AI Edge Torch est une bibliothèque qui vous permet de convertir des modèles PyTorch au format .tflite
, ce qui vous permet de les exécuter avec LiteRT et MediaPipe.
Cela est particulièrement utile pour les développeurs qui créent des applications mobiles qui exécutent des modèles entièrement sur l'appareil. AI Edge Torch offre une couverture CPU étendue, avec une prise en charge initiale du GPU et du NPU.
Pour commencer à convertir des modèles PyTorch en LiteRT, utilisez le tutoriel de démarrage du convertisseur PyTorch. Pour en savoir plus, consultez le dépôt GitHub d'AI Edge Torch.
Si vous convertissez spécifiquement des grands modèles de langage (LLM) ou des modèles basés sur des transformateurs, utilisez l'API Generative Torch, qui gère les détails de conversion spécifiques aux transformateurs, comme la création et la quantification de modèles.
Workflow de conversion
Les étapes suivantes illustrent une conversion simple de bout en bout d'un modèle PyTorch vers LiteRT.
Importer AI Edge Torch
Commencez par importer le package pip AI Edge Torch (ai-edge-torch
) avec PyTorch.
import ai_edge_torch
import torch
Pour cet exemple, nous avons également besoin des packages suivants:
import numpy
import torchvision
Initialiser et convertir le modèle
Nous allons convertir ResNet18, un modèle de reconnaissance d'images populaire.
resnet18 = torchvision.models.resnet18(torchvision.models.ResNet18_Weights.IMAGENET1K_V1).eval()
Utilisez la méthode convert
de la bibliothèque AI Edge Torch pour convertir le modèle PyTorch.
sample_input = (torch.randn(1, 3, 224, 224),)
edge_model = ai_edge_torch.convert(resnet18.eval(), sample_input)
Utiliser le modèle
Après avoir converti le modèle Pytorch, vous pouvez exécuter des inférences avec le nouveau modèle LiteRT converti.
output = edge_model(*sample_inputs)
Vous pouvez exporter et enregistrer le modèle converti au format .tflite
pour une utilisation ultérieure.
edge_model.export('resnet.tflite')