Counting tokens

이미지, 오디오, 동영상이 집계되는 방식 등 Gemini API를 사용한 토큰 계산에 관한 자세한 가이드는 토큰 집계 가이드 및 함께 제공되는 설명서 레시피를 참고하세요.

메서드: models.countTokens

입력 Content에서 모델의 토큰 생성기를 실행하고 토큰 수를 반환합니다. 토큰에 관한 자세한 내용은 토큰 가이드를 참고하세요.

엔드포인트

게시 https://generativelanguage.googleapis.com/v1beta/{model=models/*}:countTokens

경로 매개변수

model string

필수 항목입니다. 모델의 리소스 이름입니다. 이는 모델에서 사용할 ID로 사용됩니다.

이 이름은 models.list 메서드에서 반환된 모델 이름과 일치해야 합니다.

형식: models/{model} models/{model} 형식을 사용합니다.

요청 본문

요청 본문에는 다음과 같은 구조의 데이터가 포함됩니다.

<ph type="x-smartling-placeholder">
</ph> 입력란 <ph type="x-smartling-placeholder">
</ph>
contents[] object (Content)

선택사항입니다. 모델에 프롬프트로 제공되는 입력입니다. generateContentRequest가 설정된 경우 이 필드는 무시됩니다.

generateContentRequest object (GenerateContentRequest)

선택사항입니다. Model에 부여된 전체 입력입니다. 여기에는 프롬프트뿐 아니라 시스템 안내 및/또는 함수 호출에 대한 함수 선언과 같은 기타 모델 조정 정보가 포함됩니다. Model/ContentgenerateContentRequest는 함께 사용할 수 없습니다. Model + Content 또는 generateContentRequest를 전송할 수 있지만 둘 다 보낼 수는 없습니다.

요청 예시

텍스트

Python

import google.generativeai as genai

model = genai.GenerativeModel("models/gemini-1.5-flash")

prompt = "The quick brown fox jumps over the lazy dog."

# Call `count_tokens` to get the input token count (`total_tokens`).
print("total_tokens: ", model.count_tokens(prompt))
# ( total_tokens: 10 )

response = model.generate_content(prompt)

# On the response for `generate_content`, use `usage_metadata`
# to get separate input and output token counts
# (`prompt_token_count` and `candidates_token_count`, respectively),
# as well as the combined token count (`total_token_count`).
print(response.usage_metadata)
# ( prompt_token_count: 11, candidates_token_count: 73, total_token_count: 84 )

Node.js

// Make sure to include these imports:
// import { GoogleGenerativeAI } from "@google/generative-ai";
const genAI = new GoogleGenerativeAI(process.env.API_KEY);
const model = genAI.getGenerativeModel({
  model: "gemini-1.5-flash",
});

// Count tokens in a prompt without calling text generation.
const countResult = await model.countTokens(
  "The quick brown fox jumps over the lazy dog.",
);

console.log(countResult.totalTokens); // 11

const generateResult = await model.generateContent(
  "The quick brown fox jumps over the lazy dog.",
);

// On the response for `generateContent`, use `usageMetadata`
// to get separate input and output token counts
// (`promptTokenCount` and `candidatesTokenCount`, respectively),
// as well as the combined token count (`totalTokenCount`).
console.log(generateResult.response.usageMetadata);
// candidatesTokenCount and totalTokenCount depend on response, may vary
// { promptTokenCount: 11, candidatesTokenCount: 124, totalTokenCount: 135 }

Go

model := client.GenerativeModel("gemini-1.5-flash")
prompt := "The quick brown fox jumps over the lazy dog"

// Call CountTokens to get the input token count (`total tokens`).
tokResp, err := model.CountTokens(ctx, genai.Text(prompt))
if err != nil {
	log.Fatal(err)
}

fmt.Println("total_tokens:", tokResp.TotalTokens)
// ( total_tokens: 10 )

resp, err := model.GenerateContent(ctx, genai.Text(prompt))
if err != nil {
	log.Fatal(err)
}

// On the response for GenerateContent, use UsageMetadata to get
// separate input and output token counts (PromptTokenCount and
// CandidatesTokenCount, respectively), as well as the combined
// token count (TotalTokenCount).
fmt.Println("prompt_token_count:", resp.UsageMetadata.PromptTokenCount)
fmt.Println("candidates_token_count:", resp.UsageMetadata.CandidatesTokenCount)
fmt.Println("total_token_count:", resp.UsageMetadata.TotalTokenCount)
// ( prompt_token_count: 10, candidates_token_count: 38, total_token_count: 48 )

Shell

curl https://generativelanguage.googleapis.com/v1beta/models/gemini-1.5-flash:countTokens?key=$GOOGLE_API_KEY \
    -H 'Content-Type: application/json' \
    -X POST \
    -d '{
      "contents": [{
        "parts":[{
          "text": "The quick brown fox jumps over the lazy dog."
          }],
        }],
      }'

Kotlin

val generativeModel =
    GenerativeModel(
        // Specify a Gemini model appropriate for your use case
        modelName = "gemini-1.5-flash",
        // Access your API key as a Build Configuration variable (see "Set up your API key" above)
        apiKey = BuildConfig.apiKey)

// For text-only input
val (totalTokens) = generativeModel.countTokens("Write a story about a magic backpack.")
print(totalTokens)

Swift

let generativeModel =
  GenerativeModel(
    // Specify a Gemini model appropriate for your use case
    name: "gemini-1.5-flash",
    // Access your API key from your on-demand resource .plist file (see "Set up your API key"
    // above)
    apiKey: APIKey.default
  )

let prompt = "Write a story about a magic backpack."

let response = try await generativeModel.countTokens(prompt)

print("Total Tokens: \(response.totalTokens)")

Dart

// Make sure to include this import:
// import 'package:google_generative_ai/google_generative_ai.dart';
final model = GenerativeModel(
  model: 'gemini-1.5-flash',
  apiKey: apiKey,
);
final prompt = 'The quick brown fox jumps over the lazy dog.';
final tokenCount = await model.countTokens([Content.text(prompt)]);
print('Total tokens: ${tokenCount.totalTokens}');

자바

// Specify a Gemini model appropriate for your use case
GenerativeModel gm =
    new GenerativeModel(
        /* modelName */ "gemini-1.5-flash",
        // Access your API key as a Build Configuration variable (see "Set up your API key"
        // above)
        /* apiKey */ BuildConfig.apiKey);
GenerativeModelFutures model = GenerativeModelFutures.from(gm);

Content inputContent =
    new Content.Builder().addText("Write a story about a magic backpack.").build();

// For illustrative purposes only. You should use an executor that fits your needs.
Executor executor = Executors.newSingleThreadExecutor();

// For text-only input
ListenableFuture<CountTokensResponse> countTokensResponse = model.countTokens(inputContent);

Futures.addCallback(
    countTokensResponse,
    new FutureCallback<CountTokensResponse>() {
      @Override
      public void onSuccess(CountTokensResponse result) {
        int totalTokens = result.getTotalTokens();
        System.out.println("TotalTokens = " + totalTokens);
      }

      @Override
      public void onFailure(Throwable t) {
        t.printStackTrace();
      }
    },
    executor);

채팅

Python

import google.generativeai as genai

model = genai.GenerativeModel("models/gemini-1.5-flash")

chat = model.start_chat(
    history=[
        {"role": "user", "parts": "Hi my name is Bob"},
        {"role": "model", "parts": "Hi Bob!"},
    ]
)
# Call `count_tokens` to get the input token count (`total_tokens`).
print(model.count_tokens(chat.history))
# ( total_tokens: 10 )

response = chat.send_message(
    "In one sentence, explain how a computer works to a young child."
)

# On the response for `send_message`, use `usage_metadata`
# to get separate input and output token counts
# (`prompt_token_count` and `candidates_token_count`, respectively),
# as well as the combined token count (`total_token_count`).
print(response.usage_metadata)
# ( prompt_token_count: 25, candidates_token_count: 21, total_token_count: 46 )

from google.generativeai.types.content_types import to_contents

# You can call `count_tokens` on the combined history and content of the next turn.
print(model.count_tokens(chat.history + to_contents("What is the meaning of life?")))
# ( total_tokens: 56 )

Node.js

// Make sure to include these imports:
// import { GoogleGenerativeAI } from "@google/generative-ai";
const genAI = new GoogleGenerativeAI(process.env.API_KEY);
const model = genAI.getGenerativeModel({
  model: "gemini-1.5-flash",
});

const chat = model.startChat({
  history: [
    {
      role: "user",
      parts: [{ text: "Hi my name is Bob" }],
    },
    {
      role: "model",
      parts: [{ text: "Hi Bob!" }],
    },
  ],
});

const countResult = await model.countTokens({
  generateContentRequest: { contents: await chat.getHistory() },
});
console.log(countResult.totalTokens); // 10

const chatResult = await chat.sendMessage(
  "In one sentence, explain how a computer works to a young child.",
);

// On the response for `sendMessage`, use `usageMetadata`
// to get separate input and output token counts
// (`promptTokenCount` and `candidatesTokenCount`, respectively),
// as well as the combined token count (`totalTokenCount`).
console.log(chatResult.response.usageMetadata);
// candidatesTokenCount and totalTokenCount depend on response, may vary
// { promptTokenCount: 25, candidatesTokenCount: 25, totalTokenCount: 50 }

Go

model := client.GenerativeModel("gemini-1.5-flash")
cs := model.StartChat()

cs.History = []*genai.Content{
	{
		Parts: []genai.Part{
			genai.Text("Hi my name is Bob"),
		},
		Role: "user",
	},
	{
		Parts: []genai.Part{
			genai.Text("Hi Bob!"),
		},
		Role: "model",
	},
}

prompt := "Explain how a computer works to a young child."
resp, err := cs.SendMessage(ctx, genai.Text(prompt))
if err != nil {
	log.Fatal(err)
}

// On the response for SendMessage, use `UsageMetadata` to get
// separate input and output token counts
// (`prompt_token_count` and `candidates_token_count`, respectively),
// as well as the combined token count (`total_token_count`).
fmt.Println("prompt_token_count:", resp.UsageMetadata.PromptTokenCount)
fmt.Println("candidates_token_count:", resp.UsageMetadata.CandidatesTokenCount)
fmt.Println("total_token_count:", resp.UsageMetadata.TotalTokenCount)
// ( prompt_token_count: 25, candidates_token_count: 21, total_token_count: 46 )

Shell

curl https://generativelanguage.googleapis.com/v1beta/models/gemini-1.5-flash:countTokens?key=$GOOGLE_API_KEY \
    -H 'Content-Type: application/json' \
    -X POST \
    -d '{
      "contents": [
        {"role": "user",
        "parts": [{"text": "Hi, my name is Bob."}],
        },
        {"role": "model",
         "parts":[{"text": "Hi Bob"}],
        },
      ],
      }'

Kotlin

val generativeModel =
    GenerativeModel(
        // Specify a Gemini model appropriate for your use case
        modelName = "gemini-1.5-flash",
        // Access your API key as a Build Configuration variable (see "Set up your API key" above)
        apiKey = BuildConfig.apiKey)

val chat =
    generativeModel.startChat(
        history =
            listOf(
                content(role = "user") { text("Hello, I have 2 dogs in my house.") },
                content(role = "model") {
                  text("Great to meet you. What would you like to know?")
                }))

val history = chat.history
val messageContent = content { text("This is the message I intend to send") }
val (totalTokens) = generativeModel.countTokens(*history.toTypedArray(), messageContent)
print(totalTokens)

Swift

let generativeModel =
  GenerativeModel(
    // Specify a Gemini model appropriate for your use case
    name: "gemini-1.5-flash",
    // Access your API key from your on-demand resource .plist file (see "Set up your API key"
    // above)
    apiKey: APIKey.default
  )

// Optionally specify existing chat history
let history = [
  ModelContent(role: "user", parts: "Hello, I have 2 dogs in my house."),
  ModelContent(role: "model", parts: "Great to meet you. What would you like to know?"),
]

// Initialize the chat with optional chat history
let chat = generativeModel.startChat(history: history)

let response = try await generativeModel.countTokens(chat.history + [
  ModelContent(role: "user", parts: "This is the message I intend to send"),
])
print("Total Tokens: \(response.totalTokens)")

Dart

// Make sure to include this import:
// import 'package:google_generative_ai/google_generative_ai.dart';
final model = GenerativeModel(
  model: 'gemini-1.5-flash',
  apiKey: apiKey,
);
final chat = model.startChat(history: [
  Content.text('Hi my name is Bob'),
  Content.model([TextPart('Hi Bob!')])
]);
var tokenCount = await model.countTokens(chat.history);
print('Total tokens: ${tokenCount.totalTokens}');

final response = await chat.sendMessage(Content.text(
    'In one sentence, explain how a computer works to a young child.'));
if (response.usageMetadata case final usage?) {
  print('Prompt: ${usage.promptTokenCount}, '
      'Candidates: ${usage.candidatesTokenCount}, '
      'Total: ${usage.totalTokenCount}');
}

tokenCount = await model.countTokens(
    [...chat.history, Content.text('What is the meaning of life?')]);
print('Total tokens: ${tokenCount.totalTokens}');

자바

// Specify a Gemini model appropriate for your use case
GenerativeModel gm =
    new GenerativeModel(
        /* modelName */ "gemini-1.5-flash",
        // Access your API key as a Build Configuration variable (see "Set up your API key"
        // above)
        /* apiKey */ BuildConfig.apiKey);
GenerativeModelFutures model = GenerativeModelFutures.from(gm);

// (optional) Create previous chat history for context
Content.Builder userContentBuilder = new Content.Builder();
userContentBuilder.setRole("user");
userContentBuilder.addText("Hello, I have 2 dogs in my house.");
Content userContent = userContentBuilder.build();

Content.Builder modelContentBuilder = new Content.Builder();
modelContentBuilder.setRole("model");
modelContentBuilder.addText("Great to meet you. What would you like to know?");
Content modelContent = userContentBuilder.build();

List<Content> history = Arrays.asList(userContent, modelContent);

// Initialize the chat
ChatFutures chat = model.startChat(history);

Content messageContent =
    new Content.Builder().addText("This is the message I intend to send").build();

Collections.addAll(history, messageContent);

// For illustrative purposes only. You should use an executor that fits your needs.
Executor executor = Executors.newSingleThreadExecutor();

ListenableFuture<CountTokensResponse> countTokensResponse =
    model.countTokens(history.toArray(new Content[0]));
Futures.addCallback(
    countTokensResponse,
    new FutureCallback<CountTokensResponse>() {
      @Override
      public void onSuccess(CountTokensResponse result) {
        System.out.println(result);
      }

      @Override
      public void onFailure(Throwable t) {
        t.printStackTrace();
      }
    },
    executor);

인라인 미디어

Python

import google.generativeai as genai

import PIL.Image

model = genai.GenerativeModel("models/gemini-1.5-flash")

prompt = "Tell me about this image"
your_image_file = PIL.Image.open(media / "organ.jpg")

# Call `count_tokens` to get the input token count
# of the combined text and file (`total_tokens`).
# An image's display or file size does not affect its token count.
# Optionally, you can call `count_tokens` for the text and file separately.
print(model.count_tokens([prompt, your_image_file]))
# ( total_tokens: 263 )

response = model.generate_content([prompt, your_image_file])

# On the response for `generate_content`, use `usage_metadata`
# to get separate input and output token counts
# (`prompt_token_count` and `candidates_token_count`, respectively),
# as well as the combined token count (`total_token_count`).
print(response.usage_metadata)
# ( prompt_token_count: 264, candidates_token_count: 80, total_token_count: 345 )

Node.js

// Make sure to include these imports:
// import { GoogleGenerativeAI } from "@google/generative-ai";
const genAI = new GoogleGenerativeAI(process.env.API_KEY);
const model = genAI.getGenerativeModel({
  model: "gemini-1.5-flash",
});

function fileToGenerativePart(path, mimeType) {
  return {
    inlineData: {
      data: Buffer.from(fs.readFileSync(path)).toString("base64"),
      mimeType,
    },
  };
}

const imagePart = fileToGenerativePart(
  `${mediaPath}/jetpack.jpg`,
  "image/jpeg",
);

const prompt = "Tell me about this image.";

// Call `countTokens` to get the input token count
// of the combined text and file (`totalTokens`).
// An image's display or file size does not affect its token count.
// Optionally, you can call `countTokens` for the text and file separately.
const countResult = await model.countTokens([prompt, imagePart]);
console.log(countResult.totalTokens); // 265

const generateResult = await model.generateContent([prompt, imagePart]);

// On the response for `generateContent`, use `usageMetadata`
// to get separate input and output token counts
// (`promptTokenCount` and `candidatesTokenCount`, respectively),
// as well as the combined token count (`totalTokenCount`).
console.log(generateResult.response.usageMetadata);
// candidatesTokenCount and totalTokenCount depend on response, may vary
// { promptTokenCount: 265, candidatesTokenCount: 157, totalTokenCount: 422 }

Go

model := client.GenerativeModel("gemini-1.5-flash")
prompt := "Tell me about this image"
imageFile, err := os.ReadFile(filepath.Join(testDataDir, "personWorkingOnComputer.jpg"))
if err != nil {
	log.Fatal(err)
}
// Call `CountTokens` to get the input token count
// of the combined text and file (`total_tokens`).
// An image's display or file size does not affect its token count.
// Optionally, you can call `count_tokens` for the text and file separately.
tokResp, err := model.CountTokens(ctx, genai.Text(prompt), genai.ImageData("jpeg", imageFile))
if err != nil {
	log.Fatal(err)
}
fmt.Println("total_tokens:", tokResp.TotalTokens)
// ( total_tokens: 264 )

resp, err := model.GenerateContent(ctx, genai.Text(prompt), genai.ImageData("jpeg", imageFile))
if err != nil {
	log.Fatal(err)
}

fmt.Println("prompt_token_count:", resp.UsageMetadata.PromptTokenCount)
fmt.Println("candidates_token_count:", resp.UsageMetadata.CandidatesTokenCount)
fmt.Println("total_token_count:", resp.UsageMetadata.TotalTokenCount)
// ( prompt_token_count: 264, candidates_token_count: 100, total_token_count: 364 )

Shell

curl "https://generativelanguage.googleapis.com/v1beta/models/gemini-1.5-flash:countTokens?key=$GOOGLE_API_KEY" \
    -H 'Content-Type: application/json' \
    -X POST \
    -d '{
      "contents": [{
        "parts":[
            {"text": "Tell me about this instrument"},
            {
              "inline_data": {
                "mime_type":"image/jpeg",
                "data": "'$(base64 $B64FLAGS $IMG_PATH)'"
              }
            }
        ]
        }]
       }' 2> /dev/null

Kotlin

val generativeModel =
    GenerativeModel(
        // Specify a Gemini model appropriate for your use case
        modelName = "gemini-1.5-flash",
        // Access your API key as a Build Configuration variable (see "Set up your API key" above)
        apiKey = BuildConfig.apiKey)

val image1: Bitmap = BitmapFactory.decodeResource(context.resources, R.drawable.image1)
val image2: Bitmap = BitmapFactory.decodeResource(context.resources, R.drawable.image2)

val multiModalContent = content {
  image(image1)
  image(image2)
  text("What's the difference between these pictures?")
}

val (totalTokens) = generativeModel.countTokens(multiModalContent)
print(totalTokens)

Swift

let generativeModel =
  GenerativeModel(
    // Specify a Gemini model appropriate for your use case
    name: "gemini-1.5-flash",
    // Access your API key from your on-demand resource .plist file (see "Set up your API key"
    // above)
    apiKey: APIKey.default
  )

guard let image1 = UIImage(systemName: "cloud.sun") else { fatalError() }
guard let image2 = UIImage(systemName: "cloud.heavyrain") else { fatalError() }

let prompt = "What's the difference between these pictures?"

let response = try await generativeModel.countTokens(image1, image2, prompt)
print("Total Tokens: \(response.totalTokens)")

Dart

// Make sure to include this import:
// import 'package:google_generative_ai/google_generative_ai.dart';
final model = GenerativeModel(
  model: 'gemini-1.5-flash',
  apiKey: apiKey,
);

Future<DataPart> fileToPart(String mimeType, String path) async {
  return DataPart(mimeType, await File(path).readAsBytes());
}

final prompt = 'Tell me about this image';
final image = await fileToPart('image/jpeg', 'resources/organ.jpg');
final content = Content.multi([TextPart(prompt), image]);

// An image's display size does not affet its token count.
// Optionally, you can call `countTokens` for the prompt and file separately.
final tokenCount = await model.countTokens([content]);
print('Total tokens: ${tokenCount.totalTokens}');

final response = await model.generateContent([content]);
if (response.usageMetadata case final usage?) {
  print('Prompt: ${usage.promptTokenCount}, '
      'Candidates: ${usage.candidatesTokenCount}, '
      'Total: ${usage.totalTokenCount}');
}

자바

// Specify a Gemini model appropriate for your use case
GenerativeModel gm =
    new GenerativeModel(
        /* modelName */ "gemini-1.5-flash",
        // Access your API key as a Build Configuration variable (see "Set up your API key"
        // above)
        /* apiKey */ BuildConfig.apiKey);
GenerativeModelFutures model = GenerativeModelFutures.from(gm);
Content text = new Content.Builder().addText("Write a story about a magic backpack.").build();

// For illustrative purposes only. You should use an executor that fits your needs.
Executor executor = Executors.newSingleThreadExecutor();

// For text-and-image input
Bitmap image1 = BitmapFactory.decodeResource(context.getResources(), R.drawable.image1);
Bitmap image2 = BitmapFactory.decodeResource(context.getResources(), R.drawable.image2);

Content multiModalContent =
    new Content.Builder()
        .addImage(image1)
        .addImage(image2)
        .addText("What's different between these pictures?")
        .build();

ListenableFuture<CountTokensResponse> countTokensResponse =
    model.countTokens(multiModalContent);

Futures.addCallback(
    countTokensResponse,
    new FutureCallback<CountTokensResponse>() {
      @Override
      public void onSuccess(CountTokensResponse result) {
        int totalTokens = result.getTotalTokens();
        System.out.println("TotalTokens = " + totalTokens);
      }

      @Override
      public void onFailure(Throwable t) {
        t.printStackTrace();
      }
    },
    executor);

동영상

Python

import google.generativeai as genai

import time

model = genai.GenerativeModel("models/gemini-1.5-flash")

prompt = "Tell me about this video"
your_file = genai.upload_file(path=media / "Big_Buck_Bunny.mp4")

# Videos need to be processed before you can use them.
while your_file.state.name == "PROCESSING":
    print("processing video...")
    time.sleep(5)
    your_file = genai.get_file(your_file.name)

# Call `count_tokens` to get the input token count
# of the combined text and video/audio file (`total_tokens`).
# A video or audio file is converted to tokens at a fixed rate of tokens per second.
# Optionally, you can call `count_tokens` for the text and file separately.
print(model.count_tokens([prompt, your_file]))
# ( total_tokens: 300 )

response = model.generate_content([prompt, your_file])

# On the response for `generate_content`, use `usage_metadata`
# to get separate input and output token counts
# (`prompt_token_count` and `candidates_token_count`, respectively),
# as well as the combined token count (`total_token_count`).
print(response.usage_metadata)
# ( prompt_token_count: 301, candidates_token_count: 60, total_token_count: 361 )

Node.js

// Make sure to include these imports:
// import { GoogleAIFileManager, FileState } from "@google/generative-ai/server";
// import { GoogleGenerativeAI } from "@google/generative-ai";
const fileManager = new GoogleAIFileManager(process.env.API_KEY);

const uploadVideoResult = await fileManager.uploadFile(
  `${mediaPath}/Big_Buck_Bunny.mp4`,
  { mimeType: "video/mp4" },
);

let file = await fileManager.getFile(uploadVideoResult.file.name);
process.stdout.write("processing video");
while (file.state === FileState.PROCESSING) {
  process.stdout.write(".");
  // Sleep for 10 seconds
  await new Promise((resolve) => setTimeout(resolve, 10_000));
  // Fetch the file from the API again
  file = await fileManager.getFile(uploadVideoResult.file.name);
}

if (file.state === FileState.FAILED) {
  throw new Error("Video processing failed.");
} else {
  process.stdout.write("\n");
}

const videoPart = {
  fileData: {
    fileUri: uploadVideoResult.file.uri,
    mimeType: uploadVideoResult.file.mimeType,
  },
};

const genAI = new GoogleGenerativeAI(process.env.API_KEY);
const model = genAI.getGenerativeModel({
  model: "gemini-1.5-flash",
});

const prompt = "Tell me about this video.";

// Call `countTokens` to get the input token count
// of the combined text and file (`totalTokens`).
// A video or audio file is converted to tokens at a fixed rate of tokens
// per second.
// Optionally, you can call `countTokens` for the text and file separately.
const countResult = await model.countTokens([prompt, videoPart]);

console.log(countResult.totalTokens); // 302

const generateResult = await model.generateContent([prompt, videoPart]);

// On the response for `generateContent`, use `usageMetadata`
// to get separate input and output token counts
// (`promptTokenCount` and `candidatesTokenCount`, respectively),
// as well as the combined token count (`totalTokenCount`).
console.log(generateResult.response.usageMetadata);
// candidatesTokenCount and totalTokenCount depend on response, may vary
// { promptTokenCount: 302, candidatesTokenCount: 46, totalTokenCount: 348 }

Go

model := client.GenerativeModel("gemini-1.5-flash")
prompt := "Tell me about this video"
file, err := client.UploadFileFromPath(ctx, filepath.Join(testDataDir, "earth.mp4"), nil)
if err != nil {
	log.Fatal(err)
}
defer client.DeleteFile(ctx, file.Name)

fd := genai.FileData{URI: file.URI}
// Call `CountTokens` to get the input token count
// of the combined text and file (`total_tokens`).
// A video or audio file is converted to tokens at a fixed rate of tokens per
// second.
// Optionally, you can call `count_tokens` for the text and file separately.
tokResp, err := model.CountTokens(ctx, genai.Text(prompt), fd)
if err != nil {
	log.Fatal(err)
}
fmt.Println("total_tokens:", tokResp.TotalTokens)
// ( total_tokens: 1481 )

resp, err := model.GenerateContent(ctx, genai.Text(prompt), fd)
if err != nil {
	log.Fatal(err)
}

fmt.Println("prompt_token_count:", resp.UsageMetadata.PromptTokenCount)
fmt.Println("candidates_token_count:", resp.UsageMetadata.CandidatesTokenCount)
fmt.Println("total_token_count:", resp.UsageMetadata.TotalTokenCount)
// ( prompt_token_count: 1481, candidates_token_count: 43, total_token_count: 1524 )

Shell


MIME_TYPE=$(file -b --mime-type "${VIDEO_PATH}")
NUM_BYTES=$(wc -c < "${VIDEO_PATH}")
DISPLAY_NAME=VIDEO_PATH

# Initial resumable request defining metadata.
# The upload url is in the response headers dump them to a file.
curl "${BASE_URL}/upload/v1beta/files?key=${GOOGLE_API_KEY}" \
  -D upload-header.tmp \
  -H "X-Goog-Upload-Protocol: resumable" \
  -H "X-Goog-Upload-Command: start" \
  -H "X-Goog-Upload-Header-Content-Length: ${NUM_BYTES}" \
  -H "X-Goog-Upload-Header-Content-Type: ${MIME_TYPE}" \
  -H "Content-Type: application/json" \
  -d "{'file': {'display_name': '${DISPLAY_NAME}'}}" 2> /dev/null

upload_url=$(grep -i "x-goog-upload-url: " "${tmp_header_file}" | cut -d" " -f2 | tr -d "\r")
rm "${tmp_header_file}"

# Upload the actual bytes.
curl "${upload_url}" \
  -H "Content-Length: ${NUM_BYTES}" \
  -H "X-Goog-Upload-Offset: 0" \
  -H "X-Goog-Upload-Command: upload, finalize" \
  --data-binary "@${VIDEO_PATH}" 2> /dev/null > file_info.json

file_uri=$(jq ".file.uri" file_info.json)

state=$(jq ".file.state" file_info.json)

name=$(jq ".file.name" file_info.json)

while [[ "($state)" = *"PROCESSING"* ]];
do
  echo "Processing video..."
  sleep 5
  # Get the file of interest to check state
  curl https://generativelanguage.googleapis.com/v1beta/files/$name > file_info.json
  state=$(jq ".file.state" file_info.json)
done

curl "https://generativelanguage.googleapis.com/v1beta/models/gemini-1.5-flash:countTokens?key=$GOOGLE_API_KEY" \
    -H 'Content-Type: application/json' \
    -X POST \
    -d '{
      "contents": [{
        "parts":[
          {"text": "Describe this video clip"},
          {"file_data":{"mime_type": "video/mp4", "file_uri": '$file_uri'}}]
        }]
       }'

PDF

Python

import google.generativeai as genai

model = genai.GenerativeModel("gemini-1.5-flash")
sample_pdf = genai.upload_file(media / "test.pdf")
token_count = model.count_tokens(["Give me a summary of this document.", sample_pdf])
print(f"{token_count=}")

response = model.generate_content(["Give me a summary of this document.", sample_pdf])
print(response.usage_metadata)

캐시

Python

import google.generativeai as genai

import time

model = genai.GenerativeModel("models/gemini-1.5-flash")

your_file = genai.upload_file(path=media / "a11.txt")

cache = genai.caching.CachedContent.create(
    model="models/gemini-1.5-flash-001",
    # You can set the system_instruction and tools
    system_instruction=None,
    tools=None,
    contents=["Here the Apollo 11 transcript:", your_file],
)

model = genai.GenerativeModel.from_cached_content(cache)

prompt = "Please give a short summary of this file."

# Call `count_tokens` to get input token count
# of the combined text and file (`total_tokens`).
# A video or audio file is converted to tokens at a fixed rate of tokens per second.
# Optionally, you can call `count_tokens` for the text and file separately.
print(model.count_tokens(prompt))
# ( total_tokens: 9 )

response = model.generate_content(prompt)

# On the response for `generate_content`, use `usage_metadata`
# to get separate input and output token counts
# (`prompt_token_count` and `candidates_token_count`, respectively),
# as well as the cached content token count and the combined total token count.
print(response.usage_metadata)
# ( prompt_token_count: 323393, cached_content_token_count: 323383, candidates_token_count: 64)
# ( total_token_count: 323457 )

cache.delete()

Node.js

// Make sure to include these imports:
// import { GoogleAIFileManager, GoogleAICacheManager } from "@google/generative-ai/server";
// import { GoogleGenerativeAI } from "@google/generative-ai";

// Upload large text file.
const fileManager = new GoogleAIFileManager(process.env.API_KEY);
const uploadResult = await fileManager.uploadFile(`${mediaPath}/a11.txt`, {
  mimeType: "text/plain",
});

// Create a cache that uses the uploaded file.
const cacheManager = new GoogleAICacheManager(process.env.API_KEY);
const cacheResult = await cacheManager.create({
  ttlSeconds: 600,
  model: "models/gemini-1.5-flash-001",
  contents: [
    {
      role: "user",
      parts: [{ text: "Here's the Apollo 11 transcript:" }],
    },
    {
      role: "user",
      parts: [
        {
          fileData: {
            fileUri: uploadResult.file.uri,
            mimeType: uploadResult.file.mimeType,
          },
        },
      ],
    },
  ],
});

const genAI = new GoogleGenerativeAI(process.env.API_KEY);
const model = genAI.getGenerativeModelFromCachedContent(cacheResult);

const prompt = "Please give a short summary of this file.";

// Call `countTokens` to get the input token count
// of the combined text and file (`totalTokens`).
const result = await model.countTokens(prompt);

console.log(result.totalTokens); // 10

const generateResult = await model.generateContent(prompt);

// On the response for `generateContent`, use `usageMetadata`
// to get separate input and output token counts
// (`promptTokenCount` and `candidatesTokenCount`, respectively),
// as well as the cached content token count and the combined total
// token count.
console.log(generateResult.response.usageMetadata);
// {
//   promptTokenCount: 323396,
//   candidatesTokenCount: 113, (depends on response, may vary)
//   totalTokenCount: 323509,
//   cachedContentTokenCount: 323386
// }

await cacheManager.delete(cacheResult.name);

Go

txt := strings.Repeat("George Washington was the first president of the United States. ", 3000)
argcc := &genai.CachedContent{
	Model:    "gemini-1.5-flash-001",
	Contents: []*genai.Content{genai.NewUserContent(genai.Text(txt))},
}
cc, err := client.CreateCachedContent(ctx, argcc)
if err != nil {
	log.Fatal(err)
}
defer client.DeleteCachedContent(ctx, cc.Name)

modelWithCache := client.GenerativeModelFromCachedContent(cc)
prompt := "Summarize this statement"
tokResp, err := modelWithCache.CountTokens(ctx, genai.Text(prompt))
if err != nil {
	log.Fatal(err)
}
fmt.Println("total_tokens:", tokResp.TotalTokens)
// ( total_tokens: 5 )

resp, err := modelWithCache.GenerateContent(ctx, genai.Text(prompt))
if err != nil {
	log.Fatal(err)
}

fmt.Println("prompt_token_count:", resp.UsageMetadata.PromptTokenCount)
fmt.Println("candidates_token_count:", resp.UsageMetadata.CandidatesTokenCount)
fmt.Println("cached_content_token_count:", resp.UsageMetadata.CachedContentTokenCount)
fmt.Println("total_token_count:", resp.UsageMetadata.TotalTokenCount)
// ( prompt_token_count: 33007,  candidates_token_count: 39, cached_content_token_count: 33002, total_token_count: 33046 )

시스템 안내

Python

import google.generativeai as genai

model = genai.GenerativeModel(model_name="gemini-1.5-flash")

prompt = "The quick brown fox jumps over the lazy dog."

print(model.count_tokens(prompt))
# total_tokens: 10

model = genai.GenerativeModel(
    model_name="gemini-1.5-flash", system_instruction="You are a cat. Your name is Neko."
)

# The total token count includes everything sent to the `generate_content` request.
# When you use system instructions, the total token count increases.
print(model.count_tokens(prompt))
# ( total_tokens: 21 )

Node.js

// Make sure to include these imports:
// import { GoogleGenerativeAI } from "@google/generative-ai";
const genAI = new GoogleGenerativeAI(process.env.API_KEY);
const prompt = "The quick brown fox jumps over the lazy dog.";
const modelNoInstructions = genAI.getGenerativeModel({
  model: "models/gemini-1.5-flash",
});

const resultNoInstructions = await modelNoInstructions.countTokens(prompt);

console.log(resultNoInstructions);
// { totalTokens: 11 }

const modelWithInstructions = genAI.getGenerativeModel({
  model: "models/gemini-1.5-flash",
  systemInstruction: "You are a cat. Your name is Neko.",
});

const resultWithInstructions =
  await modelWithInstructions.countTokens(prompt);

// The total token count includes everything sent to the
// generateContent() request. When you use system instructions, the
// total token count increases.
console.log(resultWithInstructions);
// { totalTokens: 23 }

Go

model := client.GenerativeModel("gemini-1.5-flash")
prompt := "The quick brown fox jumps over the lazy dog"

respNoInstruction, err := model.CountTokens(ctx, genai.Text(prompt))
if err != nil {
	log.Fatal(err)
}
fmt.Println("total_tokens:", respNoInstruction.TotalTokens)
// ( total_tokens: 10 )

// The total token count includes everything sent to the GenerateContent
// request. When you use system instructions, the total token
// count increases.
model.SystemInstruction = genai.NewUserContent(genai.Text("You are a cat. Your name is Neko."))
respWithInstruction, err := model.CountTokens(ctx, genai.Text(prompt))
if err != nil {
	log.Fatal(err)
}
fmt.Println("total_tokens:", respWithInstruction.TotalTokens)
// ( total_tokens: 21 )

Kotlin

val generativeModel =
    GenerativeModel(
        // Specify a Gemini model appropriate for your use case
        modelName = "gemini-1.5-flash",
        // Access your API key as a Build Configuration variable (see "Set up your API key" above)
        apiKey = BuildConfig.apiKey,
        systemInstruction = content(role = "system") { text("You are a cat. Your name is Neko.")}
    )

// For text-only input
val (totalTokens) = generativeModel.countTokens("What is your name?")
print(totalTokens)

Swift

let generativeModel =
  GenerativeModel(
    // Specify a model that supports system instructions, like a Gemini 1.5 model
    name: "gemini-1.5-flash",
    // Access your API key from your on-demand resource .plist file (see "Set up your API key"
    // above)
    apiKey: APIKey.default,
    systemInstruction: ModelContent(role: "system", parts: "You are a cat. Your name is Neko.")
  )

let prompt = "What is your name?"

let response = try await generativeModel.countTokens(prompt)
print("Total Tokens: \(response.totalTokens)")

Dart

// Make sure to include this import:
// import 'package:google_generative_ai/google_generative_ai.dart';
var model = GenerativeModel(
  model: 'gemini-1.5-flash',
  apiKey: apiKey,
);
final prompt = 'The quick brown fox jumps over the lazy dog.';

// The total token count includes everything sent in the `generateContent`
// request.
var tokenCount = await model.countTokens([Content.text(prompt)]);
print('Total tokens: ${tokenCount.totalTokens}');
model = GenerativeModel(
  model: 'gemini-1.5-flash',
  apiKey: apiKey,
  systemInstruction: Content.system('You are a cat. Your name is Neko.'),
);
tokenCount = await model.countTokens([Content.text(prompt)]);
print('Total tokens: ${tokenCount.totalTokens}');

자바

// Create your system instructions
Content systemInstruction =
    new Content.Builder().addText("You are a cat. Your name is Neko.").build();

// Specify a Gemini model appropriate for your use case
GenerativeModel gm =
    new GenerativeModel(
        /* modelName */ "gemini-1.5-flash",
        // Access your API key as a Build Configuration variable (see "Set up your API key"
        // above)
        /* apiKey */ BuildConfig.apiKey,
        /* generationConfig (optional) */ null,
        /* safetySettings (optional) */ null,
        /* requestOptions (optional) */ new RequestOptions(),
        /* tools (optional) */ null,
        /* toolsConfig (optional) */ null,
        /* systemInstruction (optional) */ systemInstruction);
GenerativeModelFutures model = GenerativeModelFutures.from(gm);

Content inputContent = new Content.Builder().addText("What's your name?.").build();

// For illustrative purposes only. You should use an executor that fits your needs.
Executor executor = Executors.newSingleThreadExecutor();

// For text-only input
ListenableFuture<CountTokensResponse> countTokensResponse = model.countTokens(inputContent);

Futures.addCallback(
    countTokensResponse,
    new FutureCallback<CountTokensResponse>() {
      @Override
      public void onSuccess(CountTokensResponse result) {
        int totalTokens = result.getTotalTokens();
        System.out.println("TotalTokens = " + totalTokens);
      }

      @Override
      public void onFailure(Throwable t) {
        t.printStackTrace();
      }
    },
    executor);

도구

Python

import google.generativeai as genai

model = genai.GenerativeModel(model_name="gemini-1.5-flash")

prompt = "I have 57 cats, each owns 44 mittens, how many mittens is that in total?"

print(model.count_tokens(prompt))
# ( total_tokens: 22 )

def add(a: float, b: float):
    """returns a + b."""
    return a + b

def subtract(a: float, b: float):
    """returns a - b."""
    return a - b

def multiply(a: float, b: float):
    """returns a * b."""
    return a * b

def divide(a: float, b: float):
    """returns a / b."""
    return a / b

model = genai.GenerativeModel(
    "models/gemini-1.5-flash-001", tools=[add, subtract, multiply, divide]
)

# The total token count includes everything sent to the `generate_content` request.
# When you use tools (like function calling), the total token count increases.
print(model.count_tokens(prompt))
# ( total_tokens: 206 )

Node.js

// Make sure to include these imports:
// import { GoogleGenerativeAI } from "@google/generative-ai";
const genAI = new GoogleGenerativeAI(process.env.API_KEY);
const prompt =
  "I have 57 cats, each owns 44 mittens, how many mittens is that in total?";

const modelNoTools = genAI.getGenerativeModel({
  model: "models/gemini-1.5-flash",
});

const resultNoTools = await modelNoTools.countTokens(prompt);

console.log(resultNoTools);
// { totalTokens: 23 }

const functionDeclarations = [
  { name: "add" },
  { name: "subtract" },
  { name: "multiply" },
  { name: "divide" },
];

const modelWithTools = genAI.getGenerativeModel({
  model: "models/gemini-1.5-flash",
  tools: [{ functionDeclarations }],
});

const resultWithTools = await modelWithTools.countTokens(prompt);

// The total token count includes everything sent to the
// generateContent() request. When you use tools (like function calling),
// the total token count increases.
console.log(resultWithTools);
// { totalTokens: 99 }

Kotlin

val multiplyDefinition = defineFunction(
    name = "multiply",
    description = "returns the product of the provided numbers.",
    parameters = listOf(
        Schema.double("a", "First number"),
        Schema.double("b", "Second number")
    )
)
val usableFunctions = listOf(multiplyDefinition)

val generativeModel =
    GenerativeModel(
        // Specify a Gemini model appropriate for your use case
        modelName = "gemini-1.5-flash",
        // Access your API key as a Build Configuration variable (see "Set up your API key" above)
        apiKey = BuildConfig.apiKey,
        tools = listOf(Tool(usableFunctions))
    )

// For text-only input
val (totalTokens) = generativeModel.countTokens("What's the product of 9 and 358?")
print(totalTokens)

Swift

let generativeModel =
  GenerativeModel(
    // Specify a model that supports system instructions, like a Gemini 1.5 model
    name: "gemini-1.5-flash",
    // Access your API key from your on-demand resource .plist file (see "Set up your API key"
    // above)
    apiKey: APIKey.default,
    tools: [Tool(functionDeclarations: [
      FunctionDeclaration(
        name: "controlLight",
        description: "Set the brightness and color temperature of a room light.",
        parameters: [
          "brightness": Schema(
            type: .number,
            format: "double",
            description: "Light level from 0 to 100. Zero is off and 100 is full brightness."
          ),
          "colorTemperature": Schema(
            type: .string,
            format: "enum",
            description: "Color temperature of the light fixture.",
            enumValues: ["daylight", "cool", "warm"]
          ),
        ],
        requiredParameters: ["brightness", "colorTemperature"]
      ),
    ])]
  )

let prompt = "Dim the lights so the room feels cozy and warm."

let response = try await generativeModel.countTokens(prompt)
print("Total Tokens: \(response.totalTokens)")

Dart

// Make sure to include this import:
// import 'package:google_generative_ai/google_generative_ai.dart';
var model = GenerativeModel(
  model: 'gemini-1.5-flash',
  apiKey: apiKey,
);
final prompt = 'I have 57 cats, each owns 44 mittens, '
    'how many mittens is that in total?';

// The total token count includes everything sent in the `generateContent`
// request.
var tokenCount = await model.countTokens([Content.text(prompt)]);
print('Total tokens: ${tokenCount.totalTokens}');
final binaryFunction = Schema.object(
  properties: {
    'a': Schema.number(nullable: false),
    'b': Schema.number(nullable: false)
  },
  requiredProperties: ['a', 'b'],
);

model = GenerativeModel(
  model: 'gemini-1.5-flash',
  apiKey: apiKey,
  tools: [
    Tool(functionDeclarations: [
      FunctionDeclaration('add', 'returns a + b', binaryFunction),
      FunctionDeclaration('subtract', 'returns a - b', binaryFunction),
      FunctionDeclaration('multipley', 'returns a * b', binaryFunction),
      FunctionDeclaration('divide', 'returns a / b', binaryFunction)
    ])
  ],
);
tokenCount = await model.countTokens([Content.text(prompt)]);
print('Total tokens: ${tokenCount.totalTokens}');

자바

FunctionDeclaration multiplyDefinition =
    defineFunction(
        /* name  */ "multiply",
        /* description */ "returns a * b.",
        /* parameters */ Arrays.asList(
            Schema.numDouble("a", "First parameter"),
            Schema.numDouble("b", "Second parameter")),
        /* required */ Arrays.asList("a", "b"));

Tool tool = new Tool(Arrays.asList(multiplyDefinition), null);
;

// Specify a Gemini model appropriate for your use case
GenerativeModel gm =
    new GenerativeModel(
        /* modelName */ "gemini-1.5-flash",
        // Access your API key as a Build Configuration variable (see "Set up your API key"
        // above)
        /* apiKey */ BuildConfig.apiKey,
        /* generationConfig (optional) */ null,
        /* safetySettings (optional) */ null,
        /* requestOptions (optional) */ new RequestOptions(),
        /* tools (optional) */ Arrays.asList(tool));
GenerativeModelFutures model = GenerativeModelFutures.from(gm);

Content inputContent = new Content.Builder().addText("What's your name?.").build();

// For illustrative purposes only. You should use an executor that fits your needs.
Executor executor = Executors.newSingleThreadExecutor();

// For text-only input
ListenableFuture<CountTokensResponse> countTokensResponse = model.countTokens(inputContent);

Futures.addCallback(
    countTokensResponse,
    new FutureCallback<CountTokensResponse>() {
      @Override
      public void onSuccess(CountTokensResponse result) {
        int totalTokens = result.getTotalTokens();
        System.out.println("TotalTokens = " + totalTokens);
      }

      @Override
      public void onFailure(Throwable t) {
        t.printStackTrace();
      }
    },
    executor);

응답 본문

models.countTokens의 응답입니다.

prompt에 모델의 tokenCount를 반환합니다.

성공할 경우 응답 본문에 다음 구조의 데이터가 포함됩니다.

필드
totalTokens integer

Modelprompt를 토큰화하는 토큰 수입니다. 항상 0보다 크거나 같습니다.

cachedContentTokenCount integer

프롬프트의 캐시된 부분 (캐시된 콘텐츠)의 토큰 수입니다.

JSON 표현
{
  "totalTokens": integer,
  "cachedContentTokenCount": integer
}

GenerateContentRequest

모델에서 완료 생성 요청입니다.

필드
model string

필수 항목입니다. 완료를 생성하는 데 사용할 Model의 이름입니다.

형식: name=models/{model}

contents[] object (Content)

필수 항목입니다. 모델과의 현재 대화 콘텐츠입니다.

싱글턴 쿼리의 경우 이는 단일 인스턴스입니다. chat과 같은 멀티턴 쿼리의 경우 이는 대화 기록과 최근 요청이 포함된 반복 필드입니다.

tools[] object (Tool)

선택사항입니다. Model가 다음 응답을 생성하는 데 사용할 수 있는 Tools 목록입니다.

Tool는 시스템이 외부 시스템과 상호작용하여 Model의 지식과 범위를 벗어난 작업 또는 작업 집합을 실행할 수 있도록 하는 코드입니다. 지원되는 ToolFunctioncodeExecution입니다. 자세한 내용은 함수 호출코드 실행 가이드를 참고하세요.

toolConfig object (ToolConfig)

선택사항입니다. 요청에 지정된 Tool의 도구 구성입니다. 사용 예는 함수 호출 가이드를 참고하세요.

safetySettings[] object (SafetySetting)

선택사항입니다. 안전하지 않은 콘텐츠를 차단하기 위한 고유한 SafetySetting 인스턴스 목록입니다.

이는 GenerateContentRequest.contentsGenerateContentResponse.candidates에 적용됩니다. 각 SafetyCategory 유형에 대해 두 개 이상의 설정이 있어서는 안 됩니다. API는 이러한 설정에 의해 설정된 기준을 충족하지 못하는 모든 콘텐츠 및 응답을 차단합니다. 이 목록은 safetySettings에 지정된 각 SafetyCategory의 기본 설정을 재정의합니다. 목록에 지정된 SafetyCategory에 대한 SafetySetting가 없으면 API는 해당 카테고리의 기본 안전 설정을 사용합니다. 유해한 카테고리 HARM_CATEGORY_HATE_SPEECH, HARM_CATEGORY_SEXUALLY_EXPLICIT, HARM_CATEGORY_DANGEROUS_CONTENT, HARM_CATEGORY_HARASSMENT가 지원됩니다. 사용 가능한 안전 설정에 관한 자세한 내용은 가이드를 참고하세요. 또한 AI 애플리케이션에 안전 고려사항을 통합하는 방법을 알아보려면 안전 안내를 참고하세요.

systemInstruction object (Content)

선택사항입니다. 개발자가 설정한 시스템 안내입니다. 현재는 텍스트만 지원합니다.

generationConfig object (GenerationConfig)

선택사항입니다. 모델 생성 및 출력의 구성 옵션입니다.

cachedContent string

선택사항입니다. 예측을 제공하기 위한 컨텍스트로 사용할 캐시된 콘텐츠의 이름입니다. 형식: cachedContents/{cachedContent}

JSON 표현
{
  "model": string,
  "contents": [
    {
      object (Content)
    }
  ],
  "tools": [
    {
      object (Tool)
    }
  ],
  "toolConfig": {
    object (ToolConfig)
  },
  "safetySettings": [
    {
      object (SafetySetting)
    }
  ],
  "systemInstruction": {
    object (Content)
  },
  "generationConfig": {
    object (GenerationConfig)
  },
  "cachedContent": string
}