画像、音声、動画のカウント方法など、Gemini API を使用してトークンをカウントする方法について詳しくは、トークン カウント ガイドと付属のCookbook レシピをご覧ください。
メソッド: models.countTokens
入力 Content
でモデルのトークン化ツールを実行し、トークン数を返します。トークンについて詳しくは、トークン ガイドをご覧ください。
エンドポイント
投稿https: / /generativelanguage.googleapis.com /v1beta /{model=models /*}:countTokens
パスパラメータ
model
string
必須。モデルのリソース名。これは、モデルが使用する ID として機能します。
この名前は、models.list
メソッドから返されたモデル名と一致する必要があります。
形式: models/{model}
形式は models/{model}
です。
リクエストの本文
リクエストの本文には、次の構造のデータが含まれます。
contents[]
object (Content
)
省略可。プロンプトとしてモデルに渡される入力。generateContentRequest
が設定されている場合、このフィールドは無視されます。
リクエスト例
テキスト
Python
from google import genai
client = genai.Client()
prompt = "The quick brown fox jumps over the lazy dog."
# Count tokens using the new client method.
total_tokens = client.models.count_tokens(
model="gemini-2.0-flash", contents=prompt
)
print("total_tokens: ", total_tokens)
# ( e.g., total_tokens: 10 )
response = client.models.generate_content(
model="gemini-2.0-flash", contents=prompt
)
# The usage_metadata provides detailed token counts.
print(response.usage_metadata)
# ( e.g., prompt_token_count: 11, candidates_token_count: 73, total_token_count: 84 )
Node.js
// Make sure to include the following import:
// import {GoogleGenAI} from '@google/genai';
const ai = new GoogleGenAI({ apiKey: process.env.GEMINI_API_KEY });
const prompt = "The quick brown fox jumps over the lazy dog.";
const countTokensResponse = await ai.models.countTokens({
model: "gemini-2.0-flash",
contents: prompt,
});
console.log(countTokensResponse.totalTokens);
const generateResponse = await ai.models.generateContent({
model: "gemini-2.0-flash",
contents: prompt,
});
console.log(generateResponse.usageMetadata);
Go
ctx := context.Background()
client, err := genai.NewClient(ctx, &genai.ClientConfig{
APIKey: os.Getenv("GEMINI_API_KEY"),
Backend: genai.BackendGeminiAPI,
})
if err != nil {
log.Fatal(err)
}
prompt := "The quick brown fox jumps over the lazy dog."
// Convert prompt to a slice of *genai.Content using the helper.
contents := []*genai.Content{
genai.NewContentFromText(prompt, "user"),
}
countResp, err := client.Models.CountTokens(ctx, "gemini-2.0-flash", contents, nil)
if err != nil {
return err
}
fmt.Println("total_tokens:", countResp.TotalTokens)
response, err := client.Models.GenerateContent(ctx, "gemini-2.0-flash", contents, nil)
if err != nil {
log.Fatal(err)
}
usageMetadata, err := json.MarshalIndent(response.UsageMetadata, "", " ")
if err != nil {
log.Fatal(err)
}
fmt.Println(string(usageMetadata))
Shell
curl https://generativelanguage.googleapis.com/v1beta/models/gemini-2.0-flash:countTokens?key=$GEMINI_API_KEY \
-H 'Content-Type: application/json' \
-X POST \
-d '{
"contents": [{
"parts":[{
"text": "The quick brown fox jumps over the lazy dog."
}],
}],
}'
Kotlin
val generativeModel =
GenerativeModel(
// Specify a Gemini model appropriate for your use case
modelName = "gemini-1.5-flash",
// Access your API key as a Build Configuration variable (see "Set up your API key" above)
apiKey = BuildConfig.apiKey)
// For text-only input
val (totalTokens) = generativeModel.countTokens("Write a story about a magic backpack.")
print(totalTokens)
Swift
let generativeModel =
GenerativeModel(
// Specify a Gemini model appropriate for your use case
name: "gemini-1.5-flash",
// Access your API key from your on-demand resource .plist file (see "Set up your API key"
// above)
apiKey: APIKey.default
)
let prompt = "Write a story about a magic backpack."
let response = try await generativeModel.countTokens(prompt)
print("Total Tokens: \(response.totalTokens)")
Dart
// Make sure to include this import:
// import 'package:google_generative_ai/google_generative_ai.dart';
final model = GenerativeModel(
model: 'gemini-1.5-flash',
apiKey: apiKey,
);
final prompt = 'The quick brown fox jumps over the lazy dog.';
final tokenCount = await model.countTokens([Content.text(prompt)]);
print('Total tokens: ${tokenCount.totalTokens}');
Java
// Specify a Gemini model appropriate for your use case
GenerativeModel gm =
new GenerativeModel(
/* modelName */ "gemini-1.5-flash",
// Access your API key as a Build Configuration variable (see "Set up your API key"
// above)
/* apiKey */ BuildConfig.apiKey);
GenerativeModelFutures model = GenerativeModelFutures.from(gm);
Content inputContent =
new Content.Builder().addText("Write a story about a magic backpack.").build();
// For illustrative purposes only. You should use an executor that fits your needs.
Executor executor = Executors.newSingleThreadExecutor();
// For text-only input
ListenableFuture<CountTokensResponse> countTokensResponse = model.countTokens(inputContent);
Futures.addCallback(
countTokensResponse,
new FutureCallback<CountTokensResponse>() {
@Override
public void onSuccess(CountTokensResponse result) {
int totalTokens = result.getTotalTokens();
System.out.println("TotalTokens = " + totalTokens);
}
@Override
public void onFailure(Throwable t) {
t.printStackTrace();
}
},
executor);
チャット
Python
from google import genai
from google.genai import types
client = genai.Client()
chat = client.chats.create(
model="gemini-2.0-flash",
history=[
types.Content(
role="user", parts=[types.Part(text="Hi my name is Bob")]
),
types.Content(role="model", parts=[types.Part(text="Hi Bob!")]),
],
)
# Count tokens for the chat history.
print(
client.models.count_tokens(
model="gemini-2.0-flash", contents=chat.get_history()
)
)
# ( e.g., total_tokens: 10 )
response = chat.send_message(
message="In one sentence, explain how a computer works to a young child."
)
print(response.usage_metadata)
# ( e.g., prompt_token_count: 25, candidates_token_count: 21, total_token_count: 46 )
# You can count tokens for the combined history and a new message.
extra = types.UserContent(
parts=[
types.Part(
text="What is the meaning of life?",
)
]
)
history = chat.get_history()
history.append(extra)
print(client.models.count_tokens(model="gemini-2.0-flash", contents=history))
# ( e.g., total_tokens: 56 )
Node.js
// Make sure to include the following import:
// import {GoogleGenAI} from '@google/genai';
const ai = new GoogleGenAI({ apiKey: process.env.GEMINI_API_KEY });
// Initial chat history.
const history = [
{ role: "user", parts: [{ text: "Hi my name is Bob" }] },
{ role: "model", parts: [{ text: "Hi Bob!" }] },
];
const chat = ai.chats.create({
model: "gemini-2.0-flash",
history: history,
});
// Count tokens for the current chat history.
const countTokensResponse = await ai.models.countTokens({
model: "gemini-2.0-flash",
contents: chat.getHistory(),
});
console.log(countTokensResponse.totalTokens);
const chatResponse = await chat.sendMessage({
message: "In one sentence, explain how a computer works to a young child.",
});
console.log(chatResponse.usageMetadata);
// Add an extra user message to the history.
const extraMessage = {
role: "user",
parts: [{ text: "What is the meaning of life?" }],
};
const combinedHistory = chat.getHistory();
combinedHistory.push(extraMessage);
const combinedCountTokensResponse = await ai.models.countTokens({
model: "gemini-2.0-flash",
contents: combinedHistory,
});
console.log(
"Combined history token count:",
combinedCountTokensResponse.totalTokens,
);
Go
ctx := context.Background()
client, err := genai.NewClient(ctx, &genai.ClientConfig{
APIKey: os.Getenv("GEMINI_API_KEY"),
Backend: genai.BackendGeminiAPI,
})
if err != nil {
log.Fatal(err)
}
// Initialize chat with some history.
history := []*genai.Content{
{Role: "user", Parts: []*genai.Part{{Text: "Hi my name is Bob"}}},
{Role: "model", Parts: []*genai.Part{{Text: "Hi Bob!"}}},
}
chat, err := client.Chats.Create(ctx, "gemini-2.0-flash", nil, history)
if err != nil {
log.Fatal(err)
}
firstTokenResp, err := client.Models.CountTokens(ctx, "gemini-2.0-flash", chat.History(false), nil)
if err != nil {
log.Fatal(err)
}
fmt.Println(firstTokenResp.TotalTokens)
resp, err := chat.SendMessage(ctx, genai.Part{
Text: "In one sentence, explain how a computer works to a young child."},
)
if err != nil {
log.Fatal(err)
}
fmt.Printf("%#v\n", resp.UsageMetadata)
// Append an extra user message and recount.
extra := genai.NewContentFromText("What is the meaning of life?", "user")
hist := chat.History(false)
hist = append(hist, extra)
secondTokenResp, err := client.Models.CountTokens(ctx, "gemini-2.0-flash", hist, nil)
if err != nil {
log.Fatal(err)
}
fmt.Println(secondTokenResp.TotalTokens)
Shell
curl https://generativelanguage.googleapis.com/v1beta/models/gemini-2.0-flash:countTokens?key=$GEMINI_API_KEY \
-H 'Content-Type: application/json' \
-X POST \
-d '{
"contents": [
{"role": "user",
"parts": [{"text": "Hi, my name is Bob."}],
},
{"role": "model",
"parts":[{"text": "Hi Bob"}],
},
],
}'
Kotlin
val generativeModel =
GenerativeModel(
// Specify a Gemini model appropriate for your use case
modelName = "gemini-1.5-flash",
// Access your API key as a Build Configuration variable (see "Set up your API key" above)
apiKey = BuildConfig.apiKey)
val chat =
generativeModel.startChat(
history =
listOf(
content(role = "user") { text("Hello, I have 2 dogs in my house.") },
content(role = "model") {
text("Great to meet you. What would you like to know?")
}))
val history = chat.history
val messageContent = content { text("This is the message I intend to send") }
val (totalTokens) = generativeModel.countTokens(*history.toTypedArray(), messageContent)
print(totalTokens)
Swift
let generativeModel =
GenerativeModel(
// Specify a Gemini model appropriate for your use case
name: "gemini-1.5-flash",
// Access your API key from your on-demand resource .plist file (see "Set up your API key"
// above)
apiKey: APIKey.default
)
// Optionally specify existing chat history
let history = [
ModelContent(role: "user", parts: "Hello, I have 2 dogs in my house."),
ModelContent(role: "model", parts: "Great to meet you. What would you like to know?"),
]
// Initialize the chat with optional chat history
let chat = generativeModel.startChat(history: history)
let response = try await generativeModel.countTokens(chat.history + [
ModelContent(role: "user", parts: "This is the message I intend to send"),
])
print("Total Tokens: \(response.totalTokens)")
Dart
// Make sure to include this import:
// import 'package:google_generative_ai/google_generative_ai.dart';
final model = GenerativeModel(
model: 'gemini-1.5-flash',
apiKey: apiKey,
);
final chat = model.startChat(history: [
Content.text('Hi my name is Bob'),
Content.model([TextPart('Hi Bob!')])
]);
var tokenCount = await model.countTokens(chat.history);
print('Total tokens: ${tokenCount.totalTokens}');
final response = await chat.sendMessage(Content.text(
'In one sentence, explain how a computer works to a young child.'));
if (response.usageMetadata case final usage?) {
print('Prompt: ${usage.promptTokenCount}, '
'Candidates: ${usage.candidatesTokenCount}, '
'Total: ${usage.totalTokenCount}');
}
tokenCount = await model.countTokens(
[...chat.history, Content.text('What is the meaning of life?')]);
print('Total tokens: ${tokenCount.totalTokens}');
Java
// Specify a Gemini model appropriate for your use case
GenerativeModel gm =
new GenerativeModel(
/* modelName */ "gemini-1.5-flash",
// Access your API key as a Build Configuration variable (see "Set up your API key"
// above)
/* apiKey */ BuildConfig.apiKey);
GenerativeModelFutures model = GenerativeModelFutures.from(gm);
// (optional) Create previous chat history for context
Content.Builder userContentBuilder = new Content.Builder();
userContentBuilder.setRole("user");
userContentBuilder.addText("Hello, I have 2 dogs in my house.");
Content userContent = userContentBuilder.build();
Content.Builder modelContentBuilder = new Content.Builder();
modelContentBuilder.setRole("model");
modelContentBuilder.addText("Great to meet you. What would you like to know?");
Content modelContent = userContentBuilder.build();
List<Content> history = Arrays.asList(userContent, modelContent);
// Initialize the chat
ChatFutures chat = model.startChat(history);
Content messageContent =
new Content.Builder().addText("This is the message I intend to send").build();
Collections.addAll(history, messageContent);
// For illustrative purposes only. You should use an executor that fits your needs.
Executor executor = Executors.newSingleThreadExecutor();
ListenableFuture<CountTokensResponse> countTokensResponse =
model.countTokens(history.toArray(new Content[0]));
Futures.addCallback(
countTokensResponse,
new FutureCallback<CountTokensResponse>() {
@Override
public void onSuccess(CountTokensResponse result) {
System.out.println(result);
}
@Override
public void onFailure(Throwable t) {
t.printStackTrace();
}
},
executor);
インライン メディア
Python
from google import genai
import PIL.Image
client = genai.Client()
prompt = "Tell me about this image"
your_image_file = PIL.Image.open(media / "organ.jpg")
# Count tokens for combined text and inline image.
print(
client.models.count_tokens(
model="gemini-2.0-flash", contents=[prompt, your_image_file]
)
)
# ( e.g., total_tokens: 263 )
response = client.models.generate_content(
model="gemini-2.0-flash", contents=[prompt, your_image_file]
)
print(response.usage_metadata)
# ( e.g., prompt_token_count: 264, candidates_token_count: 80, total_token_count: 345 )
Node.js
// Make sure to include the following import:
// import {GoogleGenAI} from '@google/genai';
const ai = new GoogleGenAI({ apiKey: process.env.GEMINI_API_KEY });
const prompt = "Tell me about this image";
const imageBuffer = fs.readFileSync(path.join(media, "organ.jpg"));
// Convert buffer to base64 string.
const imageBase64 = imageBuffer.toString("base64");
// Build contents using createUserContent and createPartFromBase64.
const contents = createUserContent([
prompt,
createPartFromBase64(imageBase64, "image/jpeg"),
]);
const countTokensResponse = await ai.models.countTokens({
model: "gemini-2.0-flash",
contents: contents,
});
console.log(countTokensResponse.totalTokens);
const generateResponse = await ai.models.generateContent({
model: "gemini-2.0-flash",
contents: contents,
});
console.log(generateResponse.usageMetadata);
Go
model := client.GenerativeModel("gemini-1.5-flash")
prompt := "Tell me about this image"
imageFile, err := os.ReadFile(filepath.Join(testDataDir, "personWorkingOnComputer.jpg"))
if err != nil {
log.Fatal(err)
}
// Call `CountTokens` to get the input token count
// of the combined text and file (`total_tokens`).
// An image's display or file size does not affect its token count.
// Optionally, you can call `count_tokens` for the text and file separately.
tokResp, err := model.CountTokens(ctx, genai.Text(prompt), genai.ImageData("jpeg", imageFile))
if err != nil {
log.Fatal(err)
}
fmt.Println("total_tokens:", tokResp.TotalTokens)
// ( total_tokens: 264 )
resp, err := model.GenerateContent(ctx, genai.Text(prompt), genai.ImageData("jpeg", imageFile))
if err != nil {
log.Fatal(err)
}
fmt.Println("prompt_token_count:", resp.UsageMetadata.PromptTokenCount)
fmt.Println("candidates_token_count:", resp.UsageMetadata.CandidatesTokenCount)
fmt.Println("total_token_count:", resp.UsageMetadata.TotalTokenCount)
// ( prompt_token_count: 264, candidates_token_count: 100, total_token_count: 364 )
Shell
curl "https://generativelanguage.googleapis.com/v1beta/models/gemini-2.0-flash:countTokens?key=$GEMINI_API_KEY" \
-H 'Content-Type: application/json' \
-X POST \
-d '{
"contents": [{
"parts":[
{"text": "Tell me about this instrument"},
{
"inline_data": {
"mime_type":"image/jpeg",
"data": "'$(base64 $B64FLAGS $IMG_PATH)'"
}
}
]
}]
}' 2> /dev/null
Kotlin
val generativeModel =
GenerativeModel(
// Specify a Gemini model appropriate for your use case
modelName = "gemini-1.5-flash",
// Access your API key as a Build Configuration variable (see "Set up your API key" above)
apiKey = BuildConfig.apiKey)
val image1: Bitmap = BitmapFactory.decodeResource(context.resources, R.drawable.image1)
val image2: Bitmap = BitmapFactory.decodeResource(context.resources, R.drawable.image2)
val multiModalContent = content {
image(image1)
image(image2)
text("What's the difference between these pictures?")
}
val (totalTokens) = generativeModel.countTokens(multiModalContent)
print(totalTokens)
Swift
let generativeModel =
GenerativeModel(
// Specify a Gemini model appropriate for your use case
name: "gemini-1.5-flash",
// Access your API key from your on-demand resource .plist file (see "Set up your API key"
// above)
apiKey: APIKey.default
)
guard let image1 = UIImage(systemName: "cloud.sun") else { fatalError() }
guard let image2 = UIImage(systemName: "cloud.heavyrain") else { fatalError() }
let prompt = "What's the difference between these pictures?"
let response = try await generativeModel.countTokens(image1, image2, prompt)
print("Total Tokens: \(response.totalTokens)")
Dart
// Make sure to include this import:
// import 'package:google_generative_ai/google_generative_ai.dart';
final model = GenerativeModel(
model: 'gemini-1.5-flash',
apiKey: apiKey,
);
Future<DataPart> fileToPart(String mimeType, String path) async {
return DataPart(mimeType, await File(path).readAsBytes());
}
final prompt = 'Tell me about this image';
final image = await fileToPart('image/jpeg', 'resources/organ.jpg');
final content = Content.multi([TextPart(prompt), image]);
// An image's display size does not affet its token count.
// Optionally, you can call `countTokens` for the prompt and file separately.
final tokenCount = await model.countTokens([content]);
print('Total tokens: ${tokenCount.totalTokens}');
final response = await model.generateContent([content]);
if (response.usageMetadata case final usage?) {
print('Prompt: ${usage.promptTokenCount}, '
'Candidates: ${usage.candidatesTokenCount}, '
'Total: ${usage.totalTokenCount}');
}
Java
// Specify a Gemini model appropriate for your use case
GenerativeModel gm =
new GenerativeModel(
/* modelName */ "gemini-1.5-flash",
// Access your API key as a Build Configuration variable (see "Set up your API key"
// above)
/* apiKey */ BuildConfig.apiKey);
GenerativeModelFutures model = GenerativeModelFutures.from(gm);
Content text = new Content.Builder().addText("Write a story about a magic backpack.").build();
// For illustrative purposes only. You should use an executor that fits your needs.
Executor executor = Executors.newSingleThreadExecutor();
// For text-and-image input
Bitmap image1 = BitmapFactory.decodeResource(context.getResources(), R.drawable.image1);
Bitmap image2 = BitmapFactory.decodeResource(context.getResources(), R.drawable.image2);
Content multiModalContent =
new Content.Builder()
.addImage(image1)
.addImage(image2)
.addText("What's different between these pictures?")
.build();
ListenableFuture<CountTokensResponse> countTokensResponse =
model.countTokens(multiModalContent);
Futures.addCallback(
countTokensResponse,
new FutureCallback<CountTokensResponse>() {
@Override
public void onSuccess(CountTokensResponse result) {
int totalTokens = result.getTotalTokens();
System.out.println("TotalTokens = " + totalTokens);
}
@Override
public void onFailure(Throwable t) {
t.printStackTrace();
}
},
executor);
動画
Python
from google import genai
import time
client = genai.Client()
prompt = "Tell me about this video"
your_file = client.files.upload(file=media / "Big_Buck_Bunny.mp4")
# Poll until the video file is completely processed (state becomes ACTIVE).
while not your_file.state or your_file.state.name != "ACTIVE":
print("Processing video...")
print("File state:", your_file.state)
time.sleep(5)
your_file = client.files.get(name=your_file.name)
print(
client.models.count_tokens(
model="gemini-2.0-flash", contents=[prompt, your_file]
)
)
# ( e.g., total_tokens: 300 )
response = client.models.generate_content(
model="gemini-2.0-flash", contents=[prompt, your_file]
)
print(response.usage_metadata)
# ( e.g., prompt_token_count: 301, candidates_token_count: 60, total_token_count: 361 )
Node.js
// Make sure to include the following import:
// import {GoogleGenAI} from '@google/genai';
const ai = new GoogleGenAI({ apiKey: process.env.GEMINI_API_KEY });
const prompt = "Tell me about this video";
let videoFile = await ai.files.upload({
file: path.join(media, "Big_Buck_Bunny.mp4"),
config: { mimeType: "video/mp4" },
});
// Poll until the video file is completely processed (state becomes ACTIVE).
while (!videoFile.state || videoFile.state.toString() !== "ACTIVE") {
console.log("Processing video...");
console.log("File state: ", videoFile.state);
await sleep(5000);
videoFile = await ai.files.get({ name: videoFile.name });
}
const countTokensResponse = await ai.models.countTokens({
model: "gemini-2.0-flash",
contents: createUserContent([
prompt,
createPartFromUri(videoFile.uri, videoFile.mimeType),
]),
});
console.log(countTokensResponse.totalTokens);
const generateResponse = await ai.models.generateContent({
model: "gemini-2.0-flash",
contents: createUserContent([
prompt,
createPartFromUri(videoFile.uri, videoFile.mimeType),
]),
});
console.log(generateResponse.usageMetadata);
Go
ctx := context.Background()
client, err := genai.NewClient(ctx, &genai.ClientConfig{
APIKey: os.Getenv("GEMINI_API_KEY"),
Backend: genai.BackendGeminiAPI,
})
if err != nil {
log.Fatal(err)
}
file, err := client.Files.UploadFromPath(
ctx,
filepath.Join(getMedia(), "Big_Buck_Bunny.mp4"),
&genai.UploadFileConfig{
MIMEType : "video/mp4",
},
)
if err != nil {
log.Fatal(err)
}
// Poll until the video file is completely processed (state becomes ACTIVE).
for file.State == genai.FileStateUnspecified || file.State != genai.FileStateActive {
fmt.Println("Processing video...")
fmt.Println("File state:", file.State)
time.Sleep(5 * time.Second)
file, err = client.Files.Get(ctx, file.Name, nil)
if err != nil {
log.Fatal(err)
}
}
parts := []*genai.Part{
genai.NewPartFromText("Tell me about this video"),
genai.NewPartFromURI(file.URI, file.MIMEType),
}
contents := []*genai.Content{
genai.NewContentFromParts(parts, "user"),
}
tokenResp, err := client.Models.CountTokens(ctx, "gemini-2.0-flash", contents, nil)
if err != nil {
log.Fatal(err)
}
fmt.Println("Multimodal video/audio token count:", tokenResp.TotalTokens)
response, err := client.Models.GenerateContent(ctx, "gemini-2.0-flash", contents, nil)
if err != nil {
log.Fatal(err)
}
usageMetadata, err := json.MarshalIndent(response.UsageMetadata, "", " ")
if err != nil {
log.Fatal(err)
}
fmt.Println(string(usageMetadata))
Shell
MIME_TYPE=$(file -b --mime-type "${VIDEO_PATH}")
NUM_BYTES=$(wc -c < "${VIDEO_PATH}")
DISPLAY_NAME=VIDEO_PATH
# Initial resumable request defining metadata.
# The upload url is in the response headers dump them to a file.
curl "${BASE_URL}/upload/v1beta/files?key=${GOOGLE_API_KEY}" \
-D upload-header.tmp \
-H "X-Goog-Upload-Protocol: resumable" \
-H "X-Goog-Upload-Command: start" \
-H "X-Goog-Upload-Header-Content-Length: ${NUM_BYTES}" \
-H "X-Goog-Upload-Header-Content-Type: ${MIME_TYPE}" \
-H "Content-Type: application/json" \
-d "{'file': {'display_name': '${DISPLAY_NAME}'}}" 2> /dev/null
upload_url=$(grep -i "x-goog-upload-url: " "${tmp_header_file}" | cut -d" " -f2 | tr -d "\r")
rm "${tmp_header_file}"
# Upload the actual bytes.
curl "${upload_url}" \
-H "Content-Length: ${NUM_BYTES}" \
-H "X-Goog-Upload-Offset: 0" \
-H "X-Goog-Upload-Command: upload, finalize" \
--data-binary "@${VIDEO_PATH}" 2> /dev/null > file_info.json
file_uri=$(jq ".file.uri" file_info.json)
state=$(jq ".file.state" file_info.json)
name=$(jq ".file.name" file_info.json)
while [[ "($state)" = *"PROCESSING"* ]];
do
echo "Processing video..."
sleep 5
# Get the file of interest to check state
curl https://generativelanguage.googleapis.com/v1beta/files/$name > file_info.json
state=$(jq ".file.state" file_info.json)
done
curl "https://generativelanguage.googleapis.com/v1beta/models/gemini-1.5-flash:countTokens?key=$GOOGLE_API_KEY" \
-H 'Content-Type: application/json' \
-X POST \
-d '{
"contents": [{
"parts":[
{"text": "Describe this video clip"},
{"file_data":{"mime_type": "video/mp4", "file_uri": '$file_uri'}}]
}]
}'
Python
from google import genai
client = genai.Client()
sample_pdf = client.files.upload(file=media / "test.pdf")
token_count = client.models.count_tokens(
model="gemini-2.0-flash",
contents=["Give me a summary of this document.", sample_pdf],
)
print(f"{token_count=}")
response = client.models.generate_content(
model="gemini-2.0-flash",
contents=["Give me a summary of this document.", sample_pdf],
)
print(response.usage_metadata)
キャッシュ
Python
from google import genai
from google.genai import types
import time
client = genai.Client()
your_file = client.files.upload(file=media / "a11.txt")
cache = client.caches.create(
model="gemini-1.5-flash-001",
config={
"contents": ["Here the Apollo 11 transcript:", your_file],
"system_instruction": None,
"tools": None,
},
)
# Create a prompt.
prompt = "Please give a short summary of this file."
# Count tokens for the prompt (the cached content is not passed here).
print(client.models.count_tokens(model="gemini-2.0-flash", contents=prompt))
# ( e.g., total_tokens: 9 )
response = client.models.generate_content(
model="gemini-1.5-flash-001",
contents=prompt,
config=types.GenerateContentConfig(
cached_content=cache.name,
),
)
print(response.usage_metadata)
# ( e.g., prompt_token_count: ..., cached_content_token_count: ..., candidates_token_count: ... )
client.caches.delete(name=cache.name)
Node.js
// Make sure to include the following import:
// import {GoogleGenAI} from '@google/genai';
const ai = new GoogleGenAI({ apiKey: process.env.GEMINI_API_KEY });
const textFile = await ai.files.upload({
file: path.join(media, "a11.txt"),
config: { mimeType: "text/plain" },
});
const cache = await ai.caches.create({
model: "gemini-1.5-flash-001",
config: {
contents: createUserContent([
"Here the Apollo 11 transcript:",
createPartFromUri(textFile.uri, textFile.mimeType),
]),
system_instruction: null,
tools: null,
},
});
const prompt = "Please give a short summary of this file.";
const countTokensResponse = await ai.models.countTokens({
model: "gemini-2.0-flash",
contents: prompt,
});
console.log(countTokensResponse.totalTokens);
const generateResponse = await ai.models.generateContent({
model: "gemini-1.5-flash-001",
contents: prompt,
config: { cachedContent: cache.name },
});
console.log(generateResponse.usageMetadata);
await ai.caches.delete({ name: cache.name });
return {
totalTokens: countTokensResponse.totalTokens,
usage: generateResponse.usageMetadata,
};
}
Go
ctx := context.Background()
client, err := genai.NewClient(ctx, &genai.ClientConfig{
APIKey: os.Getenv("GEMINI_API_KEY"),
Backend: genai.BackendGeminiAPI,
})
if err != nil {
log.Fatal(err)
}
file, err := client.Files.UploadFromPath(
ctx,
filepath.Join(getMedia(), "a11.txt"),
&genai.UploadFileConfig{
MIMEType : "text/plain",
},
)
if err != nil {
log.Fatal(err)
}
parts := []*genai.Part{
genai.NewPartFromText("Here the Apollo 11 transcript:"),
genai.NewPartFromURI(file.URI, file.MIMEType),
}
contents := []*genai.Content{
genai.NewContentFromParts(parts, "user"),
}
// Create cached content using a simple slice with text and a file.
cache, err := client.Caches.Create(ctx, "gemini-1.5-flash-001", &genai.CreateCachedContentConfig{
Contents: contents,
})
if err != nil {
log.Fatal(err)
}
prompt := "Please give a short summary of this file."
countResp, err := client.Models.CountTokens(ctx, "gemini-2.0-flash", []*genai.Content{
genai.NewContentFromText(prompt, "user"),
}, nil)
if err != nil {
log.Fatal(err)
}
fmt.Printf("%d", countResp.TotalTokens)
response, err := client.Models.GenerateContent(ctx, "gemini-1.5-flash-001", []*genai.Content{
genai.NewContentFromText(prompt, "user"),
}, &genai.GenerateContentConfig{
CachedContent: cache.Name,
})
if err != nil {
log.Fatal(err)
}
usageMetadata, err := json.MarshalIndent(response.UsageMetadata, "", " ")
if err != nil {
log.Fatal(err)
}
// Returns `nil` for some reason
fmt.Println(string(usageMetadata))
_, err = client.Caches.Delete(ctx, cache.Name, &genai.DeleteCachedContentConfig{})
システム指示
Kotlin
val generativeModel =
GenerativeModel(
// Specify a Gemini model appropriate for your use case
modelName = "gemini-1.5-flash",
// Access your API key as a Build Configuration variable (see "Set up your API key" above)
apiKey = BuildConfig.apiKey,
systemInstruction = content(role = "system") { text("You are a cat. Your name is Neko.")}
)
// For text-only input
val (totalTokens) = generativeModel.countTokens("What is your name?")
print(totalTokens)
Swift
let generativeModel =
GenerativeModel(
// Specify a model that supports system instructions, like a Gemini 1.5 model
name: "gemini-1.5-flash",
// Access your API key from your on-demand resource .plist file (see "Set up your API key"
// above)
apiKey: APIKey.default,
systemInstruction: ModelContent(role: "system", parts: "You are a cat. Your name is Neko.")
)
let prompt = "What is your name?"
let response = try await generativeModel.countTokens(prompt)
print("Total Tokens: \(response.totalTokens)")
Dart
// Make sure to include this import:
// import 'package:google_generative_ai/google_generative_ai.dart';
var model = GenerativeModel(
model: 'gemini-1.5-flash',
apiKey: apiKey,
);
final prompt = 'The quick brown fox jumps over the lazy dog.';
// The total token count includes everything sent in the `generateContent`
// request.
var tokenCount = await model.countTokens([Content.text(prompt)]);
print('Total tokens: ${tokenCount.totalTokens}');
model = GenerativeModel(
model: 'gemini-1.5-flash',
apiKey: apiKey,
systemInstruction: Content.system('You are a cat. Your name is Neko.'),
);
tokenCount = await model.countTokens([Content.text(prompt)]);
print('Total tokens: ${tokenCount.totalTokens}');
Java
// Create your system instructions
Content systemInstruction =
new Content.Builder().addText("You are a cat. Your name is Neko.").build();
// Specify a Gemini model appropriate for your use case
GenerativeModel gm =
new GenerativeModel(
/* modelName */ "gemini-1.5-flash",
// Access your API key as a Build Configuration variable (see "Set up your API key"
// above)
/* apiKey */ BuildConfig.apiKey,
/* generationConfig (optional) */ null,
/* safetySettings (optional) */ null,
/* requestOptions (optional) */ new RequestOptions(),
/* tools (optional) */ null,
/* toolsConfig (optional) */ null,
/* systemInstruction (optional) */ systemInstruction);
GenerativeModelFutures model = GenerativeModelFutures.from(gm);
Content inputContent = new Content.Builder().addText("What's your name?.").build();
// For illustrative purposes only. You should use an executor that fits your needs.
Executor executor = Executors.newSingleThreadExecutor();
// For text-only input
ListenableFuture<CountTokensResponse> countTokensResponse = model.countTokens(inputContent);
Futures.addCallback(
countTokensResponse,
new FutureCallback<CountTokensResponse>() {
@Override
public void onSuccess(CountTokensResponse result) {
int totalTokens = result.getTotalTokens();
System.out.println("TotalTokens = " + totalTokens);
}
@Override
public void onFailure(Throwable t) {
t.printStackTrace();
}
},
executor);
ツール
Kotlin
val multiplyDefinition = defineFunction(
name = "multiply",
description = "returns the product of the provided numbers.",
parameters = listOf(
Schema.double("a", "First number"),
Schema.double("b", "Second number")
)
)
val usableFunctions = listOf(multiplyDefinition)
val generativeModel =
GenerativeModel(
// Specify a Gemini model appropriate for your use case
modelName = "gemini-1.5-flash",
// Access your API key as a Build Configuration variable (see "Set up your API key" above)
apiKey = BuildConfig.apiKey,
tools = listOf(Tool(usableFunctions))
)
// For text-only input
val (totalTokens) = generativeModel.countTokens("What's the product of 9 and 358?")
print(totalTokens)
Swift
let generativeModel =
GenerativeModel(
// Specify a model that supports system instructions, like a Gemini 1.5 model
name: "gemini-1.5-flash",
// Access your API key from your on-demand resource .plist file (see "Set up your API key"
// above)
apiKey: APIKey.default,
tools: [Tool(functionDeclarations: [
FunctionDeclaration(
name: "controlLight",
description: "Set the brightness and color temperature of a room light.",
parameters: [
"brightness": Schema(
type: .number,
format: "double",
description: "Light level from 0 to 100. Zero is off and 100 is full brightness."
),
"colorTemperature": Schema(
type: .string,
format: "enum",
description: "Color temperature of the light fixture.",
enumValues: ["daylight", "cool", "warm"]
),
],
requiredParameters: ["brightness", "colorTemperature"]
),
])]
)
let prompt = "Dim the lights so the room feels cozy and warm."
let response = try await generativeModel.countTokens(prompt)
print("Total Tokens: \(response.totalTokens)")
Dart
// Make sure to include this import:
// import 'package:google_generative_ai/google_generative_ai.dart';
var model = GenerativeModel(
model: 'gemini-1.5-flash',
apiKey: apiKey,
);
final prompt = 'I have 57 cats, each owns 44 mittens, '
'how many mittens is that in total?';
// The total token count includes everything sent in the `generateContent`
// request.
var tokenCount = await model.countTokens([Content.text(prompt)]);
print('Total tokens: ${tokenCount.totalTokens}');
final binaryFunction = Schema.object(
properties: {
'a': Schema.number(nullable: false),
'b': Schema.number(nullable: false)
},
requiredProperties: ['a', 'b'],
);
model = GenerativeModel(
model: 'gemini-1.5-flash',
apiKey: apiKey,
tools: [
Tool(functionDeclarations: [
FunctionDeclaration('add', 'returns a + b', binaryFunction),
FunctionDeclaration('subtract', 'returns a - b', binaryFunction),
FunctionDeclaration('multipley', 'returns a * b', binaryFunction),
FunctionDeclaration('divide', 'returns a / b', binaryFunction)
])
],
);
tokenCount = await model.countTokens([Content.text(prompt)]);
print('Total tokens: ${tokenCount.totalTokens}');
Java
FunctionDeclaration multiplyDefinition =
defineFunction(
/* name */ "multiply",
/* description */ "returns a * b.",
/* parameters */ Arrays.asList(
Schema.numDouble("a", "First parameter"),
Schema.numDouble("b", "Second parameter")),
/* required */ Arrays.asList("a", "b"));
Tool tool = new Tool(Arrays.asList(multiplyDefinition), null);
;
// Specify a Gemini model appropriate for your use case
GenerativeModel gm =
new GenerativeModel(
/* modelName */ "gemini-1.5-flash",
// Access your API key as a Build Configuration variable (see "Set up your API key"
// above)
/* apiKey */ BuildConfig.apiKey,
/* generationConfig (optional) */ null,
/* safetySettings (optional) */ null,
/* requestOptions (optional) */ new RequestOptions(),
/* tools (optional) */ Arrays.asList(tool));
GenerativeModelFutures model = GenerativeModelFutures.from(gm);
Content inputContent = new Content.Builder().addText("What's your name?.").build();
// For illustrative purposes only. You should use an executor that fits your needs.
Executor executor = Executors.newSingleThreadExecutor();
// For text-only input
ListenableFuture<CountTokensResponse> countTokensResponse = model.countTokens(inputContent);
Futures.addCallback(
countTokensResponse,
new FutureCallback<CountTokensResponse>() {
@Override
public void onSuccess(CountTokensResponse result) {
int totalTokens = result.getTotalTokens();
System.out.println("TotalTokens = " + totalTokens);
}
@Override
public void onFailure(Throwable t) {
t.printStackTrace();
}
},
executor);
レスポンスの本文
models.countTokens
からのレスポンス。
prompt
のモデルの tokenCount
を返します。
成功した場合、レスポンスの本文には次の構造のデータが含まれます。
totalTokens
integer
Model
が prompt
をトークン化するトークン数。常に正の値です。
cachedContentTokenCount
integer
プロンプトのキャッシュに保存されている部分(キャッシュに保存されているコンテンツ)のトークン数。
promptTokensDetails[]
object (ModalityTokenCount
)
出力専用。リクエスト入力で処理されたモダリティのリスト。
cacheTokensDetails[]
object (ModalityTokenCount
)
出力専用。キャッシュに保存されたコンテンツで処理されたモダリティのリスト。
JSON 表現 |
---|
{ "totalTokens": integer, "cachedContentTokenCount": integer, "promptTokensDetails": [ { object ( |