines')
print(newsgroups_train.data[0][idx:])
Lines: 15 I was wondering if anyone out there could enlighten me on this car I saw the other day. It was a 2-door sports car, looked to be from the late 60s/ early 70s. It was called a Bricklin. The doors were really small. In addition, the front bumper was separate from the rest of the body. This is all I know. If anyone can tellme a model name, engine specs, years of production, where this car is made, history, or whatever info you have on this funky looking car, please e-mail. Thanks, - IL ---- brought to you by your neighborhood Lerxst ----
# Apply functions to remove names, emails, and extraneous words from data points in newsgroups.data
newsgroups_train.data = [re.sub(r'[\w\.-]+@[\w\.-]+', '', d) for d in newsgroups_train.data] # Remove email
newsgroups_train.data = [re.sub(r"\([^()]*\)", "", d) for d in newsgroups_train.data] # Remove names
newsgroups_train.data = [d.replace("From: ", "") for d in newsgroups_train.data] # Remove "From: "
newsgroups_train.data = [d.replace("\nSubject: ", "") for d in newsgroups_train.data] # Remove "\nSubject: "
# Cut off each text entry after 5,000 characters
newsgroups_train.data = [d[0:5000] if len(d) > 5000 else d for d in newsgroups_train.data]
# Put training points into a dataframe
df_train = pd.DataFrame(newsgroups_train.data, columns=['Text'])
df_train['Label'] = newsgroups_train.target
# Match label to target name index
df_train['Class Name'] = df_train['Label'].map(newsgroups_train.target_names.__getitem__)
df_train
接下来,通过在训练数据集中获取 150 个数据点并选择一些类别,对部分数据进行采样。本教程使用科学类别。
# Take a sample of each label category from df_train
SAMPLE_SIZE = 150
df_train = (df_train.groupby('Label', as_index = False)
.apply(lambda x: x.sample(SAMPLE_SIZE))
.reset_index(drop=True))
# Choose categories about science
df_train = df_train[df_train['Class Name'].str.contains('sci')]
# Reset the index
df_train = df_train.reset_index()
df_train
df_train['Class Name'].value_counts()
sci.crypt 150 sci.electronics 150 sci.med 150 sci.space 150 Name: Class Name, dtype: int64
创建嵌入
在本部分中,您将了解如何使用 Gemini API 中的嵌入为 DataFrame 中的不同文本生成嵌入。
对使用模型嵌入进行嵌入的 API 变更 001
对于新的嵌入模型 embedding-001,有一个新的任务类型参数和可选标题(仅在 task_type=RETRIEVAL_DOCUMENT
时有效)。
这些新参数仅适用于最新的嵌入模型。任务类型如下:
任务类型 | 说明 |
---|---|
RETRIEVAL_QUERY | 将给定文本指定为搜索/检索设置中的查询。 |
RETRIEVAL_DOCUMENT | 将给定文本指定为搜索/检索设置中的文档。 |
SEMANTIC_SIMILARITY | 指定给定文本用于语义文本相似度 (STS)。 |
分类 | 指定嵌入用于分类。 |
集群 | 指定嵌入用于聚类。 |
from tqdm.auto import tqdm
tqdm.pandas()
from google.api_core import retry
def make_embed_text_fn(model):
@retry.Retry(timeout=300.0)
def embed_fn(text: str) -> list[float]:
# Set the task_type to CLUSTERING.
embedding = genai.embed_content(model=model,
content=text,
task_type="clustering")['embedding']
return np.array(embedding)
return embed_fn
def create_embeddings(df):
model = 'models/embedding-001'
df['Embeddings'] = df['Text'].progress_apply(make_embed_text_fn(model))
return df
df_train = create_embeddings(df_train)
df_train.drop('index', axis=1, inplace=True)
0%| | 0/600 [00:00<?, ?it/s]
降维
文档嵌入向量的维度为 768。为了直观呈现嵌入的文档是如何分组的,您需要应用降维,因为您只能在 2D 或 3D 空间中可视化嵌入。上下文相似的文档应在空间中彼此靠近,而不是不相似的文档。
len(df_train['Embeddings'][0])
768
# Convert df_train['Embeddings'] Pandas series to a np.array of float32
X = np.array(df_train['Embeddings'].to_list(), dtype=np.float32)
X.shape
(600, 768)
您将应用 t 分布随机相邻嵌入 (t-SNE) 方法来减少降维。此方法会减少维度数量,同时保留聚类(相近的点始终相距不远)。对于原始数据,模型会尝试构建一种分布,使其他数据点成为“相邻”数据点(例如,两者含义相似)。然后,它会优化目标函数,以在可视化图表中保持类似的分布。
tsne = TSNE(random_state=0, n_iter=1000)
tsne_results = tsne.fit_transform(X)
df_tsne = pd.DataFrame(tsne_results, columns=['TSNE1', 'TSNE2'])
df_tsne['Class Name'] = df_train['Class Name'] # Add labels column from df_train to df_tsne
df_tsne
fig, ax = plt.subplots(figsize=(8,6)) # Set figsize
sns.set_style('darkgrid', {"grid.color": ".6", "grid.linestyle": ":"})
sns.scatterplot(data=df_tsne, x='TSNE1', y='TSNE2', hue='Class Name', palette='Set2')
sns.move_legend(ax, "upper left", bbox_to_anchor=(1, 1))
plt.title('Scatter plot of news using t-SNE')
plt.xlabel('TSNE1')
plt.ylabel('TSNE2');
离群值检测
要确定哪些点的异常值,您需要确定哪些点是离群值和离群值。首先找到形心(或代表聚类中心的位置),然后使用距离确定离群点。
首先获取每个类别的形心。
def get_centroids(df_tsne):
# Get the centroid of each cluster
centroids = df_tsne.groupby('Class Name').mean()
return centroids
centroids = get_centroids(df_tsne)
centroids
def get_embedding_centroids(df):
emb_centroids = dict()
grouped = df.groupby('Class Name')
for c in grouped.groups:
sub_df = grouped.get_group(c)
# Get the centroid value of dimension 768
emb_centroids[c] = np.mean(sub_df['Embeddings'], axis=0)
return emb_centroids
emb_c = get_embedding_centroids(df_train)
对照其余的点绘制找到的每个形心。
# Plot the centroids against the cluster
fig, ax = plt.subplots(figsize=(8,6)) # Set figsize
sns.set_style('darkgrid', {"grid.color": ".6", "grid.linestyle": ":"})
sns.scatterplot(data=df_tsne, x='TSNE1', y='TSNE2', hue='Class Name', palette='Set2');
sns.scatterplot(data=centroids, x='TSNE1', y='TSNE2', color="black", marker='X', s=100, label='Centroids')
sns.move_legend(ax, "upper left", bbox_to_anchor=(1, 1))
plt.title('Scatter plot of news using t-SNE with centroids')
plt.xlabel('TSNE1')
plt.ylabel('TSNE2');
选择半径。超出该边界范围的任何类别的形心都被视为离群值。
def calculate_euclidean_distance(p1, p2):
return np.sqrt(np.sum(np.square(p1 - p2)))
def detect_outlier(df, emb_centroids, radius):
for idx, row in df.iterrows():
class_name = row['Class Name'] # Get class name of row
# Compare centroid distances
dist = calculate_euclidean_distance(row['Embeddings'],
emb_centroids[class_name])
df.at[idx, 'Outlier'] = dist > radius
return len(df[df['Outlier'] == True])
range_ = np.arange(0.3, 0.75, 0.02).round(decimals=2).tolist()
num_outliers = []
for i in range_:
num_outliers.append(detect_outlier(df_train, emb_c, i))
# Plot range_ and num_outliers
fig = plt.figure(figsize = (14, 8))
plt.rcParams.update({'font.size': 12})
plt.bar(list(map(str, range_)), num_outliers)
plt.title("Number of outliers vs. distance of points from centroid")
plt.xlabel("Distance")
plt.ylabel("Number of outliers")
for i in range(len(range_)):
plt.text(i, num_outliers[i], num_outliers[i], ha = 'center')
plt.show()
您可以根据所需的异常值检测器的敏感度,选择要使用的半径。目前,系统使用 0.62,但您可以更改此值。
# View the points that are outliers
RADIUS = 0.62
detect_outlier(df_train, emb_c, RADIUS)
df_outliers = df_train[df_train['Outlier'] == True]
df_outliers.head()
# Use the index to map the outlier points back to the projected TSNE points
outliers_projected = df_tsne.loc[df_outliers['Outlier'].index]
绘制离群值,并使用透明红色表示它们。
fig, ax = plt.subplots(figsize=(8,6)) # Set figsize
plt.rcParams.update({'font.size': 10})
sns.set_style('darkgrid', {"grid.color": ".6", "grid.linestyle": ":"})
sns.scatterplot(data=df_tsne, x='TSNE1', y='TSNE2', hue='Class Name', palette='Set2');
sns.scatterplot(data=centroids, x='TSNE1', y='TSNE2', color="black", marker='X', s=100, label='Centroids')
# Draw a red circle around the outliers
sns.scatterplot(data=outliers_projected, x='TSNE1', y='TSNE2', color='red', marker='o', alpha=0.5, s=90, label='Outliers')
sns.move_legend(ax, "upper left", bbox_to_anchor=(1, 1))
plt.title('Scatter plot of news with outliers projected with t-SNE')
plt.xlabel('TSNE1')
plt.ylabel('TSNE2');
使用 datafames 的索引值输出一些示例,说明离群值在每个类别中可能是什么样子。在这里,输出了每个类别的第一个数据点。探索每个类别中的其他数据点,了解被视为离群值或异常的数据。
sci_crypt_outliers = df_outliers[df_outliers['Class Name'] == 'sci.crypt']
print(sci_crypt_outliers['Text'].iloc[0])
Re: Source of random bits on a Unix workstation Lines: 44 Nntp-Posting-Host: sandstorm >>For your application, what you can do is to encrypt the real-time clock >>value with a secret key. Well, almost.... If I only had to solve the problem for myself, and were willing to have to type in a second password whenever I logged in, it could work. However, I'm trying to create a solution that anyone can use, and which, once installed, is just as effortless to start up as the non-solution of just using xhost to control access. I've got religeous problems with storing secret keys on multiuser computers. >For a good discussion of cryptographically "good" random number >generators, check out the draft-ietf-security-randomness-00.txt >Internet Draft, available at your local friendly internet drafts >repository. Thanks for the pointer! It was good reading, and I liked the idea of using several unrelated sources with a strong mixing function. However, unless I missed something, the only source they suggested that seems available, and unguessable by an intruder, when a Unix is fresh-booted, is I/O buffers related to network traffic. I believe my solution basically uses that strategy, without requiring me to reach into the kernel. >A reasonably source of randomness is the output of a cryptographic >hash function , when fed with a large amount of >more-or-less random data. For example, running MD5 on /dev/mem is a >slow, but random enough, source of random bits; there are bound to be >128 bits of entropy in the tens of megabytes of data in >a modern workstation's memory, as a fair amount of them are system >timers, i/o buffers, etc. I heard about this solution, and it sounded good. Then I heard that folks were experiencing times of 30-60 seconds to run this, on reasonably-configured workstations. I'm not willing to add that much delay to someone's login process. My approach takes a second or two to run. I'm considering writing the be-all and end-all of solutions, that launches the MD5, and simultaneously tries to suck bits off the net, and if the net should be sitting __SO__ idle that it can't get 10K after compression before MD5 finishes, use the MD5. This way I could have guaranteed good bits, and a deterministic upper bound on login time, and still have the common case of login take only a couple of extra seconds. -Bennett
sci_elec_outliers = df_outliers[df_outliers['Class Name'] == 'sci.electronics']
print(sci_elec_outliers['Text'].iloc[0])
Re: Laser vs Bubblejet? Reply-To: Distribution: world X-Mailer: cppnews \\(Revision: 1.20 \\) Organization: null Lines: 53 Here is a different viewpoint. > FYI: The actual horizontal dot placement resoution of an HP > deskjet is 1/600th inch. The electronics and dynamics of the ink > cartridge, however, limit you to generating dots at 300 per inch. > On almost any paper, the ink wicks more than 1/300th inch anyway. > > The method of depositing and fusing toner of a laster printer > results in much less spread than ink drop technology. In practice there is little difference in quality but more care is needed with inkjet because smudges etc. can happen. > It doesn't take much investigation to see that the mechanical and > electronic complement of a laser printer is more complex than > inexpensive ink jet printers. Recall also that laser printers > offer a much higher throughput: 10 ppm for a laser versus about 1 > ppm for an ink jet printer. A cheap laser printer does not manage that sort of throughput and on top of that how long does the _first_ sheet take to print? Inkjets are faster than you say and in both cases the computer often has trouble keeping up with the printer. A sage said to me: "Do you want one copy or lots of copies?", "One", "Inkjet". > Something else to think about is the cost of consumables over the > life of the printer. A 3000 page yield toner cartridge is about > $US 75-80 at discount while HP high capacity > cartridges are about $US 22 at discount. It could be that over the > life cycle of the printer that consumables for laser printers are > less than ink jet printers. It is getting progressively closer > between the two technologies. Laser printers are usually desinged > for higher duty cycles in pages per month and longer product > replacement cycles. Paper cost is the same and both can use refills. Long term the laserprinter will need some expensive replacement parts and on top of that are the amortisation costs which favour the lowest purchase cost printer. HP inkjets understand PCL so in many cases a laserjet driver will work if the software package has no inkjet driver. There is one wild difference between the two printers: a laserprinter is a page printer whilst an inkjet is a line printer. This means that a laserprinter can rotate graphic images whilst an inkjet cannot. Few drivers actually use this facility. TC. E-mail: or
sci_med_outliers = df_outliers[df_outliers['Class Name'] == 'sci.med']
print(sci_med_outliers['Text'].iloc[0])
Re: THE BACK MACHINE - Update Organization: University of Nebraska--Lincoln Lines: 15 Distribution: na NNTP-Posting-Host: unlinfo.unl.edu I have a BACK MACHINE and have had one since January. While I have not found it to be a panacea for my back pain, I think it has helped somewhat. It MAINLY acts to stretch muscles in the back and prevent spasms associated with pain. I am taking less pain medication than I was previously. The folks at BACK TECHNOLOGIES are VERY reluctant to honor their return policy. They extended my "warranty" period rather than allow me to return the machine when, after the first month or so, I was not thrilled with it. They encouraged me to continue to use it, abeit less vigourously. Like I said, I can't say it is a cure-all, but it keeps me stretched out and I am in less pain. -- *********************************************************************** Dale M. Webb, DVM, PhD * 97% of the body is water. The Veterinary Diagnostic Center * other 3% keeps you from drowning. University of Nebraska, Lincoln *
sci_space_outliers = df_outliers[df_outliers['Class Name'] == 'sci.space']
print(sci_space_outliers['Text'].iloc[0])
MACH 25 landing site bases? Article-I.D.: aurora.1993Apr5.193829.1 Organization: University of Alaska Fairbanks Lines: 7 Nntp-Posting-Host: acad3.alaska.edu The supersonic booms hear a few months ago over I belive San Fran, heading east of what I heard, some new super speed Mach 25 aircraft?? What military based int he direction of flight are there that could handle a Mach 25aircraft on its landing decent?? Odd question?? == Michael Adams, -- I'm not high, just jacked
后续步骤
现在,您已经使用嵌入创建了异常值检测器!尝试使用您自己的文本数据将它们可视化为嵌入,并选择一些边界,以便检测离群值。您可以执行降维以完成可视化步骤。请注意,t-SNE 擅长给输入聚类,但可能需要较长的时间才能收敛,也可能会卡在局部最小值。如果您遇到此问题,可以考虑的另一种方法是主成分分析 (PCA)。
如需详细了解如何使用嵌入,请参阅以下教程: