برای راهنمای دقیق شمارش نشانهها با استفاده از Gemini API، از جمله نحوه شمارش تصاویر، صدا و ویدئو، راهنمای شمارش رمزها و دستور العمل کتاب آشپزی همراه را ببینید.
روش: models.countTokens
- نقطه پایانی
- پارامترهای مسیر
- درخواست بدن
- بدن پاسخگو
- محدوده مجوز
- درخواست نمونه
- Generate ContentRequest
توکنایزر مدل را روی Content
ورودی اجرا می کند و تعداد توکن ها را برمی گرداند. برای کسب اطلاعات بیشتر در مورد توکن ها به راهنمای توکن ها مراجعه کنید.
نقطه پایانی
پست https://generativelanguage.googleapis.com/v1beta/{model=models/*}:countTokensپارامترهای مسیر
string
model
مورد نیاز. نام منبع مدل این به عنوان شناسه ای برای استفاده از مدل عمل می کند.
این نام باید با نام مدلی که با روش models.list
برگردانده شده است مطابقت داشته باشد.
قالب: models/{model}
شکل models/{model}
را میگیرد.
درخواست بدن
بدنه درخواست شامل داده هایی با ساختار زیر است:
contents[]
object ( Content
)
اختیاری. ورودی به عنوان یک اعلان به مدل داده می شود. این فیلد در صورت تنظیم generateContentRequest
نادیده گرفته می شود.
generateContentRequest
object ( GenerateContentRequest
)
اختیاری. ورودی کلی که به Model
داده شده است. این شامل فرمان و همچنین سایر اطلاعات فرمان مدل مانند دستورالعملهای سیستم ، و/یا اعلانهای عملکرد برای فراخوانی تابع میشود. Model
s/ Content
s و generateContentRequest
متقابلاً منحصر به فرد هستند. میتوانید Model
+ Content
s یا یک generateContentRequest
ارسال کنید، اما هرگز هر دو را.
درخواست نمونه
متن
پایتون
model = genai.GenerativeModel("models/gemini-1.5-flash")
prompt = "The quick brown fox jumps over the lazy dog."
# Call `count_tokens` to get the input token count (`total_tokens`).
print("total_tokens: ", model.count_tokens(prompt))
# ( total_tokens: 10 )
response = model.generate_content(prompt)
# On the response for `generate_content`, use `usage_metadata`
# to get separate input and output token counts
# (`prompt_token_count` and `candidates_token_count`, respectively),
# as well as the combined token count (`total_token_count`).
print(response.usage_metadata)
# ( prompt_token_count: 11, candidates_token_count: 73, total_token_count: 84 )
Node.js
// Make sure to include these imports:
// import { GoogleGenerativeAI } from "@google/generative-ai";
const genAI = new GoogleGenerativeAI(process.env.API_KEY);
const model = genAI.getGenerativeModel({
model: "gemini-1.5-flash",
});
// Count tokens in a prompt without calling text generation.
const countResult = await model.countTokens(
"The quick brown fox jumps over the lazy dog.",
);
console.log(countResult.totalTokens); // 11
const generateResult = await model.generateContent(
"The quick brown fox jumps over the lazy dog.",
);
// On the response for `generateContent`, use `usageMetadata`
// to get separate input and output token counts
// (`promptTokenCount` and `candidatesTokenCount`, respectively),
// as well as the combined token count (`totalTokenCount`).
console.log(generateResult.response.usageMetadata);
// candidatesTokenCount and totalTokenCount depend on response, may vary
// { promptTokenCount: 11, candidatesTokenCount: 124, totalTokenCount: 135 }
برو
model := client.GenerativeModel("gemini-1.5-flash")
prompt := "The quick brown fox jumps over the lazy dog"
// Call CountTokens to get the input token count (`total tokens`).
tokResp, err := model.CountTokens(ctx, genai.Text(prompt))
if err != nil {
log.Fatal(err)
}
fmt.Println("total_tokens:", tokResp.TotalTokens)
// ( total_tokens: 10 )
resp, err := model.GenerateContent(ctx, genai.Text(prompt))
if err != nil {
log.Fatal(err)
}
// On the response for GenerateContent, use UsageMetadata to get
// separate input and output token counts (PromptTokenCount and
// CandidatesTokenCount, respectively), as well as the combined
// token count (TotalTokenCount).
fmt.Println("prompt_token_count:", resp.UsageMetadata.PromptTokenCount)
fmt.Println("candidates_token_count:", resp.UsageMetadata.CandidatesTokenCount)
fmt.Println("total_token_count:", resp.UsageMetadata.TotalTokenCount)
// ( prompt_token_count: 10, candidates_token_count: 38, total_token_count: 48 )
پوسته
curl https://generativelanguage.googleapis.com/v1beta/models/gemini-1.5-flash:countTokens?key=$GOOGLE_API_KEY \
-H 'Content-Type: application/json' \
-X POST \
-d '{
"contents": [{
"parts":[{
"text": "The quick brown fox jumps over the lazy dog."
}],
}],
}'
کاتلین
val generativeModel =
GenerativeModel(
// Specify a Gemini model appropriate for your use case
modelName = "gemini-1.5-flash",
// Access your API key as a Build Configuration variable (see "Set up your API key" above)
apiKey = BuildConfig.apiKey)
// For text-only input
val (totalTokens) = generativeModel.countTokens("Write a story about a magic backpack.")
print(totalTokens)
سویفت
let generativeModel =
GenerativeModel(
// Specify a Gemini model appropriate for your use case
name: "gemini-1.5-flash",
// Access your API key from your on-demand resource .plist file (see "Set up your API key"
// above)
apiKey: APIKey.default
)
let prompt = "Write a story about a magic backpack."
let response = try await generativeModel.countTokens(prompt)
print("Total Tokens: \(response.totalTokens)")
دارت
// Make sure to include this import:
// import 'package:google_generative_ai/google_generative_ai.dart';
final model = GenerativeModel(
model: 'gemini-1.5-flash',
apiKey: apiKey,
);
final prompt = 'The quick brown fox jumps over the lazy dog.';
final tokenCount = await model.countTokens([Content.text(prompt)]);
print('Total tokens: ${tokenCount.totalTokens}');
جاوا
// Specify a Gemini model appropriate for your use case
GenerativeModel gm =
new GenerativeModel(
/* modelName */ "gemini-1.5-flash",
// Access your API key as a Build Configuration variable (see "Set up your API key"
// above)
/* apiKey */ BuildConfig.apiKey);
GenerativeModelFutures model = GenerativeModelFutures.from(gm);
Content inputContent =
new Content.Builder().addText("Write a story about a magic backpack.").build();
// For illustrative purposes only. You should use an executor that fits your needs.
Executor executor = Executors.newSingleThreadExecutor();
// For text-only input
ListenableFuture<CountTokensResponse> countTokensResponse = model.countTokens(inputContent);
Futures.addCallback(
countTokensResponse,
new FutureCallback<CountTokensResponse>() {
@Override
public void onSuccess(CountTokensResponse result) {
int totalTokens = result.getTotalTokens();
System.out.println("TotalTokens = " + totalTokens);
}
@Override
public void onFailure(Throwable t) {
t.printStackTrace();
}
},
executor);
چت کنید
پایتون
model = genai.GenerativeModel("models/gemini-1.5-flash")
chat = model.start_chat(
history=[
{"role": "user", "parts": "Hi my name is Bob"},
{"role": "model", "parts": "Hi Bob!"},
]
)
# Call `count_tokens` to get the input token count (`total_tokens`).
print(model.count_tokens(chat.history))
# ( total_tokens: 10 )
response = chat.send_message(
"In one sentence, explain how a computer works to a young child."
)
# On the response for `send_message`, use `usage_metadata`
# to get separate input and output token counts
# (`prompt_token_count` and `candidates_token_count`, respectively),
# as well as the combined token count (`total_token_count`).
print(response.usage_metadata)
# ( prompt_token_count: 25, candidates_token_count: 21, total_token_count: 46 )
from google.generativeai.types.content_types import to_contents
# You can call `count_tokens` on the combined history and content of the next turn.
print(model.count_tokens(chat.history + to_contents("What is the meaning of life?")))
# ( total_tokens: 56 )
Node.js
// Make sure to include these imports:
// import { GoogleGenerativeAI } from "@google/generative-ai";
const genAI = new GoogleGenerativeAI(process.env.API_KEY);
const model = genAI.getGenerativeModel({
model: "gemini-1.5-flash",
});
const chat = model.startChat({
history: [
{
role: "user",
parts: [{ text: "Hi my name is Bob" }],
},
{
role: "model",
parts: [{ text: "Hi Bob!" }],
},
],
});
const countResult = await model.countTokens({
generateContentRequest: { contents: await chat.getHistory() },
});
console.log(countResult.totalTokens); // 10
const chatResult = await chat.sendMessage(
"In one sentence, explain how a computer works to a young child.",
);
// On the response for `sendMessage`, use `usageMetadata`
// to get separate input and output token counts
// (`promptTokenCount` and `candidatesTokenCount`, respectively),
// as well as the combined token count (`totalTokenCount`).
console.log(chatResult.response.usageMetadata);
// candidatesTokenCount and totalTokenCount depend on response, may vary
// { promptTokenCount: 25, candidatesTokenCount: 25, totalTokenCount: 50 }
برو
model := client.GenerativeModel("gemini-1.5-flash")
cs := model.StartChat()
cs.History = []*genai.Content{
{
Parts: []genai.Part{
genai.Text("Hi my name is Bob"),
},
Role: "user",
},
{
Parts: []genai.Part{
genai.Text("Hi Bob!"),
},
Role: "model",
},
}
prompt := "Explain how a computer works to a young child."
resp, err := cs.SendMessage(ctx, genai.Text(prompt))
if err != nil {
log.Fatal(err)
}
// On the response for SendMessage, use `UsageMetadata` to get
// separate input and output token counts
// (`prompt_token_count` and `candidates_token_count`, respectively),
// as well as the combined token count (`total_token_count`).
fmt.Println("prompt_token_count:", resp.UsageMetadata.PromptTokenCount)
fmt.Println("candidates_token_count:", resp.UsageMetadata.CandidatesTokenCount)
fmt.Println("total_token_count:", resp.UsageMetadata.TotalTokenCount)
// ( prompt_token_count: 25, candidates_token_count: 21, total_token_count: 46 )
پوسته
curl https://generativelanguage.googleapis.com/v1beta/models/gemini-1.5-flash:countTokens?key=$GOOGLE_API_KEY \
-H 'Content-Type: application/json' \
-X POST \
-d '{
"contents": [
{"role": "user",
"parts": [{"text": "Hi, my name is Bob."}],
},
{"role": "model",
"parts":[{"text": "Hi Bob"}],
},
],
}'
کاتلین
val generativeModel =
GenerativeModel(
// Specify a Gemini model appropriate for your use case
modelName = "gemini-1.5-flash",
// Access your API key as a Build Configuration variable (see "Set up your API key" above)
apiKey = BuildConfig.apiKey)
val chat =
generativeModel.startChat(
history =
listOf(
content(role = "user") { text("Hello, I have 2 dogs in my house.") },
content(role = "model") {
text("Great to meet you. What would you like to know?")
}))
val history = chat.history
val messageContent = content { text("This is the message I intend to send") }
val (totalTokens) = generativeModel.countTokens(*history.toTypedArray(), messageContent)
print(totalTokens)
سویفت
let generativeModel =
GenerativeModel(
// Specify a Gemini model appropriate for your use case
name: "gemini-1.5-flash",
// Access your API key from your on-demand resource .plist file (see "Set up your API key"
// above)
apiKey: APIKey.default
)
// Optionally specify existing chat history
let history = [
ModelContent(role: "user", parts: "Hello, I have 2 dogs in my house."),
ModelContent(role: "model", parts: "Great to meet you. What would you like to know?"),
]
// Initialize the chat with optional chat history
let chat = generativeModel.startChat(history: history)
let response = try await generativeModel.countTokens(chat.history + [
ModelContent(role: "user", parts: "This is the message I intend to send"),
])
print("Total Tokens: \(response.totalTokens)")
دارت
// Make sure to include this import:
// import 'package:google_generative_ai/google_generative_ai.dart';
final model = GenerativeModel(
model: 'gemini-1.5-flash',
apiKey: apiKey,
);
final chat = model.startChat(history: [
Content.text('Hi my name is Bob'),
Content.model([TextPart('Hi Bob!')])
]);
var tokenCount = await model.countTokens(chat.history);
print('Total tokens: ${tokenCount.totalTokens}');
final response = await chat.sendMessage(Content.text(
'In one sentence, explain how a computer works to a young child.'));
if (response.usageMetadata case final usage?) {
print('Prompt: ${usage.promptTokenCount}, '
'Candidates: ${usage.candidatesTokenCount}, '
'Total: ${usage.totalTokenCount}');
}
tokenCount = await model.countTokens(
[...chat.history, Content.text('What is the meaning of life?')]);
print('Total tokens: ${tokenCount.totalTokens}');
جاوا
// Specify a Gemini model appropriate for your use case
GenerativeModel gm =
new GenerativeModel(
/* modelName */ "gemini-1.5-flash",
// Access your API key as a Build Configuration variable (see "Set up your API key"
// above)
/* apiKey */ BuildConfig.apiKey);
GenerativeModelFutures model = GenerativeModelFutures.from(gm);
// (optional) Create previous chat history for context
Content.Builder userContentBuilder = new Content.Builder();
userContentBuilder.setRole("user");
userContentBuilder.addText("Hello, I have 2 dogs in my house.");
Content userContent = userContentBuilder.build();
Content.Builder modelContentBuilder = new Content.Builder();
modelContentBuilder.setRole("model");
modelContentBuilder.addText("Great to meet you. What would you like to know?");
Content modelContent = userContentBuilder.build();
List<Content> history = Arrays.asList(userContent, modelContent);
// Initialize the chat
ChatFutures chat = model.startChat(history);
Content messageContent =
new Content.Builder().addText("This is the message I intend to send").build();
Collections.addAll(history, messageContent);
// For illustrative purposes only. You should use an executor that fits your needs.
Executor executor = Executors.newSingleThreadExecutor();
ListenableFuture<CountTokensResponse> countTokensResponse =
model.countTokens(history.toArray(new Content[0]));
Futures.addCallback(
countTokensResponse,
new FutureCallback<CountTokensResponse>() {
@Override
public void onSuccess(CountTokensResponse result) {
System.out.println(result);
}
@Override
public void onFailure(Throwable t) {
t.printStackTrace();
}
},
executor);
رسانه درون خطی
پایتون
import PIL.Image
model = genai.GenerativeModel("models/gemini-1.5-flash")
prompt = "Tell me about this image"
your_image_file = PIL.Image.open(media / "organ.jpg")
# Call `count_tokens` to get the input token count
# of the combined text and file (`total_tokens`).
# An image's display or file size does not affect its token count.
# Optionally, you can call `count_tokens` for the text and file separately.
print(model.count_tokens([prompt, your_image_file]))
# ( total_tokens: 263 )
response = model.generate_content([prompt, your_image_file])
# On the response for `generate_content`, use `usage_metadata`
# to get separate input and output token counts
# (`prompt_token_count` and `candidates_token_count`, respectively),
# as well as the combined token count (`total_token_count`).
print(response.usage_metadata)
# ( prompt_token_count: 264, candidates_token_count: 80, total_token_count: 345 )
Node.js
// Make sure to include these imports:
// import { GoogleGenerativeAI } from "@google/generative-ai";
const genAI = new GoogleGenerativeAI(process.env.API_KEY);
const model = genAI.getGenerativeModel({
model: "gemini-1.5-flash",
});
function fileToGenerativePart(path, mimeType) {
return {
inlineData: {
data: Buffer.from(fs.readFileSync(path)).toString("base64"),
mimeType,
},
};
}
const imagePart = fileToGenerativePart(
`${mediaPath}/jetpack.jpg`,
"image/jpeg",
);
const prompt = "Tell me about this image.";
// Call `countTokens` to get the input token count
// of the combined text and file (`totalTokens`).
// An image's display or file size does not affect its token count.
// Optionally, you can call `countTokens` for the text and file separately.
const countResult = await model.countTokens([prompt, imagePart]);
console.log(countResult.totalTokens); // 265
const generateResult = await model.generateContent([prompt, imagePart]);
// On the response for `generateContent`, use `usageMetadata`
// to get separate input and output token counts
// (`promptTokenCount` and `candidatesTokenCount`, respectively),
// as well as the combined token count (`totalTokenCount`).
console.log(generateResult.response.usageMetadata);
// candidatesTokenCount and totalTokenCount depend on response, may vary
// { promptTokenCount: 265, candidatesTokenCount: 157, totalTokenCount: 422 }
برو
model := client.GenerativeModel("gemini-1.5-flash")
prompt := "Tell me about this image"
imageFile, err := os.ReadFile(filepath.Join(testDataDir, "personWorkingOnComputer.jpg"))
if err != nil {
log.Fatal(err)
}
// Call `CountTokens` to get the input token count
// of the combined text and file (`total_tokens`).
// An image's display or file size does not affect its token count.
// Optionally, you can call `count_tokens` for the text and file separately.
tokResp, err := model.CountTokens(ctx, genai.Text(prompt), genai.ImageData("jpeg", imageFile))
if err != nil {
log.Fatal(err)
}
fmt.Println("total_tokens:", tokResp.TotalTokens)
// ( total_tokens: 264 )
resp, err := model.GenerateContent(ctx, genai.Text(prompt), genai.ImageData("jpeg", imageFile))
if err != nil {
log.Fatal(err)
}
fmt.Println("prompt_token_count:", resp.UsageMetadata.PromptTokenCount)
fmt.Println("candidates_token_count:", resp.UsageMetadata.CandidatesTokenCount)
fmt.Println("total_token_count:", resp.UsageMetadata.TotalTokenCount)
// ( prompt_token_count: 264, candidates_token_count: 100, total_token_count: 364 )
پوسته
curl "https://generativelanguage.googleapis.com/v1beta/models/gemini-1.5-flash:countTokens?key=$GOOGLE_API_KEY" \
-H 'Content-Type: application/json' \
-X POST \
-d '{
"contents": [{
"parts":[
{"text": "Tell me about this instrument"},
{
"inline_data": {
"mime_type":"image/jpeg",
"data": "'$(base64 $B64FLAGS $IMG_PATH)'"
}
}
]
}]
}' 2> /dev/null
کاتلین
val generativeModel =
GenerativeModel(
// Specify a Gemini model appropriate for your use case
modelName = "gemini-1.5-flash",
// Access your API key as a Build Configuration variable (see "Set up your API key" above)
apiKey = BuildConfig.apiKey)
val image1: Bitmap = BitmapFactory.decodeResource(context.resources, R.drawable.image1)
val image2: Bitmap = BitmapFactory.decodeResource(context.resources, R.drawable.image2)
val multiModalContent = content {
image(image1)
image(image2)
text("What's the difference between these pictures?")
}
val (totalTokens) = generativeModel.countTokens(multiModalContent)
print(totalTokens)
سویفت
let generativeModel =
GenerativeModel(
// Specify a Gemini model appropriate for your use case
name: "gemini-1.5-flash",
// Access your API key from your on-demand resource .plist file (see "Set up your API key"
// above)
apiKey: APIKey.default
)
guard let image1 = UIImage(systemName: "cloud.sun") else { fatalError() }
guard let image2 = UIImage(systemName: "cloud.heavyrain") else { fatalError() }
let prompt = "What's the difference between these pictures?"
let response = try await generativeModel.countTokens(image1, image2, prompt)
print("Total Tokens: \(response.totalTokens)")
دارت
// Make sure to include this import:
// import 'package:google_generative_ai/google_generative_ai.dart';
final model = GenerativeModel(
model: 'gemini-1.5-flash',
apiKey: apiKey,
);
Future<DataPart> fileToPart(String mimeType, String path) async {
return DataPart(mimeType, await File(path).readAsBytes());
}
final prompt = 'Tell me about this image';
final image = await fileToPart('image/jpeg', 'resources/organ.jpg');
final content = Content.multi([TextPart(prompt), image]);
// An image's display size does not affet its token count.
// Optionally, you can call `countTokens` for the prompt and file separately.
final tokenCount = await model.countTokens([content]);
print('Total tokens: ${tokenCount.totalTokens}');
final response = await model.generateContent([content]);
if (response.usageMetadata case final usage?) {
print('Prompt: ${usage.promptTokenCount}, '
'Candidates: ${usage.candidatesTokenCount}, '
'Total: ${usage.totalTokenCount}');
}
جاوا
// Specify a Gemini model appropriate for your use case
GenerativeModel gm =
new GenerativeModel(
/* modelName */ "gemini-1.5-flash",
// Access your API key as a Build Configuration variable (see "Set up your API key"
// above)
/* apiKey */ BuildConfig.apiKey);
GenerativeModelFutures model = GenerativeModelFutures.from(gm);
Content text = new Content.Builder().addText("Write a story about a magic backpack.").build();
// For illustrative purposes only. You should use an executor that fits your needs.
Executor executor = Executors.newSingleThreadExecutor();
// For text-and-image input
Bitmap image1 = BitmapFactory.decodeResource(context.getResources(), R.drawable.image1);
Bitmap image2 = BitmapFactory.decodeResource(context.getResources(), R.drawable.image2);
Content multiModalContent =
new Content.Builder()
.addImage(image1)
.addImage(image2)
.addText("What's different between these pictures?")
.build();
ListenableFuture<CountTokensResponse> countTokensResponse =
model.countTokens(multiModalContent);
Futures.addCallback(
countTokensResponse,
new FutureCallback<CountTokensResponse>() {
@Override
public void onSuccess(CountTokensResponse result) {
int totalTokens = result.getTotalTokens();
System.out.println("TotalTokens = " + totalTokens);
}
@Override
public void onFailure(Throwable t) {
t.printStackTrace();
}
},
executor);
ویدئو
پایتون
import time
model = genai.GenerativeModel("models/gemini-1.5-flash")
prompt = "Tell me about this video"
your_file = genai.upload_file(path=media / "Big_Buck_Bunny.mp4")
# Videos need to be processed before you can use them.
while your_file.state.name == "PROCESSING":
print("processing video...")
time.sleep(5)
your_file = genai.get_file(your_file.name)
# Call `count_tokens` to get the input token count
# of the combined text and video/audio file (`total_tokens`).
# A video or audio file is converted to tokens at a fixed rate of tokens per second.
# Optionally, you can call `count_tokens` for the text and file separately.
print(model.count_tokens([prompt, your_file]))
# ( total_tokens: 300 )
response = model.generate_content([prompt, your_file])
# On the response for `generate_content`, use `usage_metadata`
# to get separate input and output token counts
# (`prompt_token_count` and `candidates_token_count`, respectively),
# as well as the combined token count (`total_token_count`).
print(response.usage_metadata)
# ( prompt_token_count: 301, candidates_token_count: 60, total_token_count: 361 )
Node.js
// Make sure to include these imports:
// import { GoogleAIFileManager, FileState } from "@google/generative-ai/server";
// import { GoogleGenerativeAI } from "@google/generative-ai";
const fileManager = new GoogleAIFileManager(process.env.API_KEY);
const uploadVideoResult = await fileManager.uploadFile(
`${mediaPath}/Big_Buck_Bunny.mp4`,
{ mimeType: "video/mp4" },
);
let file = await fileManager.getFile(uploadVideoResult.file.name);
process.stdout.write("processing video");
while (file.state === FileState.PROCESSING) {
process.stdout.write(".");
// Sleep for 10 seconds
await new Promise((resolve) => setTimeout(resolve, 10_000));
// Fetch the file from the API again
file = await fileManager.getFile(uploadVideoResult.file.name);
}
if (file.state === FileState.FAILED) {
throw new Error("Video processing failed.");
} else {
process.stdout.write("\n");
}
const videoPart = {
fileData: {
fileUri: uploadVideoResult.file.uri,
mimeType: uploadVideoResult.file.mimeType,
},
};
const genAI = new GoogleGenerativeAI(process.env.API_KEY);
const model = genAI.getGenerativeModel({
model: "gemini-1.5-flash",
});
const prompt = "Tell me about this video.";
// Call `countTokens` to get the input token count
// of the combined text and file (`totalTokens`).
// A video or audio file is converted to tokens at a fixed rate of tokens
// per second.
// Optionally, you can call `countTokens` for the text and file separately.
const countResult = await model.countTokens([prompt, videoPart]);
console.log(countResult.totalTokens); // 302
const generateResult = await model.generateContent([prompt, videoPart]);
// On the response for `generateContent`, use `usageMetadata`
// to get separate input and output token counts
// (`promptTokenCount` and `candidatesTokenCount`, respectively),
// as well as the combined token count (`totalTokenCount`).
console.log(generateResult.response.usageMetadata);
// candidatesTokenCount and totalTokenCount depend on response, may vary
// { promptTokenCount: 302, candidatesTokenCount: 46, totalTokenCount: 348 }
برو
model := client.GenerativeModel("gemini-1.5-flash")
prompt := "Tell me about this video"
file, err := client.UploadFileFromPath(ctx, filepath.Join(testDataDir, "earth.mp4"), nil)
if err != nil {
log.Fatal(err)
}
defer client.DeleteFile(ctx, file.Name)
fd := genai.FileData{URI: file.URI}
// Call `CountTokens` to get the input token count
// of the combined text and file (`total_tokens`).
// A video or audio file is converted to tokens at a fixed rate of tokens per
// second.
// Optionally, you can call `count_tokens` for the text and file separately.
tokResp, err := model.CountTokens(ctx, genai.Text(prompt), fd)
if err != nil {
log.Fatal(err)
}
fmt.Println("total_tokens:", tokResp.TotalTokens)
// ( total_tokens: 1481 )
resp, err := model.GenerateContent(ctx, genai.Text(prompt), fd)
if err != nil {
log.Fatal(err)
}
fmt.Println("prompt_token_count:", resp.UsageMetadata.PromptTokenCount)
fmt.Println("candidates_token_count:", resp.UsageMetadata.CandidatesTokenCount)
fmt.Println("total_token_count:", resp.UsageMetadata.TotalTokenCount)
// ( prompt_token_count: 1481, candidates_token_count: 43, total_token_count: 1524 )
پوسته
MIME_TYPE=$(file -b --mime-type "${VIDEO_PATH}")
NUM_BYTES=$(wc -c < "${VIDEO_PATH}")
DISPLAY_NAME=VIDEO_PATH
# Initial resumable request defining metadata.
# The upload url is in the response headers dump them to a file.
curl "${BASE_URL}/upload/v1beta/files?key=${GOOGLE_API_KEY}" \
-D upload-header.tmp \
-H "X-Goog-Upload-Protocol: resumable" \
-H "X-Goog-Upload-Command: start" \
-H "X-Goog-Upload-Header-Content-Length: ${NUM_BYTES}" \
-H "X-Goog-Upload-Header-Content-Type: ${MIME_TYPE}" \
-H "Content-Type: application/json" \
-d "{'file': {'display_name': '${DISPLAY_NAME}'}}" 2> /dev/null
upload_url=$(grep -i "x-goog-upload-url: " "${tmp_header_file}" | cut -d" " -f2 | tr -d "\r")
rm "${tmp_header_file}"
# Upload the actual bytes.
curl "${upload_url}" \
-H "Content-Length: ${NUM_BYTES}" \
-H "X-Goog-Upload-Offset: 0" \
-H "X-Goog-Upload-Command: upload, finalize" \
--data-binary "@${VIDEO_PATH}" 2> /dev/null > file_info.json
file_uri=$(jq ".file.uri" file_info.json)
state=$(jq ".file.state" file_info.json)
name=$(jq ".file.name" file_info.json)
while [[ "($state)" = *"PROCESSING"* ]];
do
echo "Processing video..."
sleep 5
# Get the file of interest to check state
curl https://generativelanguage.googleapis.com/v1beta/files/$name > file_info.json
state=$(jq ".file.state" file_info.json)
done
curl "https://generativelanguage.googleapis.com/v1beta/models/gemini-1.5-flash:countTokens?key=$GOOGLE_API_KEY" \
-H 'Content-Type: application/json' \
-X POST \
-d '{
"contents": [{
"parts":[
{"text": "Describe this video clip"},
{"file_data":{"mime_type": "video/mp4", "file_uri": '$file_uri'}}]
}]
}'
پایتون
model = genai.GenerativeModel("gemini-1.5-flash")
sample_pdf = genai.upload_file(media / "test.pdf")
token_count = model.count_tokens(["Give me a summary of this document.", sample_pdf])
print(f"{token_count=}")
response = model.generate_content(["Give me a summary of this document.", sample_pdf])
print(response.usage_metadata)
حافظه پنهان
پایتون
import time
model = genai.GenerativeModel("models/gemini-1.5-flash")
your_file = genai.upload_file(path=media / "a11.txt")
cache = genai.caching.CachedContent.create(
model="models/gemini-1.5-flash-001",
# You can set the system_instruction and tools
system_instruction=None,
tools=None,
contents=["Here the Apollo 11 transcript:", your_file],
)
model = genai.GenerativeModel.from_cached_content(cache)
prompt = "Please give a short summary of this file."
# Call `count_tokens` to get input token count
# of the combined text and file (`total_tokens`).
# A video or audio file is converted to tokens at a fixed rate of tokens per second.
# Optionally, you can call `count_tokens` for the text and file separately.
print(model.count_tokens(prompt))
# ( total_tokens: 9 )
response = model.generate_content(prompt)
# On the response for `generate_content`, use `usage_metadata`
# to get separate input and output token counts
# (`prompt_token_count` and `candidates_token_count`, respectively),
# as well as the cached content token count and the combined total token count.
print(response.usage_metadata)
# ( prompt_token_count: 323393, cached_content_token_count: 323383, candidates_token_count: 64)
# ( total_token_count: 323457 )
cache.delete()
Node.js
// Make sure to include these imports:
// import { GoogleAIFileManager, GoogleAICacheManager } from "@google/generative-ai/server";
// import { GoogleGenerativeAI } from "@google/generative-ai";
// Upload large text file.
const fileManager = new GoogleAIFileManager(process.env.API_KEY);
const uploadResult = await fileManager.uploadFile(`${mediaPath}/a11.txt`, {
mimeType: "text/plain",
});
// Create a cache that uses the uploaded file.
const cacheManager = new GoogleAICacheManager(process.env.API_KEY);
const cacheResult = await cacheManager.create({
ttlSeconds: 600,
model: "models/gemini-1.5-flash-001",
contents: [
{
role: "user",
parts: [{ text: "Here's the Apollo 11 transcript:" }],
},
{
role: "user",
parts: [
{
fileData: {
fileUri: uploadResult.file.uri,
mimeType: uploadResult.file.mimeType,
},
},
],
},
],
});
const genAI = new GoogleGenerativeAI(process.env.API_KEY);
const model = genAI.getGenerativeModelFromCachedContent(cacheResult);
const prompt = "Please give a short summary of this file.";
// Call `countTokens` to get the input token count
// of the combined text and file (`totalTokens`).
const result = await model.countTokens(prompt);
console.log(result.totalTokens); // 10
const generateResult = await model.generateContent(prompt);
// On the response for `generateContent`, use `usageMetadata`
// to get separate input and output token counts
// (`promptTokenCount` and `candidatesTokenCount`, respectively),
// as well as the cached content token count and the combined total
// token count.
console.log(generateResult.response.usageMetadata);
// {
// promptTokenCount: 323396,
// candidatesTokenCount: 113, (depends on response, may vary)
// totalTokenCount: 323509,
// cachedContentTokenCount: 323386
// }
await cacheManager.delete(cacheResult.name);
برو
txt := strings.Repeat("George Washington was the first president of the United States. ", 3000)
argcc := &genai.CachedContent{
Model: "gemini-1.5-flash-001",
Contents: []*genai.Content{genai.NewUserContent(genai.Text(txt))},
}
cc, err := client.CreateCachedContent(ctx, argcc)
if err != nil {
log.Fatal(err)
}
defer client.DeleteCachedContent(ctx, cc.Name)
modelWithCache := client.GenerativeModelFromCachedContent(cc)
prompt := "Summarize this statement"
tokResp, err := modelWithCache.CountTokens(ctx, genai.Text(prompt))
if err != nil {
log.Fatal(err)
}
fmt.Println("total_tokens:", tokResp.TotalTokens)
// ( total_tokens: 5 )
resp, err := modelWithCache.GenerateContent(ctx, genai.Text(prompt))
if err != nil {
log.Fatal(err)
}
fmt.Println("prompt_token_count:", resp.UsageMetadata.PromptTokenCount)
fmt.Println("candidates_token_count:", resp.UsageMetadata.CandidatesTokenCount)
fmt.Println("cached_content_token_count:", resp.UsageMetadata.CachedContentTokenCount)
fmt.Println("total_token_count:", resp.UsageMetadata.TotalTokenCount)
// ( prompt_token_count: 33007, candidates_token_count: 39, cached_content_token_count: 33002, total_token_count: 33046 )
دستورالعمل سیستم
پایتون
model = genai.GenerativeModel(model_name="gemini-1.5-flash")
prompt = "The quick brown fox jumps over the lazy dog."
print(model.count_tokens(prompt))
# total_tokens: 10
model = genai.GenerativeModel(
model_name="gemini-1.5-flash", system_instruction="You are a cat. Your name is Neko."
)
# The total token count includes everything sent to the `generate_content` request.
# When you use system instructions, the total token count increases.
print(model.count_tokens(prompt))
# ( total_tokens: 21 )
Node.js
// Make sure to include these imports:
// import { GoogleGenerativeAI } from "@google/generative-ai";
const genAI = new GoogleGenerativeAI(process.env.API_KEY);
const prompt = "The quick brown fox jumps over the lazy dog.";
const modelNoInstructions = genAI.getGenerativeModel({
model: "models/gemini-1.5-flash",
});
const resultNoInstructions = await modelNoInstructions.countTokens(prompt);
console.log(resultNoInstructions);
// { totalTokens: 11 }
const modelWithInstructions = genAI.getGenerativeModel({
model: "models/gemini-1.5-flash",
systemInstruction: "You are a cat. Your name is Neko.",
});
const resultWithInstructions =
await modelWithInstructions.countTokens(prompt);
// The total token count includes everything sent to the
// generateContent() request. When you use system instructions, the
// total token count increases.
console.log(resultWithInstructions);
// { totalTokens: 23 }
برو
model := client.GenerativeModel("gemini-1.5-flash")
prompt := "The quick brown fox jumps over the lazy dog"
respNoInstruction, err := model.CountTokens(ctx, genai.Text(prompt))
if err != nil {
log.Fatal(err)
}
fmt.Println("total_tokens:", respNoInstruction.TotalTokens)
// ( total_tokens: 10 )
// The total token count includes everything sent to the GenerateContent
// request. When you use system instructions, the total token
// count increases.
model.SystemInstruction = genai.NewUserContent(genai.Text("You are a cat. Your name is Neko."))
respWithInstruction, err := model.CountTokens(ctx, genai.Text(prompt))
if err != nil {
log.Fatal(err)
}
fmt.Println("total_tokens:", respWithInstruction.TotalTokens)
// ( total_tokens: 21 )
کاتلین
val generativeModel =
GenerativeModel(
// Specify a Gemini model appropriate for your use case
modelName = "gemini-1.5-flash",
// Access your API key as a Build Configuration variable (see "Set up your API key" above)
apiKey = BuildConfig.apiKey,
systemInstruction = content(role = "system") { text("You are a cat. Your name is Neko.")}
)
// For text-only input
val (totalTokens) = generativeModel.countTokens("What is your name?")
print(totalTokens)
سویفت
let generativeModel =
GenerativeModel(
// Specify a model that supports system instructions, like a Gemini 1.5 model
name: "gemini-1.5-flash",
// Access your API key from your on-demand resource .plist file (see "Set up your API key"
// above)
apiKey: APIKey.default,
systemInstruction: ModelContent(role: "system", parts: "You are a cat. Your name is Neko.")
)
let prompt = "What is your name?"
let response = try await generativeModel.countTokens(prompt)
print("Total Tokens: \(response.totalTokens)")
دارت
// Make sure to include this import:
// import 'package:google_generative_ai/google_generative_ai.dart';
var model = GenerativeModel(
model: 'gemini-1.5-flash',
apiKey: apiKey,
);
final prompt = 'The quick brown fox jumps over the lazy dog.';
// The total token count includes everything sent in the `generateContent`
// request.
var tokenCount = await model.countTokens([Content.text(prompt)]);
print('Total tokens: ${tokenCount.totalTokens}');
model = GenerativeModel(
model: 'gemini-1.5-flash',
apiKey: apiKey,
systemInstruction: Content.system('You are a cat. Your name is Neko.'),
);
tokenCount = await model.countTokens([Content.text(prompt)]);
print('Total tokens: ${tokenCount.totalTokens}');
جاوا
// Create your system instructions
Content systemInstruction =
new Content.Builder().addText("You are a cat. Your name is Neko.").build();
// Specify a Gemini model appropriate for your use case
GenerativeModel gm =
new GenerativeModel(
/* modelName */ "gemini-1.5-flash",
// Access your API key as a Build Configuration variable (see "Set up your API key"
// above)
/* apiKey */ BuildConfig.apiKey,
/* generationConfig (optional) */ null,
/* safetySettings (optional) */ null,
/* requestOptions (optional) */ new RequestOptions(),
/* tools (optional) */ null,
/* toolsConfig (optional) */ null,
/* systemInstruction (optional) */ systemInstruction);
GenerativeModelFutures model = GenerativeModelFutures.from(gm);
Content inputContent = new Content.Builder().addText("What's your name?.").build();
// For illustrative purposes only. You should use an executor that fits your needs.
Executor executor = Executors.newSingleThreadExecutor();
// For text-only input
ListenableFuture<CountTokensResponse> countTokensResponse = model.countTokens(inputContent);
Futures.addCallback(
countTokensResponse,
new FutureCallback<CountTokensResponse>() {
@Override
public void onSuccess(CountTokensResponse result) {
int totalTokens = result.getTotalTokens();
System.out.println("TotalTokens = " + totalTokens);
}
@Override
public void onFailure(Throwable t) {
t.printStackTrace();
}
},
executor);
ابزار
پایتون
model = genai.GenerativeModel(model_name="gemini-1.5-flash")
prompt = "I have 57 cats, each owns 44 mittens, how many mittens is that in total?"
print(model.count_tokens(prompt))
# ( total_tokens: 22 )
def add(a: float, b: float):
"""returns a + b."""
return a + b
def subtract(a: float, b: float):
"""returns a - b."""
return a - b
def multiply(a: float, b: float):
"""returns a * b."""
return a * b
def divide(a: float, b: float):
"""returns a / b."""
return a / b
model = genai.GenerativeModel(
"models/gemini-1.5-flash-001", tools=[add, subtract, multiply, divide]
)
# The total token count includes everything sent to the `generate_content` request.
# When you use tools (like function calling), the total token count increases.
print(model.count_tokens(prompt))
# ( total_tokens: 206 )
Node.js
// Make sure to include these imports:
// import { GoogleGenerativeAI } from "@google/generative-ai";
const genAI = new GoogleGenerativeAI(process.env.API_KEY);
const prompt =
"I have 57 cats, each owns 44 mittens, how many mittens is that in total?";
const modelNoTools = genAI.getGenerativeModel({
model: "models/gemini-1.5-flash",
});
const resultNoTools = await modelNoTools.countTokens(prompt);
console.log(resultNoTools);
// { totalTokens: 23 }
const functionDeclarations = [
{ name: "add" },
{ name: "subtract" },
{ name: "multiply" },
{ name: "divide" },
];
const modelWithTools = genAI.getGenerativeModel({
model: "models/gemini-1.5-flash",
tools: [{ functionDeclarations }],
});
const resultWithTools = await modelWithTools.countTokens(prompt);
// The total token count includes everything sent to the
// generateContent() request. When you use tools (like function calling),
// the total token count increases.
console.log(resultWithTools);
// { totalTokens: 99 }
کاتلین
val multiplyDefinition = defineFunction(
name = "multiply",
description = "returns the product of the provided numbers.",
parameters = listOf(
Schema.double("a", "First number"),
Schema.double("b", "Second number")
)
)
val usableFunctions = listOf(multiplyDefinition)
val generativeModel =
GenerativeModel(
// Specify a Gemini model appropriate for your use case
modelName = "gemini-1.5-flash",
// Access your API key as a Build Configuration variable (see "Set up your API key" above)
apiKey = BuildConfig.apiKey,
tools = listOf(Tool(usableFunctions))
)
// For text-only input
val (totalTokens) = generativeModel.countTokens("What's the product of 9 and 358?")
print(totalTokens)
سویفت
let generativeModel =
GenerativeModel(
// Specify a model that supports system instructions, like a Gemini 1.5 model
name: "gemini-1.5-flash",
// Access your API key from your on-demand resource .plist file (see "Set up your API key"
// above)
apiKey: APIKey.default,
tools: [Tool(functionDeclarations: [
FunctionDeclaration(
name: "controlLight",
description: "Set the brightness and color temperature of a room light.",
parameters: [
"brightness": Schema(
type: .number,
format: "double",
description: "Light level from 0 to 100. Zero is off and 100 is full brightness."
),
"colorTemperature": Schema(
type: .string,
format: "enum",
description: "Color temperature of the light fixture.",
enumValues: ["daylight", "cool", "warm"]
),
],
requiredParameters: ["brightness", "colorTemperature"]
),
])]
)
let prompt = "Dim the lights so the room feels cozy and warm."
let response = try await generativeModel.countTokens(prompt)
print("Total Tokens: \(response.totalTokens)")
دارت
// Make sure to include this import:
// import 'package:google_generative_ai/google_generative_ai.dart';
var model = GenerativeModel(
model: 'gemini-1.5-flash',
apiKey: apiKey,
);
final prompt = 'I have 57 cats, each owns 44 mittens, '
'how many mittens is that in total?';
// The total token count includes everything sent in the `generateContent`
// request.
var tokenCount = await model.countTokens([Content.text(prompt)]);
print('Total tokens: ${tokenCount.totalTokens}');
final binaryFunction = Schema.object(
properties: {
'a': Schema.number(nullable: false),
'b': Schema.number(nullable: false)
},
requiredProperties: ['a', 'b'],
);
model = GenerativeModel(
model: 'gemini-1.5-flash',
apiKey: apiKey,
tools: [
Tool(functionDeclarations: [
FunctionDeclaration('add', 'returns a + b', binaryFunction),
FunctionDeclaration('subtract', 'returns a - b', binaryFunction),
FunctionDeclaration('multipley', 'returns a * b', binaryFunction),
FunctionDeclaration('divide', 'returns a / b', binaryFunction)
])
],
);
tokenCount = await model.countTokens([Content.text(prompt)]);
print('Total tokens: ${tokenCount.totalTokens}');
جاوا
FunctionDeclaration multiplyDefinition =
defineFunction(
/* name */ "multiply",
/* description */ "returns a * b.",
/* parameters */ Arrays.asList(
Schema.numDouble("a", "First parameter"),
Schema.numDouble("b", "Second parameter")),
/* required */ Arrays.asList("a", "b"));
Tool tool = new Tool(Arrays.asList(multiplyDefinition), null);
;
// Specify a Gemini model appropriate for your use case
GenerativeModel gm =
new GenerativeModel(
/* modelName */ "gemini-1.5-flash",
// Access your API key as a Build Configuration variable (see "Set up your API key"
// above)
/* apiKey */ BuildConfig.apiKey,
/* generationConfig (optional) */ null,
/* safetySettings (optional) */ null,
/* requestOptions (optional) */ new RequestOptions(),
/* tools (optional) */ Arrays.asList(tool));
GenerativeModelFutures model = GenerativeModelFutures.from(gm);
Content inputContent = new Content.Builder().addText("What's your name?.").build();
// For illustrative purposes only. You should use an executor that fits your needs.
Executor executor = Executors.newSingleThreadExecutor();
// For text-only input
ListenableFuture<CountTokensResponse> countTokensResponse = model.countTokens(inputContent);
Futures.addCallback(
countTokensResponse,
new FutureCallback<CountTokensResponse>() {
@Override
public void onSuccess(CountTokensResponse result) {
int totalTokens = result.getTotalTokens();
System.out.println("TotalTokens = " + totalTokens);
}
@Override
public void onFailure(Throwable t) {
t.printStackTrace();
}
},
executor);
بدن پاسخگو
پاسخی از models.countTokens
.
tokenCount
مدل را برای prompt
باز می گرداند.
در صورت موفقیت آمیز بودن، بدنه پاسخ حاوی داده هایی با ساختار زیر است:
totalTokens
integer
تعداد نشانه هایی که Model
prompt
را به آنها توکن می کند. همیشه غیر منفی.
cachedContentTokenCount
integer
تعداد نشانه ها در قسمت کش شده اعلان (محتوای ذخیره شده).
نمایندگی JSON |
---|
{ "totalTokens": integer, "cachedContentTokenCount": integer } |
Generate ContentRequest
درخواست ایجاد یک تکمیل از مدل.
string
model
مورد نیاز. نام Model
که برای ایجاد تکمیل استفاده می شود.
قالب: name=models/{model}
.
tools[]
object ( Tool
)
اختیاری. فهرستی از Tools
Model
ممکن است برای ایجاد پاسخ بعدی استفاده کند.
Tool
قطعه ای از کد است که سیستم را قادر می سازد تا با سیستم های خارجی برای انجام یک عمل یا مجموعه ای از اقدامات خارج از دانش و محدوده Model
تعامل داشته باشد. Tool
پشتیبانی شده Function
و codeExecution
هستند. برای کسب اطلاعات بیشتر به فراخوانی تابع و راهنمای اجرای کد مراجعه کنید.
toolConfig
object ( ToolConfig
)
اختیاری. پیکربندی ابزار برای هر Tool
در درخواست مشخص شده است. برای مثال استفاده به راهنمای فراخوانی تابع مراجعه کنید.
safetySettings[]
object ( SafetySetting
)
اختیاری. فهرستی از نمونههای SafetySetting
منحصر به فرد برای مسدود کردن محتوای ناامن.
این در GenerateContentRequest.contents
و GenerateContentResponse.candidates
اعمال خواهد شد. برای هر نوع SafetyCategory
نباید بیش از یک تنظیم وجود داشته باشد. API هر محتوا و پاسخی را که نتواند آستانه های تعیین شده توسط این تنظیمات را برآورده کند مسدود می کند. این فهرست تنظیمات پیشفرض را برای هر SafetyCategory
مشخصشده در تنظیمات ایمنی لغو میکند. اگر هیچ SafetySetting
برای یک SafetyCategory
معین در لیست ارائه نشده باشد، API از تنظیمات ایمنی پیشفرض برای آن دسته استفاده میکند. دستههای آسیب HARM_CATEGORY_HATE_SPEECH، HARM_CATEGORY_SEXUALLY_EXPLICIT، HARM_CATEGORY_DANGEROUS_CONTENT، HARM_CATEGORY_HARASSMENT پشتیبانی میشوند. برای اطلاعات دقیق در مورد تنظیمات ایمنی موجود به راهنما مراجعه کنید. همچنین به راهنمای ایمنی مراجعه کنید تا یاد بگیرید چگونه ملاحظات ایمنی را در برنامه های هوش مصنوعی خود لحاظ کنید.
systemInstruction
object ( Content
)
اختیاری. دستورالعمل(های) سیستم مجموعه توسعه دهنده. در حال حاضر فقط متن
generationConfig
object ( GenerationConfig
)
اختیاری. گزینه های پیکربندی برای تولید مدل و خروجی ها.
cachedContent
string
اختیاری. نام محتوای ذخیره شده در حافظه پنهان برای استفاده به عنوان زمینه برای ارائه پیش بینی. قالب: cachedContents/{cachedContent}
نمایندگی JSON |
---|
{ "model": string, "contents": [ { object ( |