Especificación de cuantización de 8 bits de TensorFlow Lite

En el siguiente documento, se describe la especificación del esquema de cuantización de 8 bits de TensorFlow Lite. El objetivo es ayudar a los desarrolladores de hardware a proporcionar compatibilidad de hardware para inferencias con modelos cuantizados de TensorFlow Lite.

Resumen de la especificación

Proporcionamos una especificación y solo podemos dar algunas garantías de comportamiento si se sigue la especificación. También comprendemos que los distintos tipos de hardware pueden tener preferencias y restricciones que pueden provocar pequeñas desviaciones cuando se implementa la especificación que dan como resultado implementaciones que no son bit a exactamente. Si bien esto puede ser aceptable en la mayoría de los casos (y proporcionaremos un conjunto de pruebas que, a nuestro leal saber, incluyen las tolerancias por operación que recopilamos de varios modelos), la naturaleza del aprendizaje automático (y el aprendizaje profundo en el caso más común) hace que sea imposible proporcionar garantías estrictas.

La cuantización de 8 bits se aproxima a los valores de punto flotante con la siguiente fórmula.

\[real\_value = (int8\_value - zero\_point) \times scale\]

Los pesos por eje (o por canal en operaciones de conv.) o por tensor se representan con int8 valores de complemento de dos en el rango [-127, 127] con el punto cero igual a 0. Las activaciones o entradas por tensor se representan con los valores del complemento de dos de int8 en el rango [-128, 127], con un punto cero en el rango [-128, 127].

Hay otras excepciones para operaciones particulares que se documentan a continuación.

Número entero firmado frente a número entero sin firma

La cuantización de TensorFlow Lite priorizará principalmente las herramientas y los kernels para la cuantización de int8 de 8 bits. Esto es para la conveniencia de que la cuantización simétrica se represente con un punto cero igual a 0. Además, muchos backends tienen optimizaciones adicionales para la acumulación de int8xint8.

Comparación por eje frente a tensor

La cuantización por tensor significa que habrá una escala o un punto cero por cada tensor completo. La cuantización por eje significa que habrá una escala o zero_point por porción en la quantized_dimension. La dimensión cuantizada indica la dimensión de la forma del tensor a la que corresponden las escalas y los puntos cero. Por ejemplo, un tensor t, con dims=[4, 3, 2, 1] con parámetros de cuantización: scale=[1.0, 2.0, 3.0], zero_point=[1, 2, 3] y quantization_dimension=1, se cuantificará en la segunda dimensión de t:

t[:, 0, :, :] will have scale[0]=1.0, zero_point[0]=1
t[:, 1, :, :] will have scale[1]=2.0, zero_point[1]=2
t[:, 2, :, :] will have scale[2]=3.0, zero_point[2]=3

A menudo, quantized_dimension es el output_channel de los pesos de las convoluciones, pero, en teoría, puede ser la dimensión que corresponde a cada producto escalar en la implementación del kernel, lo que permite un mayor nivel de detalle de la cuantización sin implicaciones de rendimiento. Esto tiene grandes mejoras en cuanto a la precisión.

TFLite es compatible con los ejes para una cantidad creciente de operaciones. Al momento de este documento, se admite Conv2d y DepthwiseConv2d.

Simétrica frente a asimétrica

Las activaciones son asimétricas: pueden tener su punto cero en cualquier lugar del rango de int8 firmado [-128, 127]. Muchas activaciones son asimétricas por naturaleza, y un punto cero es una forma relativamente económica de obtener hasta un poco de precisión binaria adicional. Dado que las activaciones solo se multiplican por pesos constantes, el valor de punto cero constante se puede optimizar bastante.

Los pesos son simétricos, es decir, se ven forzados a tener un punto cero igual a 0. Los valores de las ponderaciones se multiplican por la entrada dinámica y los valores de activación. Esto significa que existe un costo inevitable de entorno de ejecución multiplicado por el punto cero del peso por el valor de activación. Si aplicamos que el punto cero es 0, podemos evitar este costo.

Explicación de las operaciones matemáticas: es similar a la sección 2.3 de arXiv:1712.05877, excepto por la diferencia de que permitimos que los valores de la escala sean por eje. Esto se generaliza con facilidad de la siguiente manera:

$A$ es una matriz de $m \times n$ de activaciones cuantificadas.
$B$ es una matriz de $n \times p$ de pesos cuantizados.
Considera multiplicar la fila $j$th de $A$, $a_j$ por la columna $k$th de $B$, $b_k$, ambos con una longitud $n$. Los valores de números enteros cuantificados y puntos cero son $q_a$, $z_a$ y $q_b$, $z_b$, respectivamente.

\[a_j \cdot b_k = \sum_{i=0}^{n} a_{j}^{(i)} b_{k}^{(i)} = \sum_{i=0}^{n} (q_{a}^{(i)} - z_a) (q_{b}^{(i)} - z_b) = \sum_{i=0}^{n} q_{a}^{(i)} q_{b}^{(i)} - \sum_{i=0}^{n} q_{a}^{(i)} z_b - \sum_{i=0}^{n} q_{b}^{(i)} z_a + \sum_{i=0}^{n} z_a z_b\]

El término \(\sum_{i=0}^{n} q_{a}^{(i)} q_{b}^{(i)}\) es inevitable, ya que realiza el producto escalar del valor de entrada y el valor de peso.

Los términos \(\sum_{i=0}^{n} q_{b}^{(i)} z_a\) y \(\sum_{i=0}^{n} z_a z_b\) constan de constantes que permanecen iguales por invocación de inferencia y, por lo tanto, se pueden calcular previamente.

El término \(\sum_{i=0}^{n} q_{a}^{(i)} z_b\) debe calcularse en cada inferencia, ya que la activación cambia cada inferencia. Si aplicamos ponderaciones simétricas, podemos quitar el costo de este término.

Especificaciones del operador cuantizado int8

A continuación, describimos los requisitos de cuantización para nuestros kernels de tflite de int8:

ADD
  Input 0:
    data_type  : int8
    range      : [-128, 127]
    granularity: per-tensor
  Input 1:
    data_type  : int8
    range      : [-128, 127]
    granularity: per-tensor
  Output 0:
    data_type  : int8
    range      : [-128, 127]
    granularity: per-tensor

AVERAGE_POOL_2D
  Input 0:
    data_type  : int8
    range      : [-128, 127]
    granularity: per-tensor
  Output 0:
    data_type  : int8
    range      : [-128, 127]
    granularity: per-tensor
  restriction: Input and outputs must all have same scale/zero_point

CONCATENATION
  Input ...:
    data_type  : int8
    range      : [-128, 127]
    granularity: per-tensor
  Output 0:
    data_type  : int8
    range      : [-128, 127]
    granularity: per-tensor
  restriction: Input and outputs must all have same scale/zero_point

CONV_2D
  Input 0:
    data_type  : int8
    range      : [-128, 127]
    granularity: per-tensor
  Input 1 (Weight):
    data_type  : int8
    range      : [-127, 127]
    granularity: per-axis (dim = 0)
    restriction: zero_point = 0
  Input 2 (Bias):
    data_type  : int32
    range      : [int32_min, int32_max]
    granularity: per-axis
    restriction: (scale, zero_point) = (input0_scale * input1_scale[...], 0)
  Output 0:
    data_type  : int8
    range      : [-128, 127]
    granularity: per-tensor

DEPTHWISE_CONV_2D
  Input 0:
    data_type  : int8
    range      : [-128, 127]
    granularity: per-tensor
  Input 1 (Weight):
    data_type  : int8
    range      : [-127, 127]
    granularity: per-axis (dim = 3)
    restriction: zero_point = 0
  Input 2 (Bias):
    data_type  : int32
    range      : [int32_min, int32_max]
    granularity: per-axis
    restriction: (scale, zero_point) = (input0_scale * input1_scale[...], 0)
  Output 0:
    data_type  : int8
    range      : [-128, 127]
    granularity: per-tensor

FULLY_CONNECTED
  Input 0:
    data_type  : int8
    range      : [-128, 127]
    granularity: per-tensor
  Input 1 (Weight):
    data_type  : int8
    range      : [-127, 127]
    granularity: per-axis (dim = 0)
    restriction: zero_point = 0
  Input 2 (Bias):
    data_type  : int32
    range      : [int32_min, int32_max]
    granularity: per-tensor
    restriction: (scale, zero_point) = (input0_scale * input1_scale[...], 0)
  Output 0:
    data_type  : int8
    range      : [-128, 127]
    granularity: per-tensor

L2_NORMALIZATION
  Input 0:
    data_type  : int8
    range      : [-128, 127]
    granularity: per-tensor
  Output 0:
    data_type  : int8
    range      : [-128, 127]
    granularity: per-tensor
    restriction: (scale, zero_point) = (1.0 / 128.0, 0)

LOGISTIC
  Input 0:
    data_type  : int8
    range      : [-128, 127]
    granularity: per-tensor
  Output 0:
    data_type  : int8
    range      : [-128, 127]
    granularity: per-tensor
    restriction: (scale, zero_point) = (1.0 / 256.0, -128)

MAX_POOL_2D
  Input 0:
    data_type  : int8
    range      : [-128, 127]
    granularity: per-tensor
  Output 0:
    data_type  : int8
    range      : [-128, 127]
    granularity: per-tensor
  restriction: Input and outputs must all have same scale/zero_point

MUL
  Input 0:
    data_type  : int8
    range      : [-128, 127]
    granularity: per-tensor
  Input 1:
    data_type  : int8
    range      : [-128, 127]
    granularity: per-tensor
  Output 0:
    data_type  : int8
    range      : [-128, 127]
    granularity: per-tensor

RESHAPE
  Input 0:
    data_type  : int8
    range      : [-128, 127]
    granularity: per-tensor
  Output 0:
    data_type  : int8
    range      : [-128, 127]
    granularity: per-tensor
  restriction: Input and outputs must all have same scale/zero_point

RESIZE_BILINEAR
  Input 0:
    data_type  : int8
    range      : [-128, 127]
    granularity: per-tensor
  Output 0:
    data_type  : int8
    range      : [-128, 127]
    granularity: per-tensor
  restriction: Input and outputs must all have same scale/zero_point

SOFTMAX
  Input 0:
    data_type  : int8
    range      : [-128, 127]
    granularity: per-tensor
  Output 0:
    data_type  : int8
    range      : [-128, 127]
    granularity: per-tensor
    restriction: (scale, zero_point) = (1.0 / 256.0, -128)

SPACE_TO_DEPTH
  Input 0:
    data_type  : int8
    range      : [-128, 127]
    granularity: per-tensor
  Output 0:
    data_type  : int8
    range      : [-128, 127]
    granularity: per-tensor
  restriction: Input and outputs must all have same scale/zero_point

TANH
  Input 0:
    data_type  : int8
    range      : [-128, 127]
    granularity: per-tensor
  Output 0:
    data_type  : int8
    range      : [-128, 127]
    granularity: per-tensor
    restriction: (scale, zero_point) = (1.0 / 128.0, 0)

PAD
  Input 0:
    data_type  : int8
    range      : [-128, 127]
    granularity: per-tensor
  Output 0:
    data_type  : int8
    range      : [-128, 127]
    granularity: per-tensor
  restriction: Input and outputs must all have same scale/zero_point

GATHER
  Input 0:
    data_type  : int8
    range      : [-128, 127]
    granularity: per-tensor
  Output 0:
    data_type  : int8
    range      : [-128, 127]
    granularity: per-tensor
  restriction: Input and outputs must all have same scale/zero_point

BATCH_TO_SPACE_ND
  Input 0:
    data_type  : int8
    range      : [-128, 127]
    granularity: per-tensor
  Output 0:
    data_type  : int8
    range      : [-128, 127]
    granularity: per-tensor
  restriction: Input and outputs must all have same scale/zero_point

SPACE_TO_BATCH_ND
  Input 0:
    data_type  : int8
    range      : [-128, 127]
    granularity: per-tensor
  Output 0:
    data_type  : int8
    range      : [-128, 127]
    granularity: per-tensor
  restriction: Input and outputs must all have same scale/zero_point

TRANSPOSE
  Input 0:
    data_type  : int8
    range      : [-128, 127]
    granularity: per-tensor
  Output 0:
    data_type  : int8
    range      : [-128, 127]
    granularity: per-tensor
  restriction: Input and outputs must all have same scale/zero_point

MEAN
  Input 0:
    data_type  : int8
    range      : [-128, 127]
    granularity: per-tensor
  Output 0:
    data_type  : int8
    range      : [-128, 127]
    granularity: per-tensor

SUB
  Input 0:
    data_type  : int8
    range      : [-128, 127]
    granularity: per-tensor
  Input 1:
    data_type  : int8
    range      : [-128, 127]
    granularity: per-tensor
  Output 0:
    data_type  : int8
    range      : [-128, 127]
    granularity: per-tensor

SUM
  Input 0:
    data_type  : int8
    range      : [-128, 127]
    granularity: per-tensor
  Output 0:
    data_type  : int8
    range      : [-128, 127]
    granularity: per-tensor

SQUEEZE
  Input 0:
    data_type  : int8
    range      : [-128, 127]
    granularity: per-tensor
  Output 0:
    data_type  : int8
    range      : [-128, 127]
    granularity: per-tensor
  restriction: Input and outputs must all have same scale/zero_point

LOG_SOFTMAX
  Input 0:
    data_type  : int8
    range      : [-128, 127]
    granularity: per-tensor
  Output 0:
    data_type  : int8
    range      : [-128, 127]
    granularity: per-tensor
    restriction: (scale, zero_point) = (16.0 / 256.0, 127)

MAXIMUM
  Input 0:
    data_type  : int8
    range      : [-128, 127]
    granularity: per-tensor
  Output 0:
    data_type  : int8
    range      : [-128, 127]
    granularity: per-tensor
  restriction: Input and outputs must all have same scale/zero_point

ARG_MAX
  Input 0:
    data_type  : int8
    range      : [-128, 127]
    granularity: per-tensor

MINIMUM
  Input 0:
    data_type  : int8
    range      : [-128, 127]
    granularity: per-tensor
  Output 0:
    data_type  : int8
    range      : [-128, 127]
    granularity: per-tensor
  restriction: Input and outputs must all have same scale/zero_point

LESS
  Input 0:
    data_type  : int8
    range      : [-128, 127]
    granularity: per-tensor
  Input 1:
    data_type  : int8
    range      : [-128, 127]
    granularity: per-tensor

PADV2
  Input 0:
    data_type  : int8
    range      : [-128, 127]
    granularity: per-tensor
  Output 0:
    data_type  : int8
    range      : [-128, 127]
    granularity: per-tensor
  restriction: Input and outputs must all have same scale/zero_point

GREATER
  Input 0:
    data_type  : int8
    range      : [-128, 127]
    granularity: per-tensor
  Input 1:
    data_type  : int8
    range      : [-128, 127]
    granularity: per-tensor

GREATER_EQUAL
  Input 0:
    data_type  : int8
    range      : [-128, 127]
    granularity: per-tensor
  Input 1:
    data_type  : int8
    range      : [-128, 127]
    granularity: per-tensor

LESS_EQUAL
  Input 0:
    data_type  : int8
    range      : [-128, 127]
    granularity: per-tensor
  Input 1:
    data_type  : int8
    range      : [-128, 127]
    granularity: per-tensor

SLICE
  Input 0:
    data_type  : int8
    range      : [-128, 127]
    granularity: per-tensor
  Output 0:
    data_type  : int8
    range      : [-128, 127]
    granularity: per-tensor
  restriction: Input and outputs must all have same scale/zero_point

EQUAL
  Input 0:
    data_type  : int8
    range      : [-128, 127]
    granularity: per-tensor
  Input 1:
    data_type  : int8
    range      : [-128, 127]
    granularity: per-tensor

NOT_EQUAL
  Input 0:
    data_type  : int8
    range      : [-128, 127]
    granularity: per-tensor
  Input 1:
    data_type  : int8
    range      : [-128, 127]
    granularity: per-tensor

SHAPE
  Input 0:
    data_type  : int8
    range      : [-128, 127]
    granularity: per-tensor

QUANTIZE (Requantization)
  Input 0:
    data_type  : int8
    range      : [-128, 127]
    granularity: per-tensor
  Output 0:
    data_type  : int8
    range      : [-128, 127]
    granularity: per-tensor

Referencias

arXiv:1712.05877.