Tutorial de ajuste

Neste tutorial, vamos ajudar você a começar o ajuste da API Gemini com o SDK do Python ou a API REST usando curl: Os exemplos mostram como ajustar o modelo de texto por trás o serviço de geração de texto da API Gemini.

Ver em ai.google.dev Testar um bloco do Colab Veja o notebook no GitHub

Configurar a autenticação

A API Gemini permite ajustar modelos com seus próprios dados. Como os dados são seus nos modelos ajustados, isso usa controles de acesso mais rigorosos do que as chaves de API podem fornecer.

Antes de executar este tutorial, é necessário configurar o OAuth para seus projeto e faça o download do "ID do cliente OAuth" como "client_secret.json".

Este comando gcloud transforma o arquivo client_secret.json em credenciais que pode ser usada para autenticação no serviço.

gcloud auth application-default login \
    --client-id-file client_secret.json \
    --scopes='https://www.googleapis.com/auth/cloud-platform,https://www.googleapis.com/auth/generative-language.tuning'

Definir variáveis

CURL

Defina variáveis de valores recorrentes para usar no restante da API REST chamadas. O código usa a biblioteca os do Python para definir o ambiente variáveis que podem ser acessadas em todas as células de código.

Isso é específico para o ambiente de bloco do Colab. O código na próxima a célula de código é equivalente a executar os seguintes comandos em um bash terminal.

export access_token=$(gcloud auth application-default print-access-token)
export project_id=my-project-id
export base_url=https://generativelanguage.googleapis.com
import os

access_token = !gcloud auth application-default print-access-token
access_token = '\n'.join(access_token)

os.environ['access_token'] = access_token
os.environ['project_id'] = "[Enter your project-id here]"
os.environ['base_url'] = "https://generativelanguage.googleapis.com"

Python

access_token = !gcloud auth application-default print-access-token
access_token = '\n'.join(access_token)

project = '[Enter your project-id here]'
base_url = "https://generativelanguage.googleapis.com"

Importe a biblioteca requests.

import requests
import json

Listar modelos ajustados

Liste os modelos ajustados disponíveis para verificar sua configuração de autenticação.

CURL


curl -X GET ${base_url}/v1beta/tunedModels \
    -H "Content-Type: application/json" \
    -H "Authorization: Bearer ${access_token}" \
    -H "x-goog-user-project: ${project_id}"

Python

headers={
  'Authorization': 'Bearer ' + access_token,
  'Content-Type': 'application/json',
  'x-goog-user-project': project
}

result = requests.get(
  url=f'{base_url}/v1beta/tunedModels',
  headers = headers,
)
result.json()

Criar um modelo ajustado

Para criar um modelo ajustado, você precisa passar seu conjunto de dados para o modelo na training_data.

Neste exemplo, você ajustará um modelo para gerar o próximo número na sequência. Por exemplo, se a entrada for 1, a saída do modelo será 2. Se o a entrada é one hundred, a saída precisa ser one hundred one.

CURL


curl -X POST $base_url/v1beta/tunedModels \
    -H 'Content-Type: application/json' \
    -H "Authorization: Bearer ${access_token}" \
    -H "x-goog-user-project: ${project_id}" \
    -d '
      {
        "display_name": "number generator model",
        "base_model": "models/gemini-1.0-pro-001",
        "tuning_task": {
          "hyperparameters": {
            "batch_size": 2,
            "learning_rate": 0.001,
            "epoch_count":5,
          },
          "training_data": {
            "examples": {
              "examples": [
                {
                    "text_input": "1",
                    "output": "2",
                },{
                    "text_input": "3",
                    "output": "4",
                },{
                    "text_input": "-3",
                    "output": "-2",
                },{
                    "text_input": "twenty two",
                    "output": "twenty three",
                },{
                    "text_input": "two hundred",
                    "output": "two hundred one",
                },{
                    "text_input": "ninety nine",
                    "output": "one hundred",
                },{
                    "text_input": "8",
                    "output": "9",
                },{
                    "text_input": "-98",
                    "output": "-97",
                },{
                    "text_input": "1,000",
                    "output": "1,001",
                },{
                    "text_input": "10,100,000",
                    "output": "10,100,001",
                },{
                    "text_input": "thirteen",
                    "output": "fourteen",
                },{
                    "text_input": "eighty",
                    "output": "eighty one",
                },{
                    "text_input": "one",
                    "output": "two",
                },{
                    "text_input": "three",
                    "output": "four",
                },{
                    "text_input": "seven",
                    "output": "eight",
                }
              ]
            }
          }
        }
      }' | tee tunemodel.json
{
"name": "tunedModels/number-generator-model-dzlmi0gswwqb/operations/bvl8dymw0fhw",
"metadata": {
  "@type": "type.googleapis.com/google.ai.generativelanguage.v1beta.CreateTunedModelMetadata",
  "totalSteps": 38,
  "tunedModel": "tunedModels/number-generator-model-dzlmi0gswwqb"
}
}
% Total    % Received % Xferd  Average Speed   Time    Time     Time  Current
                              Dload  Upload   Total   Spent    Left  Speed
100  2280    0   296  100  1984    611   4098 --:--:-- --:--:-- --:--:--  4720

Python

operation = requests.post(
    url = f'{base_url}/v1beta/tunedModels',
    headers=headers,
    json= {
        "display_name": "number generator",
        "base_model": "models/gemini-1.0-pro-001",
        "tuning_task": {
          "hyperparameters": {
            "batch_size": 4,
            "learning_rate": 0.001,
            "epoch_count":5,
          },
          "training_data": {
            "examples": {
              "examples": [
                {
                    'text_input': '1',
                    'output': '2',
                },{
                    'text_input': '3',
                    'output': '4',
                },{
                    'text_input': '-3',
                    'output': '-2',
                },{
                    'text_input': 'twenty two',
                    'output': 'twenty three',
                },{
                    'text_input': 'two hundred',
                    'output': 'two hundred one',
                },{
                    'text_input': 'ninety nine',
                    'output': 'one hundred',
                },{
                    'text_input': '8',
                    'output': '9',
                },{
                    'text_input': '-98',
                    'output': '-97',
                },{
                    'text_input': '1,000',
                    'output': '1,001',
                },{
                    'text_input': '10,100,000',
                    'output': '10,100,001',
                },{
                    'text_input': 'thirteen',
                    'output': 'fourteen',
                },{
                    'text_input': 'eighty',
                    'output': 'eighty one',
                },{
                    'text_input': 'one',
                    'output': 'two',
                },{
                    'text_input': 'three',
                    'output': 'four',
                },{
                    'text_input': 'seven',
                    'output': 'eight',
                }
              ]
            }
          }
        }
      }
)
operation
<Response [200]>
operation.json()
{'name': 'tunedModels/number-generator-wl1qr34x2py/operations/41vni3zk0a47',
'metadata': {'@type': 'type.googleapis.com/google.ai.generativelanguage.v1beta.CreateTunedModelMetadata',
  'totalSteps': 19,
  'tunedModel': 'tunedModels/number-generator-wl1qr34x2py'} }

Defina uma variável com o nome do seu modelo ajustado para usar no restante do chamadas.

name=operation.json()["metadata"]["tunedModel"]
name
'tunedModels/number-generator-wl1qr34x2py'

Os valores ideais para a contagem de períodos, tamanho do lote e taxa de aprendizado dependem no conjunto de dados e em outras restrições do caso de uso. Para saber mais sobre esses valores, consulte Configurações avançadas de ajuste e Hiperparâmetros.

Receber o estado ajustado do modelo

O estado do modelo é definido como CREATING durante o treinamento e vai mudar para ACTIVE quando for concluído.

CURL

Abaixo está um trecho de código Python para analisar o nome do modelo gerado a partir do JSON de resposta. Se você estiver executando isso em um terminal, tente usar o bash Analisador JSON para analisar a resposta.

import json

first_page = json.load(open('tunemodel.json'))
os.environ['modelname'] = first_page['metadata']['tunedModel']

print(os.environ['modelname'])
tunedModels/number-generator-model-dzlmi0gswwqb

Faça outra solicitação GET com o nome do modelo para receber os metadados dele que inclui o campo estado.


curl -X GET ${base_url}/v1beta/${modelname} \
    -H 'Content-Type: application/json' \
    -H "Authorization: Bearer ${access_token}" \
    -H "x-goog-user-project: ${project_id}" | grep state
"state": "ACTIVE",
% Total    % Received % Xferd  Average Speed   Time    Time     Time  Current
                              Dload  Upload   Total   Spent    Left  Speed
100  5921    0  5921    0     0  13164      0 --:--:-- --:--:-- --:--:-- 13157

Python

tuned_model = requests.get(
    url = f'{base_url}/v1beta/{name}',
    headers=headers,
)
tuned_model.json()

O código abaixo verifica o campo de estado a cada 5 segundos até que ele não seja mais no estado CREATING.

import time
import pprint

op_json = operation.json()
response = op_json.get('response')
error = op_json.get('error')

while response is None and error is None:
    time.sleep(5)

    operation = requests.get(
        url = f'{base_url}/v1/{op_json["name"]}',
        headers=headers,
    )

    op_json = operation.json()
    response = op_json.get('response')
    error = op_json.get('error')

    percent = op_json['metadata'].get('completedPercent')
    if percent is not None:
      print(f"{percent:.2f}% - {op_json['metadata']['snapshots'][-1]}")
      print()

if error is not None:
    raise Exception(error)
100.00% - {'step': 19, 'epoch': 5, 'meanLoss': 1.402067, 'computeTime': '2024-03-14T15:11:23.766989274Z'}

Executar inferência

Depois que o job de ajuste for concluído, ele poderá ser usado para gerar texto com o texto serviço.

CURL

Tente inserir um algarismo romano, por exemplo, 63 (LXIII):


curl -X POST $base_url/v1beta/$modelname:generateContent \
    -H 'Content-Type: application/json' \
    -H "Authorization: Bearer ${access_token}" \
    -H "x-goog-user-project: ${project_id}" \
    -d '{
        "contents": [{
        "parts": [{
          "text": "LXIII"
          }]
        }]
        }' 2> /dev/null
{
"candidates": [
  {
    "content": {
      "parts": [
        {
          "text": "LXIV"
        }
      ],
      "role": "model"
    },
    "finishReason": "STOP",
    "index": 0,
    "safetyRatings": [
      {
        "category": "HARM_CATEGORY_SEXUALLY_EXPLICIT",
        "probability": "NEGLIGIBLE"
      },
      {
        "category": "HARM_CATEGORY_HATE_SPEECH",
        "probability": "NEGLIGIBLE"
      },
      {
        "category": "HARM_CATEGORY_HARASSMENT",
        "probability": "NEGLIGIBLE"
      },
      {
        "category": "HARM_CATEGORY_DANGEROUS_CONTENT",
        "probability": "NEGLIGIBLE"
      }
    ]
  }
],
"promptFeedback": {
  "safetyRatings": [
    {
      "category": "HARM_CATEGORY_SEXUALLY_EXPLICIT",
      "probability": "NEGLIGIBLE"
    },
    {
      "category": "HARM_CATEGORY_HATE_SPEECH",
      "probability": "NEGLIGIBLE"
    },
    {
      "category": "HARM_CATEGORY_HARASSMENT",
      "probability": "NEGLIGIBLE"
    },
    {
      "category": "HARM_CATEGORY_DANGEROUS_CONTENT",
      "probability": "NEGLIGIBLE"
    }
  ]
}
}

A saída do modelo pode ou não estar correta. Se o modelo ajustado não estiver de acordo com os padrões exigidos, tente adicionar mais exemplos de qualidade, ajustando os hiperparâmetros ou adicionando um preâmbulo ao seu exemplos. É possível até criar outro modelo ajustado com base no primeiro que você criados.

Consulte o guia de ajuste para mais orientações sobre como melhorar o desempenho.

Python

Tente inserir um numeral japonês, como 6 (六):

import time

m = requests.post(
    url = f'{base_url}/v1beta/{name}:generateContent',
    headers=headers,
    json= {
        "contents": [{
            "parts": [{
                "text": "六"
            }]
          }]
    })
import pprint
pprint.pprint(m.json())
{'candidates': [{'content': {'parts': [{'text': '七'}], 'role': 'model'},
                'finishReason': 'STOP',
                'index': 0,
                'safetyRatings': [{'category': 'HARM_CATEGORY_SEXUALLY_EXPLICIT',
                                    'probability': 'NEGLIGIBLE'},
                                  {'category': 'HARM_CATEGORY_HATE_SPEECH',
                                    'probability': 'NEGLIGIBLE'},
                                  {'category': 'HARM_CATEGORY_HARASSMENT',
                                    'probability': 'LOW'},
                                  {'category': 'HARM_CATEGORY_DANGEROUS_CONTENT',
                                    'probability': 'NEGLIGIBLE'}]}],
'promptFeedback': {'safetyRatings': [{'category': 'HARM_CATEGORY_SEXUALLY_EXPLICIT',
                                      'probability': 'NEGLIGIBLE'},
                                      {'category': 'HARM_CATEGORY_HATE_SPEECH',
                                      'probability': 'NEGLIGIBLE'},
                                      {'category': 'HARM_CATEGORY_HARASSMENT',
                                      'probability': 'NEGLIGIBLE'},
                                      {'category': 'HARM_CATEGORY_DANGEROUS_CONTENT',
                                      'probability': 'NEGLIGIBLE'}]} }

A saída do modelo pode ou não estar correta. Se o modelo ajustado não estiver de acordo com os padrões exigidos, tente adicionar mais exemplos de qualidade, ajustando os hiperparâmetros ou adicionando um preâmbulo ao seu exemplos.

Conclusão

Embora os dados de treinamento não contenham nenhuma referência a romanos ou japoneses numerais, o modelo conseguiu generalizar bem depois de fazer ajustes. Dessa forma, você pode ajustar modelos para atender aos seus casos de uso.

Próximas etapas

Para aprender a usar o serviço de ajuste com a ajuda do SDK do Python para o API Gemini, acesse o guia de início rápido de ajuste com Python. Para saber como para usar outros serviços na API Gemini, acesse a página de introdução à REST tutorial.