Counting tokens

للحصول على دليل تفصيلي حول احتساب الرموز المميّزة باستخدام Gemini API، بما في ذلك كيفية احتساب الصور والمحتوى الصوتي والفيديوهات، يُرجى الاطّلاع على دليل احتساب الرموز المميّزة ووصفة كتاب الطبخ المصاحبة.

الطريقة: models.countTokens

يُشغِّل أداة تقسيم النصوص في النموذج على الإدخال Content ويعرض عدد الرموز. راجِع دليل الرموز المميّزة لمعرفة المزيد من المعلومات حول الرموز المميّزة.

نقطة نهاية

post https://generativelanguage.googleapis.com/v1beta/{model=models/*}:countTokens

مَعلمات المسار

model string

مطلوب. اسم مورد النموذج. ويعمل هذا كرقم تعريف لكي يستخدمه النموذج.

ويجب أن يتطابق هذا الاسم مع اسم النموذج الذي تعرضه الطريقة models.list.

التنسيق: models/{model} يأخذ الشكل models/{model}.

نص الطلب

يحتوي نص الطلب على بيانات بالبنية التالية:

الحقول
contents[] object (Content)

اختياريّ. الإدخال المقدم للنموذج كطلب. يتم تجاهل هذا الحقل عند ضبط generateContentRequest.

generateContentRequest object (GenerateContentRequest)

اختياريّ. تمثّل هذه السمة الإدخال الإجمالي الذي تم تقديمه إلى Model. ويشمل ذلك الطلب بالإضافة إلى معلومات توجيه النموذج، مثل تعليمات النظام و/أو بيانات الدوال لاستدعاء الدوال. تكون Models/Contents وgenerateContentRequest متناقصة. يمكنك إرسال Model + Content أو generateContentRequest، ولكن ليس كليهما معًا.

مثال على الطلب

نص

Python

model = genai.GenerativeModel("models/gemini-1.5-flash")

prompt = "The quick brown fox jumps over the lazy dog."

# Call `count_tokens` to get the input token count (`total_tokens`).
print("total_tokens: ", model.count_tokens(prompt))
# ( total_tokens: 10 )

response = model.generate_content(prompt)

# On the response for `generate_content`, use `usage_metadata`
# to get separate input and output token counts
# (`prompt_token_count` and `candidates_token_count`, respectively),
# as well as the combined token count (`total_token_count`).
print(response.usage_metadata)
# ( prompt_token_count: 11, candidates_token_count: 73, total_token_count: 84 )

Node.js

// Make sure to include these imports:
// import { GoogleGenerativeAI } from "@google/generative-ai";
const genAI = new GoogleGenerativeAI(process.env.API_KEY);
const model = genAI.getGenerativeModel({
  model: "gemini-1.5-flash",
});

// Count tokens in a prompt without calling text generation.
const countResult = await model.countTokens(
  "The quick brown fox jumps over the lazy dog.",
);

console.log(countResult.totalTokens); // 11

const generateResult = await model.generateContent(
  "The quick brown fox jumps over the lazy dog.",
);

// On the response for `generateContent`, use `usageMetadata`
// to get separate input and output token counts
// (`promptTokenCount` and `candidatesTokenCount`, respectively),
// as well as the combined token count (`totalTokenCount`).
console.log(generateResult.response.usageMetadata);
// candidatesTokenCount and totalTokenCount depend on response, may vary
// { promptTokenCount: 11, candidatesTokenCount: 124, totalTokenCount: 135 }

البدء

model := client.GenerativeModel("gemini-1.5-flash")
prompt := "The quick brown fox jumps over the lazy dog"

// Call CountTokens to get the input token count (`total tokens`).
tokResp, err := model.CountTokens(ctx, genai.Text(prompt))
if err != nil {
	log.Fatal(err)
}

fmt.Println("total_tokens:", tokResp.TotalTokens)
// ( total_tokens: 10 )

resp, err := model.GenerateContent(ctx, genai.Text(prompt))
if err != nil {
	log.Fatal(err)
}

// On the response for GenerateContent, use UsageMetadata to get
// separate input and output token counts (PromptTokenCount and
// CandidatesTokenCount, respectively), as well as the combined
// token count (TotalTokenCount).
fmt.Println("prompt_token_count:", resp.UsageMetadata.PromptTokenCount)
fmt.Println("candidates_token_count:", resp.UsageMetadata.CandidatesTokenCount)
fmt.Println("total_token_count:", resp.UsageMetadata.TotalTokenCount)
// ( prompt_token_count: 10, candidates_token_count: 38, total_token_count: 48 )

صَدفة

curl https://generativelanguage.googleapis.com/v1beta/models/gemini-1.5-flash:countTokens?key=$GOOGLE_API_KEY \
    -H 'Content-Type: application/json' \
    -X POST \
    -d '{
      "contents": [{
        "parts":[{
          "text": "The quick brown fox jumps over the lazy dog."
          }],
        }],
      }'

Kotlin

val generativeModel =
    GenerativeModel(
        // Specify a Gemini model appropriate for your use case
        modelName = "gemini-1.5-flash",
        // Access your API key as a Build Configuration variable (see "Set up your API key" above)
        apiKey = BuildConfig.apiKey)

// For text-only input
val (totalTokens) = generativeModel.countTokens("Write a story about a magic backpack.")
print(totalTokens)

Swift

let generativeModel =
  GenerativeModel(
    // Specify a Gemini model appropriate for your use case
    name: "gemini-1.5-flash",
    // Access your API key from your on-demand resource .plist file (see "Set up your API key"
    // above)
    apiKey: APIKey.default
  )

let prompt = "Write a story about a magic backpack."

let response = try await generativeModel.countTokens(prompt)

print("Total Tokens: \(response.totalTokens)")

Dart

// Make sure to include this import:
// import 'package:google_generative_ai/google_generative_ai.dart';
final model = GenerativeModel(
  model: 'gemini-1.5-flash',
  apiKey: apiKey,
);
final prompt = 'The quick brown fox jumps over the lazy dog.';
final tokenCount = await model.countTokens([Content.text(prompt)]);
print('Total tokens: ${tokenCount.totalTokens}');

Java

// Specify a Gemini model appropriate for your use case
GenerativeModel gm =
    new GenerativeModel(
        /* modelName */ "gemini-1.5-flash",
        // Access your API key as a Build Configuration variable (see "Set up your API key"
        // above)
        /* apiKey */ BuildConfig.apiKey);
GenerativeModelFutures model = GenerativeModelFutures.from(gm);

Content inputContent =
    new Content.Builder().addText("Write a story about a magic backpack.").build();

// For illustrative purposes only. You should use an executor that fits your needs.
Executor executor = Executors.newSingleThreadExecutor();

// For text-only input
ListenableFuture<CountTokensResponse> countTokensResponse = model.countTokens(inputContent);

Futures.addCallback(
    countTokensResponse,
    new FutureCallback<CountTokensResponse>() {
      @Override
      public void onSuccess(CountTokensResponse result) {
        int totalTokens = result.getTotalTokens();
        System.out.println("TotalTokens = " + totalTokens);
      }

      @Override
      public void onFailure(Throwable t) {
        t.printStackTrace();
      }
    },
    executor);

دردشة

Python

model = genai.GenerativeModel("models/gemini-1.5-flash")

chat = model.start_chat(
    history=[
        {"role": "user", "parts": "Hi my name is Bob"},
        {"role": "model", "parts": "Hi Bob!"},
    ]
)
# Call `count_tokens` to get the input token count (`total_tokens`).
print(model.count_tokens(chat.history))
# ( total_tokens: 10 )

response = chat.send_message(
    "In one sentence, explain how a computer works to a young child."
)

# On the response for `send_message`, use `usage_metadata`
# to get separate input and output token counts
# (`prompt_token_count` and `candidates_token_count`, respectively),
# as well as the combined token count (`total_token_count`).
print(response.usage_metadata)
# ( prompt_token_count: 25, candidates_token_count: 21, total_token_count: 46 )

from google.generativeai.types.content_types import to_contents

# You can call `count_tokens` on the combined history and content of the next turn.
print(model.count_tokens(chat.history + to_contents("What is the meaning of life?")))
# ( total_tokens: 56 )

Node.js

// Make sure to include these imports:
// import { GoogleGenerativeAI } from "@google/generative-ai";
const genAI = new GoogleGenerativeAI(process.env.API_KEY);
const model = genAI.getGenerativeModel({
  model: "gemini-1.5-flash",
});

const chat = model.startChat({
  history: [
    {
      role: "user",
      parts: [{ text: "Hi my name is Bob" }],
    },
    {
      role: "model",
      parts: [{ text: "Hi Bob!" }],
    },
  ],
});

const countResult = await model.countTokens({
  generateContentRequest: { contents: await chat.getHistory() },
});
console.log(countResult.totalTokens); // 10

const chatResult = await chat.sendMessage(
  "In one sentence, explain how a computer works to a young child.",
);

// On the response for `sendMessage`, use `usageMetadata`
// to get separate input and output token counts
// (`promptTokenCount` and `candidatesTokenCount`, respectively),
// as well as the combined token count (`totalTokenCount`).
console.log(chatResult.response.usageMetadata);
// candidatesTokenCount and totalTokenCount depend on response, may vary
// { promptTokenCount: 25, candidatesTokenCount: 25, totalTokenCount: 50 }

البدء

model := client.GenerativeModel("gemini-1.5-flash")
cs := model.StartChat()

cs.History = []*genai.Content{
	{
		Parts: []genai.Part{
			genai.Text("Hi my name is Bob"),
		},
		Role: "user",
	},
	{
		Parts: []genai.Part{
			genai.Text("Hi Bob!"),
		},
		Role: "model",
	},
}

prompt := "Explain how a computer works to a young child."
resp, err := cs.SendMessage(ctx, genai.Text(prompt))
if err != nil {
	log.Fatal(err)
}

// On the response for SendMessage, use `UsageMetadata` to get
// separate input and output token counts
// (`prompt_token_count` and `candidates_token_count`, respectively),
// as well as the combined token count (`total_token_count`).
fmt.Println("prompt_token_count:", resp.UsageMetadata.PromptTokenCount)
fmt.Println("candidates_token_count:", resp.UsageMetadata.CandidatesTokenCount)
fmt.Println("total_token_count:", resp.UsageMetadata.TotalTokenCount)
// ( prompt_token_count: 25, candidates_token_count: 21, total_token_count: 46 )

صَدفة

curl https://generativelanguage.googleapis.com/v1beta/models/gemini-1.5-flash:countTokens?key=$GOOGLE_API_KEY \
    -H 'Content-Type: application/json' \
    -X POST \
    -d '{
      "contents": [
        {"role": "user",
        "parts": [{"text": "Hi, my name is Bob."}],
        },
        {"role": "model",
         "parts":[{"text": "Hi Bob"}],
        },
      ],
      }'

Kotlin

val generativeModel =
    GenerativeModel(
        // Specify a Gemini model appropriate for your use case
        modelName = "gemini-1.5-flash",
        // Access your API key as a Build Configuration variable (see "Set up your API key" above)
        apiKey = BuildConfig.apiKey)

val chat =
    generativeModel.startChat(
        history =
            listOf(
                content(role = "user") { text("Hello, I have 2 dogs in my house.") },
                content(role = "model") {
                  text("Great to meet you. What would you like to know?")
                }))

val history = chat.history
val messageContent = content { text("This is the message I intend to send") }
val (totalTokens) = generativeModel.countTokens(*history.toTypedArray(), messageContent)
print(totalTokens)

Swift

let generativeModel =
  GenerativeModel(
    // Specify a Gemini model appropriate for your use case
    name: "gemini-1.5-flash",
    // Access your API key from your on-demand resource .plist file (see "Set up your API key"
    // above)
    apiKey: APIKey.default
  )

// Optionally specify existing chat history
let history = [
  ModelContent(role: "user", parts: "Hello, I have 2 dogs in my house."),
  ModelContent(role: "model", parts: "Great to meet you. What would you like to know?"),
]

// Initialize the chat with optional chat history
let chat = generativeModel.startChat(history: history)

let response = try await generativeModel.countTokens(chat.history + [
  ModelContent(role: "user", parts: "This is the message I intend to send"),
])
print("Total Tokens: \(response.totalTokens)")

Dart

// Make sure to include this import:
// import 'package:google_generative_ai/google_generative_ai.dart';
final model = GenerativeModel(
  model: 'gemini-1.5-flash',
  apiKey: apiKey,
);
final chat = model.startChat(history: [
  Content.text('Hi my name is Bob'),
  Content.model([TextPart('Hi Bob!')])
]);
var tokenCount = await model.countTokens(chat.history);
print('Total tokens: ${tokenCount.totalTokens}');

final response = await chat.sendMessage(Content.text(
    'In one sentence, explain how a computer works to a young child.'));
if (response.usageMetadata case final usage?) {
  print('Prompt: ${usage.promptTokenCount}, '
      'Candidates: ${usage.candidatesTokenCount}, '
      'Total: ${usage.totalTokenCount}');
}

tokenCount = await model.countTokens(
    [...chat.history, Content.text('What is the meaning of life?')]);
print('Total tokens: ${tokenCount.totalTokens}');

Java

// Specify a Gemini model appropriate for your use case
GenerativeModel gm =
    new GenerativeModel(
        /* modelName */ "gemini-1.5-flash",
        // Access your API key as a Build Configuration variable (see "Set up your API key"
        // above)
        /* apiKey */ BuildConfig.apiKey);
GenerativeModelFutures model = GenerativeModelFutures.from(gm);

// (optional) Create previous chat history for context
Content.Builder userContentBuilder = new Content.Builder();
userContentBuilder.setRole("user");
userContentBuilder.addText("Hello, I have 2 dogs in my house.");
Content userContent = userContentBuilder.build();

Content.Builder modelContentBuilder = new Content.Builder();
modelContentBuilder.setRole("model");
modelContentBuilder.addText("Great to meet you. What would you like to know?");
Content modelContent = userContentBuilder.build();

List<Content> history = Arrays.asList(userContent, modelContent);

// Initialize the chat
ChatFutures chat = model.startChat(history);

Content messageContent =
    new Content.Builder().addText("This is the message I intend to send").build();

Collections.addAll(history, messageContent);

// For illustrative purposes only. You should use an executor that fits your needs.
Executor executor = Executors.newSingleThreadExecutor();

ListenableFuture<CountTokensResponse> countTokensResponse =
    model.countTokens(history.toArray(new Content[0]));
Futures.addCallback(
    countTokensResponse,
    new FutureCallback<CountTokensResponse>() {
      @Override
      public void onSuccess(CountTokensResponse result) {
        System.out.println(result);
      }

      @Override
      public void onFailure(Throwable t) {
        t.printStackTrace();
      }
    },
    executor);

وسائط مضمّنة

Python

import PIL.Image

model = genai.GenerativeModel("models/gemini-1.5-flash")

prompt = "Tell me about this image"
your_image_file = PIL.Image.open(media / "organ.jpg")

# Call `count_tokens` to get the input token count
# of the combined text and file (`total_tokens`).
# An image's display or file size does not affect its token count.
# Optionally, you can call `count_tokens` for the text and file separately.
print(model.count_tokens([prompt, your_image_file]))
# ( total_tokens: 263 )

response = model.generate_content([prompt, your_image_file])

# On the response for `generate_content`, use `usage_metadata`
# to get separate input and output token counts
# (`prompt_token_count` and `candidates_token_count`, respectively),
# as well as the combined token count (`total_token_count`).
print(response.usage_metadata)
# ( prompt_token_count: 264, candidates_token_count: 80, total_token_count: 345 )

Node.js

// Make sure to include these imports:
// import { GoogleGenerativeAI } from "@google/generative-ai";
const genAI = new GoogleGenerativeAI(process.env.API_KEY);
const model = genAI.getGenerativeModel({
  model: "gemini-1.5-flash",
});

function fileToGenerativePart(path, mimeType) {
  return {
    inlineData: {
      data: Buffer.from(fs.readFileSync(path)).toString("base64"),
      mimeType,
    },
  };
}

const imagePart = fileToGenerativePart(
  `${mediaPath}/jetpack.jpg`,
  "image/jpeg",
);

const prompt = "Tell me about this image.";

// Call `countTokens` to get the input token count
// of the combined text and file (`totalTokens`).
// An image's display or file size does not affect its token count.
// Optionally, you can call `countTokens` for the text and file separately.
const countResult = await model.countTokens([prompt, imagePart]);
console.log(countResult.totalTokens); // 265

const generateResult = await model.generateContent([prompt, imagePart]);

// On the response for `generateContent`, use `usageMetadata`
// to get separate input and output token counts
// (`promptTokenCount` and `candidatesTokenCount`, respectively),
// as well as the combined token count (`totalTokenCount`).
console.log(generateResult.response.usageMetadata);
// candidatesTokenCount and totalTokenCount depend on response, may vary
// { promptTokenCount: 265, candidatesTokenCount: 157, totalTokenCount: 422 }

البدء

model := client.GenerativeModel("gemini-1.5-flash")
prompt := "Tell me about this image"
imageFile, err := os.ReadFile(filepath.Join(testDataDir, "personWorkingOnComputer.jpg"))
if err != nil {
	log.Fatal(err)
}
// Call `CountTokens` to get the input token count
// of the combined text and file (`total_tokens`).
// An image's display or file size does not affect its token count.
// Optionally, you can call `count_tokens` for the text and file separately.
tokResp, err := model.CountTokens(ctx, genai.Text(prompt), genai.ImageData("jpeg", imageFile))
if err != nil {
	log.Fatal(err)
}
fmt.Println("total_tokens:", tokResp.TotalTokens)
// ( total_tokens: 264 )

resp, err := model.GenerateContent(ctx, genai.Text(prompt), genai.ImageData("jpeg", imageFile))
if err != nil {
	log.Fatal(err)
}

fmt.Println("prompt_token_count:", resp.UsageMetadata.PromptTokenCount)
fmt.Println("candidates_token_count:", resp.UsageMetadata.CandidatesTokenCount)
fmt.Println("total_token_count:", resp.UsageMetadata.TotalTokenCount)
// ( prompt_token_count: 264, candidates_token_count: 100, total_token_count: 364 )

صَدفة

curl "https://generativelanguage.googleapis.com/v1beta/models/gemini-1.5-flash:countTokens?key=$GOOGLE_API_KEY" \
    -H 'Content-Type: application/json' \
    -X POST \
    -d '{
      "contents": [{
        "parts":[
            {"text": "Tell me about this instrument"},
            {
              "inline_data": {
                "mime_type":"image/jpeg",
                "data": "'$(base64 $B64FLAGS $IMG_PATH)'"
              }
            }
        ]
        }]
       }' 2> /dev/null

Kotlin

val generativeModel =
    GenerativeModel(
        // Specify a Gemini model appropriate for your use case
        modelName = "gemini-1.5-flash",
        // Access your API key as a Build Configuration variable (see "Set up your API key" above)
        apiKey = BuildConfig.apiKey)

val image1: Bitmap = BitmapFactory.decodeResource(context.resources, R.drawable.image1)
val image2: Bitmap = BitmapFactory.decodeResource(context.resources, R.drawable.image2)

val multiModalContent = content {
  image(image1)
  image(image2)
  text("What's the difference between these pictures?")
}

val (totalTokens) = generativeModel.countTokens(multiModalContent)
print(totalTokens)

Swift

let generativeModel =
  GenerativeModel(
    // Specify a Gemini model appropriate for your use case
    name: "gemini-1.5-flash",
    // Access your API key from your on-demand resource .plist file (see "Set up your API key"
    // above)
    apiKey: APIKey.default
  )

guard let image1 = UIImage(systemName: "cloud.sun") else { fatalError() }
guard let image2 = UIImage(systemName: "cloud.heavyrain") else { fatalError() }

let prompt = "What's the difference between these pictures?"

let response = try await generativeModel.countTokens(image1, image2, prompt)
print("Total Tokens: \(response.totalTokens)")

Dart

// Make sure to include this import:
// import 'package:google_generative_ai/google_generative_ai.dart';
final model = GenerativeModel(
  model: 'gemini-1.5-flash',
  apiKey: apiKey,
);

Future<DataPart> fileToPart(String mimeType, String path) async {
  return DataPart(mimeType, await File(path).readAsBytes());
}

final prompt = 'Tell me about this image';
final image = await fileToPart('image/jpeg', 'resources/organ.jpg');
final content = Content.multi([TextPart(prompt), image]);

// An image's display size does not affet its token count.
// Optionally, you can call `countTokens` for the prompt and file separately.
final tokenCount = await model.countTokens([content]);
print('Total tokens: ${tokenCount.totalTokens}');

final response = await model.generateContent([content]);
if (response.usageMetadata case final usage?) {
  print('Prompt: ${usage.promptTokenCount}, '
      'Candidates: ${usage.candidatesTokenCount}, '
      'Total: ${usage.totalTokenCount}');
}

Java

// Specify a Gemini model appropriate for your use case
GenerativeModel gm =
    new GenerativeModel(
        /* modelName */ "gemini-1.5-flash",
        // Access your API key as a Build Configuration variable (see "Set up your API key"
        // above)
        /* apiKey */ BuildConfig.apiKey);
GenerativeModelFutures model = GenerativeModelFutures.from(gm);
Content text = new Content.Builder().addText("Write a story about a magic backpack.").build();

// For illustrative purposes only. You should use an executor that fits your needs.
Executor executor = Executors.newSingleThreadExecutor();

// For text-and-image input
Bitmap image1 = BitmapFactory.decodeResource(context.getResources(), R.drawable.image1);
Bitmap image2 = BitmapFactory.decodeResource(context.getResources(), R.drawable.image2);

Content multiModalContent =
    new Content.Builder()
        .addImage(image1)
        .addImage(image2)
        .addText("What's different between these pictures?")
        .build();

ListenableFuture<CountTokensResponse> countTokensResponse =
    model.countTokens(multiModalContent);

Futures.addCallback(
    countTokensResponse,
    new FutureCallback<CountTokensResponse>() {
      @Override
      public void onSuccess(CountTokensResponse result) {
        int totalTokens = result.getTotalTokens();
        System.out.println("TotalTokens = " + totalTokens);
      }

      @Override
      public void onFailure(Throwable t) {
        t.printStackTrace();
      }
    },
    executor);

فيديو

Python

import time

model = genai.GenerativeModel("models/gemini-1.5-flash")

prompt = "Tell me about this video"
your_file = genai.upload_file(path=media / "Big_Buck_Bunny.mp4")

# Videos need to be processed before you can use them.
while your_file.state.name == "PROCESSING":
    print("processing video...")
    time.sleep(5)
    your_file = genai.get_file(your_file.name)

# Call `count_tokens` to get the input token count
# of the combined text and video/audio file (`total_tokens`).
# A video or audio file is converted to tokens at a fixed rate of tokens per second.
# Optionally, you can call `count_tokens` for the text and file separately.
print(model.count_tokens([prompt, your_file]))
# ( total_tokens: 300 )

response = model.generate_content([prompt, your_file])

# On the response for `generate_content`, use `usage_metadata`
# to get separate input and output token counts
# (`prompt_token_count` and `candidates_token_count`, respectively),
# as well as the combined token count (`total_token_count`).
print(response.usage_metadata)
# ( prompt_token_count: 301, candidates_token_count: 60, total_token_count: 361 )

Node.js

// Make sure to include these imports:
// import { GoogleAIFileManager, FileState } from "@google/generative-ai/server";
// import { GoogleGenerativeAI } from "@google/generative-ai";
const fileManager = new GoogleAIFileManager(process.env.API_KEY);

const uploadVideoResult = await fileManager.uploadFile(
  `${mediaPath}/Big_Buck_Bunny.mp4`,
  { mimeType: "video/mp4" },
);

let file = await fileManager.getFile(uploadVideoResult.file.name);
process.stdout.write("processing video");
while (file.state === FileState.PROCESSING) {
  process.stdout.write(".");
  // Sleep for 10 seconds
  await new Promise((resolve) => setTimeout(resolve, 10_000));
  // Fetch the file from the API again
  file = await fileManager.getFile(uploadVideoResult.file.name);
}

if (file.state === FileState.FAILED) {
  throw new Error("Video processing failed.");
} else {
  process.stdout.write("\n");
}

const videoPart = {
  fileData: {
    fileUri: uploadVideoResult.file.uri,
    mimeType: uploadVideoResult.file.mimeType,
  },
};

const genAI = new GoogleGenerativeAI(process.env.API_KEY);
const model = genAI.getGenerativeModel({
  model: "gemini-1.5-flash",
});

const prompt = "Tell me about this video.";

// Call `countTokens` to get the input token count
// of the combined text and file (`totalTokens`).
// A video or audio file is converted to tokens at a fixed rate of tokens
// per second.
// Optionally, you can call `countTokens` for the text and file separately.
const countResult = await model.countTokens([prompt, videoPart]);

console.log(countResult.totalTokens); // 302

const generateResult = await model.generateContent([prompt, videoPart]);

// On the response for `generateContent`, use `usageMetadata`
// to get separate input and output token counts
// (`promptTokenCount` and `candidatesTokenCount`, respectively),
// as well as the combined token count (`totalTokenCount`).
console.log(generateResult.response.usageMetadata);
// candidatesTokenCount and totalTokenCount depend on response, may vary
// { promptTokenCount: 302, candidatesTokenCount: 46, totalTokenCount: 348 }

البدء

model := client.GenerativeModel("gemini-1.5-flash")
prompt := "Tell me about this video"
file, err := client.UploadFileFromPath(ctx, filepath.Join(testDataDir, "earth.mp4"), nil)
if err != nil {
	log.Fatal(err)
}
defer client.DeleteFile(ctx, file.Name)

fd := genai.FileData{URI: file.URI}
// Call `CountTokens` to get the input token count
// of the combined text and file (`total_tokens`).
// A video or audio file is converted to tokens at a fixed rate of tokens per
// second.
// Optionally, you can call `count_tokens` for the text and file separately.
tokResp, err := model.CountTokens(ctx, genai.Text(prompt), fd)
if err != nil {
	log.Fatal(err)
}
fmt.Println("total_tokens:", tokResp.TotalTokens)
// ( total_tokens: 1481 )

resp, err := model.GenerateContent(ctx, genai.Text(prompt), fd)
if err != nil {
	log.Fatal(err)
}

fmt.Println("prompt_token_count:", resp.UsageMetadata.PromptTokenCount)
fmt.Println("candidates_token_count:", resp.UsageMetadata.CandidatesTokenCount)
fmt.Println("total_token_count:", resp.UsageMetadata.TotalTokenCount)
// ( prompt_token_count: 1481, candidates_token_count: 43, total_token_count: 1524 )

صَدفة


MIME_TYPE=$(file -b --mime-type "${VIDEO_PATH}")
NUM_BYTES=$(wc -c < "${VIDEO_PATH}")
DISPLAY_NAME=VIDEO_PATH

# Initial resumable request defining metadata.
# The upload url is in the response headers dump them to a file.
curl "${BASE_URL}/upload/v1beta/files?key=${GOOGLE_API_KEY}" \
  -D upload-header.tmp \
  -H "X-Goog-Upload-Protocol: resumable" \
  -H "X-Goog-Upload-Command: start" \
  -H "X-Goog-Upload-Header-Content-Length: ${NUM_BYTES}" \
  -H "X-Goog-Upload-Header-Content-Type: ${MIME_TYPE}" \
  -H "Content-Type: application/json" \
  -d "{'file': {'display_name': '${DISPLAY_NAME}'}}" 2> /dev/null

upload_url=$(grep -i "x-goog-upload-url: " "${tmp_header_file}" | cut -d" " -f2 | tr -d "\r")
rm "${tmp_header_file}"

# Upload the actual bytes.
curl "${upload_url}" \
  -H "Content-Length: ${NUM_BYTES}" \
  -H "X-Goog-Upload-Offset: 0" \
  -H "X-Goog-Upload-Command: upload, finalize" \
  --data-binary "@${VIDEO_PATH}" 2> /dev/null > file_info.json

file_uri=$(jq ".file.uri" file_info.json)

state=$(jq ".file.state" file_info.json)

name=$(jq ".file.name" file_info.json)

while [[ "($state)" = *"PROCESSING"* ]];
do
  echo "Processing video..."
  sleep 5
  # Get the file of interest to check state
  curl https://generativelanguage.googleapis.com/v1beta/files/$name > file_info.json
  state=$(jq ".file.state" file_info.json)
done

curl "https://generativelanguage.googleapis.com/v1beta/models/gemini-1.5-flash:countTokens?key=$GOOGLE_API_KEY" \
    -H 'Content-Type: application/json' \
    -X POST \
    -d '{
      "contents": [{
        "parts":[
          {"text": "Describe this video clip"},
          {"file_data":{"mime_type": "video/mp4", "file_uri": '$file_uri'}}]
        }]
       }'

PDF

Python

model = genai.GenerativeModel("gemini-1.5-flash")
sample_pdf = genai.upload_file(media / "test.pdf")
token_count = model.count_tokens(["Give me a summary of this document.", sample_pdf])
print(f"{token_count=}")

response = model.generate_content(["Give me a summary of this document.", sample_pdf])
print(response.usage_metadata)

ذاكرة التخزين المؤقت

Python

import time

model = genai.GenerativeModel("models/gemini-1.5-flash")

your_file = genai.upload_file(path=media / "a11.txt")

cache = genai.caching.CachedContent.create(
    model="models/gemini-1.5-flash-001",
    # You can set the system_instruction and tools
    system_instruction=None,
    tools=None,
    contents=["Here the Apollo 11 transcript:", your_file],
)

model = genai.GenerativeModel.from_cached_content(cache)

prompt = "Please give a short summary of this file."

# Call `count_tokens` to get input token count
# of the combined text and file (`total_tokens`).
# A video or audio file is converted to tokens at a fixed rate of tokens per second.
# Optionally, you can call `count_tokens` for the text and file separately.
print(model.count_tokens(prompt))
# ( total_tokens: 9 )

response = model.generate_content(prompt)

# On the response for `generate_content`, use `usage_metadata`
# to get separate input and output token counts
# (`prompt_token_count` and `candidates_token_count`, respectively),
# as well as the cached content token count and the combined total token count.
print(response.usage_metadata)
# ( prompt_token_count: 323393, cached_content_token_count: 323383, candidates_token_count: 64)
# ( total_token_count: 323457 )

cache.delete()

Node.js

// Make sure to include these imports:
// import { GoogleAIFileManager, GoogleAICacheManager } from "@google/generative-ai/server";
// import { GoogleGenerativeAI } from "@google/generative-ai";

// Upload large text file.
const fileManager = new GoogleAIFileManager(process.env.API_KEY);
const uploadResult = await fileManager.uploadFile(`${mediaPath}/a11.txt`, {
  mimeType: "text/plain",
});

// Create a cache that uses the uploaded file.
const cacheManager = new GoogleAICacheManager(process.env.API_KEY);
const cacheResult = await cacheManager.create({
  ttlSeconds: 600,
  model: "models/gemini-1.5-flash-001",
  contents: [
    {
      role: "user",
      parts: [{ text: "Here's the Apollo 11 transcript:" }],
    },
    {
      role: "user",
      parts: [
        {
          fileData: {
            fileUri: uploadResult.file.uri,
            mimeType: uploadResult.file.mimeType,
          },
        },
      ],
    },
  ],
});

const genAI = new GoogleGenerativeAI(process.env.API_KEY);
const model = genAI.getGenerativeModelFromCachedContent(cacheResult);

const prompt = "Please give a short summary of this file.";

// Call `countTokens` to get the input token count
// of the combined text and file (`totalTokens`).
const result = await model.countTokens(prompt);

console.log(result.totalTokens); // 10

const generateResult = await model.generateContent(prompt);

// On the response for `generateContent`, use `usageMetadata`
// to get separate input and output token counts
// (`promptTokenCount` and `candidatesTokenCount`, respectively),
// as well as the cached content token count and the combined total
// token count.
console.log(generateResult.response.usageMetadata);
// {
//   promptTokenCount: 323396,
//   candidatesTokenCount: 113, (depends on response, may vary)
//   totalTokenCount: 323509,
//   cachedContentTokenCount: 323386
// }

await cacheManager.delete(cacheResult.name);

البدء

txt := strings.Repeat("George Washington was the first president of the United States. ", 3000)
argcc := &genai.CachedContent{
	Model:    "gemini-1.5-flash-001",
	Contents: []*genai.Content{genai.NewUserContent(genai.Text(txt))},
}
cc, err := client.CreateCachedContent(ctx, argcc)
if err != nil {
	log.Fatal(err)
}
defer client.DeleteCachedContent(ctx, cc.Name)

modelWithCache := client.GenerativeModelFromCachedContent(cc)
prompt := "Summarize this statement"
tokResp, err := modelWithCache.CountTokens(ctx, genai.Text(prompt))
if err != nil {
	log.Fatal(err)
}
fmt.Println("total_tokens:", tokResp.TotalTokens)
// ( total_tokens: 5 )

resp, err := modelWithCache.GenerateContent(ctx, genai.Text(prompt))
if err != nil {
	log.Fatal(err)
}

fmt.Println("prompt_token_count:", resp.UsageMetadata.PromptTokenCount)
fmt.Println("candidates_token_count:", resp.UsageMetadata.CandidatesTokenCount)
fmt.Println("cached_content_token_count:", resp.UsageMetadata.CachedContentTokenCount)
fmt.Println("total_token_count:", resp.UsageMetadata.TotalTokenCount)
// ( prompt_token_count: 33007,  candidates_token_count: 39, cached_content_token_count: 33002, total_token_count: 33046 )

تعليمات النظام

Python

model = genai.GenerativeModel(model_name="gemini-1.5-flash")

prompt = "The quick brown fox jumps over the lazy dog."

print(model.count_tokens(prompt))
# total_tokens: 10

model = genai.GenerativeModel(
    model_name="gemini-1.5-flash", system_instruction="You are a cat. Your name is Neko."
)

# The total token count includes everything sent to the `generate_content` request.
# When you use system instructions, the total token count increases.
print(model.count_tokens(prompt))
# ( total_tokens: 21 )

Node.js

// Make sure to include these imports:
// import { GoogleGenerativeAI } from "@google/generative-ai";
const genAI = new GoogleGenerativeAI(process.env.API_KEY);
const prompt = "The quick brown fox jumps over the lazy dog.";
const modelNoInstructions = genAI.getGenerativeModel({
  model: "models/gemini-1.5-flash",
});

const resultNoInstructions = await modelNoInstructions.countTokens(prompt);

console.log(resultNoInstructions);
// { totalTokens: 11 }

const modelWithInstructions = genAI.getGenerativeModel({
  model: "models/gemini-1.5-flash",
  systemInstruction: "You are a cat. Your name is Neko.",
});

const resultWithInstructions =
  await modelWithInstructions.countTokens(prompt);

// The total token count includes everything sent to the
// generateContent() request. When you use system instructions, the
// total token count increases.
console.log(resultWithInstructions);
// { totalTokens: 23 }

البدء

model := client.GenerativeModel("gemini-1.5-flash")
prompt := "The quick brown fox jumps over the lazy dog"

respNoInstruction, err := model.CountTokens(ctx, genai.Text(prompt))
if err != nil {
	log.Fatal(err)
}
fmt.Println("total_tokens:", respNoInstruction.TotalTokens)
// ( total_tokens: 10 )

// The total token count includes everything sent to the GenerateContent
// request. When you use system instructions, the total token
// count increases.
model.SystemInstruction = genai.NewUserContent(genai.Text("You are a cat. Your name is Neko."))
respWithInstruction, err := model.CountTokens(ctx, genai.Text(prompt))
if err != nil {
	log.Fatal(err)
}
fmt.Println("total_tokens:", respWithInstruction.TotalTokens)
// ( total_tokens: 21 )

Kotlin

val generativeModel =
    GenerativeModel(
        // Specify a Gemini model appropriate for your use case
        modelName = "gemini-1.5-flash",
        // Access your API key as a Build Configuration variable (see "Set up your API key" above)
        apiKey = BuildConfig.apiKey,
        systemInstruction = content(role = "system") { text("You are a cat. Your name is Neko.")}
    )

// For text-only input
val (totalTokens) = generativeModel.countTokens("What is your name?")
print(totalTokens)

Swift

let generativeModel =
  GenerativeModel(
    // Specify a model that supports system instructions, like a Gemini 1.5 model
    name: "gemini-1.5-flash",
    // Access your API key from your on-demand resource .plist file (see "Set up your API key"
    // above)
    apiKey: APIKey.default,
    systemInstruction: ModelContent(role: "system", parts: "You are a cat. Your name is Neko.")
  )

let prompt = "What is your name?"

let response = try await generativeModel.countTokens(prompt)
print("Total Tokens: \(response.totalTokens)")

Dart

// Make sure to include this import:
// import 'package:google_generative_ai/google_generative_ai.dart';
var model = GenerativeModel(
  model: 'gemini-1.5-flash',
  apiKey: apiKey,
);
final prompt = 'The quick brown fox jumps over the lazy dog.';

// The total token count includes everything sent in the `generateContent`
// request.
var tokenCount = await model.countTokens([Content.text(prompt)]);
print('Total tokens: ${tokenCount.totalTokens}');
model = GenerativeModel(
  model: 'gemini-1.5-flash',
  apiKey: apiKey,
  systemInstruction: Content.system('You are a cat. Your name is Neko.'),
);
tokenCount = await model.countTokens([Content.text(prompt)]);
print('Total tokens: ${tokenCount.totalTokens}');

Java

// Create your system instructions
Content systemInstruction =
    new Content.Builder().addText("You are a cat. Your name is Neko.").build();

// Specify a Gemini model appropriate for your use case
GenerativeModel gm =
    new GenerativeModel(
        /* modelName */ "gemini-1.5-flash",
        // Access your API key as a Build Configuration variable (see "Set up your API key"
        // above)
        /* apiKey */ BuildConfig.apiKey,
        /* generationConfig (optional) */ null,
        /* safetySettings (optional) */ null,
        /* requestOptions (optional) */ new RequestOptions(),
        /* tools (optional) */ null,
        /* toolsConfig (optional) */ null,
        /* systemInstruction (optional) */ systemInstruction);
GenerativeModelFutures model = GenerativeModelFutures.from(gm);

Content inputContent = new Content.Builder().addText("What's your name?.").build();

// For illustrative purposes only. You should use an executor that fits your needs.
Executor executor = Executors.newSingleThreadExecutor();

// For text-only input
ListenableFuture<CountTokensResponse> countTokensResponse = model.countTokens(inputContent);

Futures.addCallback(
    countTokensResponse,
    new FutureCallback<CountTokensResponse>() {
      @Override
      public void onSuccess(CountTokensResponse result) {
        int totalTokens = result.getTotalTokens();
        System.out.println("TotalTokens = " + totalTokens);
      }

      @Override
      public void onFailure(Throwable t) {
        t.printStackTrace();
      }
    },
    executor);

الأدوات

Python

model = genai.GenerativeModel(model_name="gemini-1.5-flash")

prompt = "I have 57 cats, each owns 44 mittens, how many mittens is that in total?"

print(model.count_tokens(prompt))
# ( total_tokens: 22 )

def add(a: float, b: float):
    """returns a + b."""
    return a + b

def subtract(a: float, b: float):
    """returns a - b."""
    return a - b

def multiply(a: float, b: float):
    """returns a * b."""
    return a * b

def divide(a: float, b: float):
    """returns a / b."""
    return a / b

model = genai.GenerativeModel(
    "models/gemini-1.5-flash-001", tools=[add, subtract, multiply, divide]
)

# The total token count includes everything sent to the `generate_content` request.
# When you use tools (like function calling), the total token count increases.
print(model.count_tokens(prompt))
# ( total_tokens: 206 )

Node.js

// Make sure to include these imports:
// import { GoogleGenerativeAI } from "@google/generative-ai";
const genAI = new GoogleGenerativeAI(process.env.API_KEY);
const prompt =
  "I have 57 cats, each owns 44 mittens, how many mittens is that in total?";

const modelNoTools = genAI.getGenerativeModel({
  model: "models/gemini-1.5-flash",
});

const resultNoTools = await modelNoTools.countTokens(prompt);

console.log(resultNoTools);
// { totalTokens: 23 }

const functionDeclarations = [
  { name: "add" },
  { name: "subtract" },
  { name: "multiply" },
  { name: "divide" },
];

const modelWithTools = genAI.getGenerativeModel({
  model: "models/gemini-1.5-flash",
  tools: [{ functionDeclarations }],
});

const resultWithTools = await modelWithTools.countTokens(prompt);

// The total token count includes everything sent to the
// generateContent() request. When you use tools (like function calling),
// the total token count increases.
console.log(resultWithTools);
// { totalTokens: 99 }

Kotlin

val multiplyDefinition = defineFunction(
    name = "multiply",
    description = "returns the product of the provided numbers.",
    parameters = listOf(
        Schema.double("a", "First number"),
        Schema.double("b", "Second number")
    )
)
val usableFunctions = listOf(multiplyDefinition)

val generativeModel =
    GenerativeModel(
        // Specify a Gemini model appropriate for your use case
        modelName = "gemini-1.5-flash",
        // Access your API key as a Build Configuration variable (see "Set up your API key" above)
        apiKey = BuildConfig.apiKey,
        tools = listOf(Tool(usableFunctions))
    )

// For text-only input
val (totalTokens) = generativeModel.countTokens("What's the product of 9 and 358?")
print(totalTokens)

Swift

let generativeModel =
  GenerativeModel(
    // Specify a model that supports system instructions, like a Gemini 1.5 model
    name: "gemini-1.5-flash",
    // Access your API key from your on-demand resource .plist file (see "Set up your API key"
    // above)
    apiKey: APIKey.default,
    tools: [Tool(functionDeclarations: [
      FunctionDeclaration(
        name: "controlLight",
        description: "Set the brightness and color temperature of a room light.",
        parameters: [
          "brightness": Schema(
            type: .number,
            format: "double",
            description: "Light level from 0 to 100. Zero is off and 100 is full brightness."
          ),
          "colorTemperature": Schema(
            type: .string,
            format: "enum",
            description: "Color temperature of the light fixture.",
            enumValues: ["daylight", "cool", "warm"]
          ),
        ],
        requiredParameters: ["brightness", "colorTemperature"]
      ),
    ])]
  )

let prompt = "Dim the lights so the room feels cozy and warm."

let response = try await generativeModel.countTokens(prompt)
print("Total Tokens: \(response.totalTokens)")

Dart

// Make sure to include this import:
// import 'package:google_generative_ai/google_generative_ai.dart';
var model = GenerativeModel(
  model: 'gemini-1.5-flash',
  apiKey: apiKey,
);
final prompt = 'I have 57 cats, each owns 44 mittens, '
    'how many mittens is that in total?';

// The total token count includes everything sent in the `generateContent`
// request.
var tokenCount = await model.countTokens([Content.text(prompt)]);
print('Total tokens: ${tokenCount.totalTokens}');
final binaryFunction = Schema.object(
  properties: {
    'a': Schema.number(nullable: false),
    'b': Schema.number(nullable: false)
  },
  requiredProperties: ['a', 'b'],
);

model = GenerativeModel(
  model: 'gemini-1.5-flash',
  apiKey: apiKey,
  tools: [
    Tool(functionDeclarations: [
      FunctionDeclaration('add', 'returns a + b', binaryFunction),
      FunctionDeclaration('subtract', 'returns a - b', binaryFunction),
      FunctionDeclaration('multipley', 'returns a * b', binaryFunction),
      FunctionDeclaration('divide', 'returns a / b', binaryFunction)
    ])
  ],
);
tokenCount = await model.countTokens([Content.text(prompt)]);
print('Total tokens: ${tokenCount.totalTokens}');

Java

FunctionDeclaration multiplyDefinition =
    defineFunction(
        /* name  */ "multiply",
        /* description */ "returns a * b.",
        /* parameters */ Arrays.asList(
            Schema.numDouble("a", "First parameter"),
            Schema.numDouble("b", "Second parameter")),
        /* required */ Arrays.asList("a", "b"));

Tool tool = new Tool(Arrays.asList(multiplyDefinition), null);
;

// Specify a Gemini model appropriate for your use case
GenerativeModel gm =
    new GenerativeModel(
        /* modelName */ "gemini-1.5-flash",
        // Access your API key as a Build Configuration variable (see "Set up your API key"
        // above)
        /* apiKey */ BuildConfig.apiKey,
        /* generationConfig (optional) */ null,
        /* safetySettings (optional) */ null,
        /* requestOptions (optional) */ new RequestOptions(),
        /* tools (optional) */ Arrays.asList(tool));
GenerativeModelFutures model = GenerativeModelFutures.from(gm);

Content inputContent = new Content.Builder().addText("What's your name?.").build();

// For illustrative purposes only. You should use an executor that fits your needs.
Executor executor = Executors.newSingleThreadExecutor();

// For text-only input
ListenableFuture<CountTokensResponse> countTokensResponse = model.countTokens(inputContent);

Futures.addCallback(
    countTokensResponse,
    new FutureCallback<CountTokensResponse>() {
      @Override
      public void onSuccess(CountTokensResponse result) {
        int totalTokens = result.getTotalTokens();
        System.out.println("TotalTokens = " + totalTokens);
      }

      @Override
      public void onFailure(Throwable t) {
        t.printStackTrace();
      }
    },
    executor);

نص الاستجابة

ردّ من "models.countTokens"

ويعرض tokenCount للنموذج prompt.

إذا كانت الاستجابة ناجحة، سيحتوي نص الاستجابة على بيانات بالبنية التالية:

الحقول
totalTokens integer

عدد الرموز المميّزة التي تُقسّم Model prompt إلى أجزاء. تكون دائمًا غير سالبة.

cachedContentTokenCount integer

عدد الرموز المميّزة في الجزء المُخزَّن مؤقتًا من الطلب (المحتوى المُخزَّن مؤقتًا)

تمثيل JSON
{
  "totalTokens": integer,
  "cachedContentTokenCount": integer
}

GenerateContentRequest

اطلب إنشاء نموذج مكتمل من النموذج.

الحقول
model string

مطلوب. اسم Model المطلوب استخدامه لإنشاء الإكمال.

التنسيق: name=models/{model}

contents[] object (Content)

مطلوب. محتوى المحادثة الحالية مع النموذج

بالنسبة إلى طلبات البحث التي تتضمّن جولة واحدة، يكون هذا مثيلًا واحدًا. بالنسبة إلى طلبات البحث التي تتضمّن عدّة أدوار، مثل chat، يكون هذا الحقل متكرّرًا ويحتوي على سجلّ المحادثة وآخر طلب.

tools[] object (Tool)

اختياريّ. قائمة بـ Tools التي قد يستخدمها Model لإنشاء الرد التالي.

Tool هو عبارة عن قطعة رمز تتيح للنظام التفاعل مع الأنظمة الخارجية لتنفيذ إجراء أو مجموعة من الإجراءات خارج نطاق المعرفة ومدى سيطرة Model. قيم Tool المتوافقة هي Function وcodeExecution. راجِع دليلَي استدعاء الدوال وتنفيذ الرموز البرمجية للاطّلاع على مزيد من المعلومات.

toolConfig object (ToolConfig)

اختياريّ. إعدادات الأداة لأي Tool محدّد في الطلب راجِع دليل استدعاء الدوال للاطّلاع على مثال على الاستخدام.

safetySettings[] object (SafetySetting)

اختياريّ. قائمة بمثيلات SafetySetting الفريدة لحظر المحتوى غير الآمن

سيتم فرض هذا التغيير على GenerateContentRequest.contents وGenerateContentResponse.candidates. يجب ألا يكون هناك أكثر من إعداد واحد لكل نوع SafetyCategory. ستحظر واجهة برمجة التطبيقات أي محتوى أو ردّ لا يستوفي الحدّ الأدنى الذي تحدّده هذه الإعدادات. تلغي هذه القائمة الإعدادات التلقائية لكل SafetyCategory محدّدة في "إعدادات الأمان". إذا لم يكن هناك SafetySetting لـ SafetyCategory معيّن مقدَّم في القائمة، ستستخدم واجهة برمجة التطبيقات إعدادات السلامة التلقائية لهذه الفئة. فئات الضرر HARM_CATEGORY_HATE_SPEECH وHARM_CATEGORY_SEXUALLY_EXPLICIT وHARM_CATEGORY_DANGEROUS_CONTENT وHARM_CATEGORY_HARASSMENT متاحة. يُرجى الرجوع إلى الدليل للحصول على معلومات تفصيلية عن إعدادات الأمان المتاحة. يمكنك أيضًا الرجوع إلى إرشادات السلامة للتعرّف على كيفية دمج اعتبارات السلامة في تطبيقات الذكاء الاصطناعي.

systemInstruction object (Content)

اختياريّ. ضبط المطوّر تعليمات النظام يتوفّر حاليًا النص فقط.

generationConfig object (GenerationConfig)

اختياريّ. خيارات الضبط لإنشاء النماذج والنتائج

cachedContent string

اختياريّ. اسم المحتوى المخزّن مؤقتًا لاستخدامه كسياق لعرض عبارة البحث المقترحة تنسيق الملف: cachedContents/{cachedContent}

تمثيل JSON
{
  "model": string,
  "contents": [
    {
      object (Content)
    }
  ],
  "tools": [
    {
      object (Tool)
    }
  ],
  "toolConfig": {
    object (ToolConfig)
  },
  "safetySettings": [
    {
      object (SafetySetting)
    }
  ],
  "systemInstruction": {
    object (Content)
  },
  "generationConfig": {
    object (GenerationConfig)
  },
  "cachedContent": string
}