Generating content

Gemini API поддерживает создание контента с изображениями, аудио, кодом, инструментами и многим другим. Для получения подробной информации о каждой из этих функций прочтите и ознакомьтесь с примером кода, ориентированным на задачи, или прочитайте подробные руководства.

Метод: models.generateContent

Генерирует ответ модели с учетом входных данных GenerateContentRequest . Подробную информацию об использовании см. в руководстве по созданию текста . Возможности ввода различаются в зависимости от модели, включая настроенные модели. Подробную информацию см. в руководстве по модели и руководстве по настройке .

Конечная точка

опубликуйте https://generativelanguage.googleapis.com/v1beta/{model=models/*}:generateContent

Параметры пути

model string

Необходимый. Имя Model , используемой для создания завершения.

Формат: name=models/{model} . Он принимает форму models/{model} .

Тело запроса

Тело запроса содержит данные следующей структуры:

Поля
объект contents[] object ( Content )

Необходимый. Содержание текущего разговора с моделью.

Для однооборотных запросов это один экземпляр. Для многоходовых запросов, таких как чат , это повторяющееся поле, содержащее историю разговоров и последний запрос.

объект tools[] object ( Tool )

Необязательный. Список Tools Model может использовать для генерации следующего ответа.

Tool — это часть кода, которая позволяет системе взаимодействовать с внешними системами для выполнения действия или набора действий за пределами знаний и области Model . Поддерживаемые ToolFunction и codeExecution . Дополнительные сведения см. в руководствах по вызову функций и выполнению кода .

объект toolConfig object ( ToolConfig )

Необязательный. Конфигурация инструмента для любого Tool указанного в запросе. Пример использования см. в руководстве по вызову функций .

Объект safetySettings[] object ( SafetySetting )

Необязательный. Список уникальных экземпляров SafetySetting для блокировки небезопасного контента.

Это будет применено к GenerateContentRequest.contents и GenerateContentResponse.candidates . Для каждого типа SafetyCategory не должно быть более одного параметра. API будет блокировать любое содержимое и ответы, которые не соответствуют пороговым значениям, установленным этими настройками. Этот список переопределяет настройки по умолчанию для каждой SafetyCategory указанной в параметре SafetySettings. Если в списке нет SafetySetting для данной SafetyCategory , API будет использовать параметр безопасности по умолчанию для этой категории. Поддерживаются категории вреда HARM_CATEGORY_HATE_SPEECH, HARM_CATEGORY_SEXUALLY_EXPLICIT, HARM_CATEGORY_DANGEROUS_CONTENT, HARM_CATEGORY_HARASSMENT. Обратитесь к руководству для получения подробной информации о доступных настройках безопасности. Также обратитесь к руководству по безопасности , чтобы узнать, как учитывать вопросы безопасности в ваших приложениях искусственного интеллекта.

Объект systemInstruction object ( Content )

Необязательный. Системные инструкции, установленные разработчиком. Пока только текст.

Объект generationConfig object ( GenerationConfig )

Необязательный. Параметры конфигурации для создания модели и выходных данных.

string cachedContent

Необязательный. Имя содержимого, кэшированного для использования в качестве контекста для прогнозирования. Формат: cachedContents/{cachedContent}

Пример запроса

Текст

Питон

model = genai.GenerativeModel("gemini-1.5-flash")
response = model.generate_content("Write a story about a magic backpack.")
print(response.text)

Node.js

// Make sure to include these imports:
// import { GoogleGenerativeAI } from "@google/generative-ai";
const genAI = new GoogleGenerativeAI(process.env.API_KEY);
const model = genAI.getGenerativeModel({ model: "gemini-1.5-flash" });

const prompt = "Write a story about a magic backpack.";

const result = await model.generateContent(prompt);
console.log(result.response.text());

Идти

model := client.GenerativeModel("gemini-1.5-flash")
resp, err := model.GenerateContent(ctx, genai.Text("Write a story about a magic backpack."))
if err != nil {
	log.Fatal(err)
}

printResponse(resp)

Оболочка

curl "https://generativelanguage.googleapis.com/v1beta/models/gemini-1.5-flash:generateContent?key=$GOOGLE_API_KEY" \
    -H 'Content-Type: application/json' \
    -X POST \
    -d '{
      "contents": [{
        "parts":[{"text": "Write a story about a magic backpack."}]
        }]
       }' 2> /dev/null

Котлин

val generativeModel =
    GenerativeModel(
        // Specify a Gemini model appropriate for your use case
        modelName = "gemini-1.5-flash",
        // Access your API key as a Build Configuration variable (see "Set up your API key" above)
        apiKey = BuildConfig.apiKey)

val prompt = "Write a story about a magic backpack."
val response = generativeModel.generateContent(prompt)
print(response.text)

Быстрый

let generativeModel =
  GenerativeModel(
    // Specify a Gemini model appropriate for your use case
    name: "gemini-1.5-flash",
    // Access your API key from your on-demand resource .plist file (see "Set up your API key"
    // above)
    apiKey: APIKey.default
  )

let prompt = "Write a story about a magic backpack."
let response = try await generativeModel.generateContent(prompt)
if let text = response.text {
  print(text)
}

Дарт

final model = GenerativeModel(
  model: 'gemini-1.5-flash',
  apiKey: apiKey,
);
final prompt = 'Write a story about a magic backpack.';

final response = await model.generateContent([Content.text(prompt)]);
print(response.text);

Ява

// Specify a Gemini model appropriate for your use case
GenerativeModel gm =
    new GenerativeModel(
        /* modelName */ "gemini-1.5-flash",
        // Access your API key as a Build Configuration variable (see "Set up your API key"
        // above)
        /* apiKey */ BuildConfig.apiKey);
GenerativeModelFutures model = GenerativeModelFutures.from(gm);

Content content =
    new Content.Builder().addText("Write a story about a magic backpack.").build();

// For illustrative purposes only. You should use an executor that fits your needs.
Executor executor = Executors.newSingleThreadExecutor();

ListenableFuture<GenerateContentResponse> response = model.generateContent(content);
Futures.addCallback(
    response,
    new FutureCallback<GenerateContentResponse>() {
      @Override
      public void onSuccess(GenerateContentResponse result) {
        String resultText = result.getText();
        System.out.println(resultText);
      }

      @Override
      public void onFailure(Throwable t) {
        t.printStackTrace();
      }
    },
    executor);

Изображение

Питон

import PIL.Image

model = genai.GenerativeModel("gemini-1.5-flash")
organ = PIL.Image.open(media / "organ.jpg")
response = model.generate_content(["Tell me about this instrument", organ])
print(response.text)

Node.js

// Make sure to include these imports:
// import { GoogleGenerativeAI } from "@google/generative-ai";
const genAI = new GoogleGenerativeAI(process.env.API_KEY);
const model = genAI.getGenerativeModel({ model: "gemini-1.5-flash" });

function fileToGenerativePart(path, mimeType) {
  return {
    inlineData: {
      data: Buffer.from(fs.readFileSync(path)).toString("base64"),
      mimeType,
    },
  };
}

const prompt = "Describe how this product might be manufactured.";
// Note: The only accepted mime types are some image types, image/*.
const imagePart = fileToGenerativePart(
  `${mediaPath}/jetpack.jpg`,
  "image/jpeg",
);

const result = await model.generateContent([prompt, imagePart]);
console.log(result.response.text());

Идти

model := client.GenerativeModel("gemini-1.5-flash")

imgData, err := os.ReadFile(filepath.Join(testDataDir, "organ.jpg"))
if err != nil {
	log.Fatal(err)
}

resp, err := model.GenerateContent(ctx,
	genai.Text("Tell me about this instrument"),
	genai.ImageData("jpeg", imgData))
if err != nil {
	log.Fatal(err)
}

printResponse(resp)

Оболочка

curl "https://generativelanguage.googleapis.com/v1beta/models/gemini-1.5-flash:generateContent?key=$GOOGLE_API_KEY" \
    -H 'Content-Type: application/json' \
    -X POST \
    -d '{
      "contents": [{
        "parts":[
            {"text": "Tell me about this instrument"},
            {
              "inline_data": {
                "mime_type":"image/jpeg",
                "data": "'$(base64 $B64FLAGS $IMG_PATH)'"
              }
            }
        ]
        }]
       }' 2> /dev/null

Котлин

val generativeModel =
    GenerativeModel(
        // Specify a Gemini model appropriate for your use case
        modelName = "gemini-1.5-flash",
        // Access your API key as a Build Configuration variable (see "Set up your API key" above)
        apiKey = BuildConfig.apiKey)

val image: Bitmap = BitmapFactory.decodeResource(context.resources, R.drawable.image)
val inputContent = content {
  image(image)
  text("What's in this picture?")
}

val response = generativeModel.generateContent(inputContent)
print(response.text)

Быстрый

let generativeModel =
  GenerativeModel(
    // Specify a Gemini model appropriate for your use case
    name: "gemini-1.5-flash",
    // Access your API key from your on-demand resource .plist file (see "Set up your API key"
    // above)
    apiKey: APIKey.default
  )

guard let image = UIImage(systemName: "cloud.sun") else { fatalError() }

let prompt = "What's in this picture?"

let response = try await generativeModel.generateContent(image, prompt)
if let text = response.text {
  print(text)
}

Дарт

final model = GenerativeModel(
  model: 'gemini-1.5-flash',
  apiKey: apiKey,
);

Future<DataPart> fileToPart(String mimeType, String path) async {
  return DataPart(mimeType, await File(path).readAsBytes());
}

final prompt = 'Describe how this product might be manufactured.';
final image = await fileToPart('image/jpeg', 'resources/jetpack.jpg');

final response = await model.generateContent([
  Content.multi([TextPart(prompt), image])
]);
print(response.text);

Ява

// Specify a Gemini model appropriate for your use case
GenerativeModel gm =
    new GenerativeModel(
        /* modelName */ "gemini-1.5-flash",
        // Access your API key as a Build Configuration variable (see "Set up your API key"
        // above)
        /* apiKey */ BuildConfig.apiKey);
GenerativeModelFutures model = GenerativeModelFutures.from(gm);

Bitmap image = BitmapFactory.decodeResource(context.getResources(), R.drawable.image);

Content content =
    new Content.Builder()
        .addText("What's different between these pictures?")
        .addImage(image)
        .build();

// For illustrative purposes only. You should use an executor that fits your needs.
Executor executor = Executors.newSingleThreadExecutor();

ListenableFuture<GenerateContentResponse> response = model.generateContent(content);
Futures.addCallback(
    response,
    new FutureCallback<GenerateContentResponse>() {
      @Override
      public void onSuccess(GenerateContentResponse result) {
        String resultText = result.getText();
        System.out.println(resultText);
      }

      @Override
      public void onFailure(Throwable t) {
        t.printStackTrace();
      }
    },
    executor);

Аудио

Питон

model = genai.GenerativeModel("gemini-1.5-flash")
sample_audio = genai.upload_file(media / "sample.mp3")
response = model.generate_content(["Give me a summary of this audio file.", sample_audio])
print(response.text)

Node.js

// Make sure to include these imports:
// import { GoogleGenerativeAI } from "@google/generative-ai";
const genAI = new GoogleGenerativeAI(process.env.API_KEY);
const model = genAI.getGenerativeModel({ model: "gemini-1.5-flash" });

function fileToGenerativePart(path, mimeType) {
  return {
    inlineData: {
      data: Buffer.from(fs.readFileSync(path)).toString("base64"),
      mimeType,
    },
  };
}

const prompt = "Give me a summary of this audio file.";
// Note: The only accepted mime types are some image types, image/*.
const audioPart = fileToGenerativePart(
  `${mediaPath}/samplesmall.mp3`,
  "audio/mp3",
);

const result = await model.generateContent([prompt, audioPart]);
console.log(result.response.text());

Оболочка

# Use File API to upload audio data to API request.
MIME_TYPE=$(file -b --mime-type "${AUDIO_PATH}")
NUM_BYTES=$(wc -c < "${AUDIO_PATH}")
DISPLAY_NAME=AUDIO

tmp_header_file=upload-header.tmp

# Initial resumable request defining metadata.
# The upload url is in the response headers dump them to a file.
curl "${BASE_URL}/upload/v1beta/files?key=${GOOGLE_API_KEY}" \
  -D upload-header.tmp \
  -H "X-Goog-Upload-Protocol: resumable" \
  -H "X-Goog-Upload-Command: start" \
  -H "X-Goog-Upload-Header-Content-Length: ${NUM_BYTES}" \
  -H "X-Goog-Upload-Header-Content-Type: ${MIME_TYPE}" \
  -H "Content-Type: application/json" \
  -d "{'file': {'display_name': '${DISPLAY_NAME}'}}" 2> /dev/null

upload_url=$(grep -i "x-goog-upload-url: " "${tmp_header_file}" | cut -d" " -f2 | tr -d "\r")
rm "${tmp_header_file}"

# Upload the actual bytes.
curl "${upload_url}" \
  -H "Content-Length: ${NUM_BYTES}" \
  -H "X-Goog-Upload-Offset: 0" \
  -H "X-Goog-Upload-Command: upload, finalize" \
  --data-binary "@${AUDIO_PATH}" 2> /dev/null > file_info.json

file_uri=$(jq ".file.uri" file_info.json)
echo file_uri=$file_uri

curl "https://generativelanguage.googleapis.com/v1beta/models/gemini-1.5-flash:generateContent?key=$GOOGLE_API_KEY" \
    -H 'Content-Type: application/json' \
    -X POST \
    -d '{
      "contents": [{
        "parts":[
          {"text": "Please describe this file."},
          {"file_data":{"mime_type": "audio/mpeg", "file_uri": '$file_uri'}}]
        }]
       }' 2> /dev/null > response.json

cat response.json
echo

jq ".candidates[].content.parts[].text" response.json

Видео

Питон

import time

# Video clip (CC BY 3.0) from https://peach.blender.org/download/
myfile = genai.upload_file(media / "Big_Buck_Bunny.mp4")
print(f"{myfile=}")

# Videos need to be processed before you can use them.
while myfile.state.name == "PROCESSING":
    print("processing video...")
    time.sleep(5)
    myfile = genai.get_file(myfile.name)

model = genai.GenerativeModel("gemini-1.5-flash")
response = model.generate_content([myfile, "Describe this video clip"])
print(f"{response.text=}")

Node.js

// Make sure to include these imports:
// import { GoogleGenerativeAI } from "@google/generative-ai";
// import { GoogleAIFileManager, FileState } from "@google/generative-ai/server";
const genAI = new GoogleGenerativeAI(process.env.API_KEY);
const model = genAI.getGenerativeModel({ model: "gemini-1.5-flash" });

const fileManager = new GoogleAIFileManager(process.env.API_KEY);

const uploadResult = await fileManager.uploadFile(
  `${mediaPath}/Big_Buck_Bunny.mp4`,
  { mimeType: "video/mp4" },
);

let file = await fileManager.getFile(uploadResult.file.name);
while (file.state === FileState.PROCESSING) {
  process.stdout.write(".");
  // Sleep for 10 seconds
  await new Promise((resolve) => setTimeout(resolve, 10_000));
  // Fetch the file from the API again
  file = await fileManager.getFile(uploadResult.file.name);
}

if (file.state === FileState.FAILED) {
  throw new Error("Video processing failed.");
}

const prompt = "Describe this video clip";
const videoPart = {
  fileData: {
    fileUri: uploadResult.file.uri,
    mimeType: uploadResult.file.mimeType,
  },
};

const result = await model.generateContent([prompt, videoPart]);
console.log(result.response.text());

Идти

model := client.GenerativeModel("gemini-1.5-flash")

file, err := client.UploadFileFromPath(ctx, filepath.Join(testDataDir, "earth.mp4"), nil)
if err != nil {
	log.Fatal(err)
}
defer client.DeleteFile(ctx, file.Name)

// Videos need to be processed before you can use them.
for file.State == genai.FileStateProcessing {
	log.Printf("processing %s", file.Name)
	time.Sleep(5 * time.Second)
	var err error
	if file, err = client.GetFile(ctx, file.Name); err != nil {
		log.Fatal(err)
	}
}
if file.State != genai.FileStateActive {
	log.Fatalf("uploaded file has state %s, not active", file.State)
}

resp, err := model.GenerateContent(ctx,
	genai.Text("Describe this video clip"),
	genai.FileData{URI: file.URI})
if err != nil {
	log.Fatal(err)
}

printResponse(resp)

Оболочка

# Use File API to upload audio data to API request.
MIME_TYPE=$(file -b --mime-type "${VIDEO_PATH}")
NUM_BYTES=$(wc -c < "${VIDEO_PATH}")
DISPLAY_NAME=VIDEO

# Initial resumable request defining metadata.
# The upload url is in the response headers dump them to a file.
curl "${BASE_URL}/upload/v1beta/files?key=${GOOGLE_API_KEY}" \
  -D upload-header.tmp \
  -H "X-Goog-Upload-Protocol: resumable" \
  -H "X-Goog-Upload-Command: start" \
  -H "X-Goog-Upload-Header-Content-Length: ${NUM_BYTES}" \
  -H "X-Goog-Upload-Header-Content-Type: ${MIME_TYPE}" \
  -H "Content-Type: application/json" \
  -d "{'file': {'display_name': '${DISPLAY_NAME}'}}" 2> /dev/null

upload_url=$(grep -i "x-goog-upload-url: " "${tmp_header_file}" | cut -d" " -f2 | tr -d "\r")
rm "${tmp_header_file}"

# Upload the actual bytes.
curl "${upload_url}" \
  -H "Content-Length: ${NUM_BYTES}" \
  -H "X-Goog-Upload-Offset: 0" \
  -H "X-Goog-Upload-Command: upload, finalize" \
  --data-binary "@${VIDEO_PATH}" 2> /dev/null > file_info.json

file_uri=$(jq ".file.uri" file_info.json)
echo file_uri=$file_uri

state=$(jq ".file.state" file_info.json)
echo state=$state

name=$(jq ".file.name" file_info.json)
echo name=$name

while [[ "($state)" = *"PROCESSING"* ]];
do
  echo "Processing video..."
  sleep 5
  # Get the file of interest to check state
  curl https://generativelanguage.googleapis.com/v1beta/files/$name > file_info.json
  state=$(jq ".file.state" file_info.json)
done

curl "https://generativelanguage.googleapis.com/v1beta/models/gemini-1.5-flash:generateContent?key=$GOOGLE_API_KEY" \
    -H 'Content-Type: application/json' \
    -X POST \
    -d '{
      "contents": [{
        "parts":[
          {"text": "Please describe this file."},
          {"file_data":{"mime_type": "video/mp4", "file_uri": '$file_uri'}}]
        }]
       }' 2> /dev/null > response.json

cat response.json
echo

jq ".candidates[].content.parts[].text" response.json

PDF

Питон

model = genai.GenerativeModel("gemini-1.5-flash")
sample_pdf = genai.upload_file(media / "test.pdf")
response = model.generate_content(["Give me a summary of this document:", sample_pdf])
print(f"{response.text=}")

Оболочка

MIME_TYPE=$(file -b --mime-type "${PDF_PATH}")
NUM_BYTES=$(wc -c < "${PDF_PATH}")
DISPLAY_NAME=TEXT


echo $MIME_TYPE
tmp_header_file=upload-header.tmp

# Initial resumable request defining metadata.
# The upload url is in the response headers dump them to a file.
curl "${BASE_URL}/upload/v1beta/files?key=${GOOGLE_API_KEY}" \
  -D upload-header.tmp \
  -H "X-Goog-Upload-Protocol: resumable" \
  -H "X-Goog-Upload-Command: start" \
  -H "X-Goog-Upload-Header-Content-Length: ${NUM_BYTES}" \
  -H "X-Goog-Upload-Header-Content-Type: ${MIME_TYPE}" \
  -H "Content-Type: application/json" \
  -d "{'file': {'display_name': '${DISPLAY_NAME}'}}" 2> /dev/null

upload_url=$(grep -i "x-goog-upload-url: " "${tmp_header_file}" | cut -d" " -f2 | tr -d "\r")
rm "${tmp_header_file}"

# Upload the actual bytes.
curl "${upload_url}" \
  -H "Content-Length: ${NUM_BYTES}" \
  -H "X-Goog-Upload-Offset: 0" \
  -H "X-Goog-Upload-Command: upload, finalize" \
  --data-binary "@${PDF_PATH}" 2> /dev/null > file_info.json

file_uri=$(jq ".file.uri" file_info.json)
echo file_uri=$file_uri

# Now generate content using that file
curl "https://generativelanguage.googleapis.com/v1beta/models/gemini-1.5-flash:generateContent?key=$GOOGLE_API_KEY" \
    -H 'Content-Type: application/json' \
    -X POST \
    -d '{
      "contents": [{
        "parts":[
          {"text": "Can you add a few more lines to this poem?"},
          {"file_data":{"mime_type": "application/pdf", "file_uri": '$file_uri'}}]
        }]
       }' 2> /dev/null > response.json

cat response.json
echo

jq ".candidates[].content.parts[].text" response.json

Чат

Питон

model = genai.GenerativeModel("gemini-1.5-flash")
chat = model.start_chat(
    history=[
        {"role": "user", "parts": "Hello"},
        {"role": "model", "parts": "Great to meet you. What would you like to know?"},
    ]
)
response = chat.send_message("I have 2 dogs in my house.")
print(response.text)
response = chat.send_message("How many paws are in my house?")
print(response.text)

Node.js

// Make sure to include these imports:
// import { GoogleGenerativeAI } from "@google/generative-ai";
const genAI = new GoogleGenerativeAI(process.env.API_KEY);
const model = genAI.getGenerativeModel({ model: "gemini-1.5-flash" });
const chat = model.startChat({
  history: [
    {
      role: "user",
      parts: [{ text: "Hello" }],
    },
    {
      role: "model",
      parts: [{ text: "Great to meet you. What would you like to know?" }],
    },
  ],
});
let result = await chat.sendMessage("I have 2 dogs in my house.");
console.log(result.response.text());
result = await chat.sendMessage("How many paws are in my house?");
console.log(result.response.text());

Идти

model := client.GenerativeModel("gemini-1.5-flash")
cs := model.StartChat()

cs.History = []*genai.Content{
	{
		Parts: []genai.Part{
			genai.Text("Hello, I have 2 dogs in my house."),
		},
		Role: "user",
	},
	{
		Parts: []genai.Part{
			genai.Text("Great to meet you. What would you like to know?"),
		},
		Role: "model",
	},
}

res, err := cs.SendMessage(ctx, genai.Text("How many paws are in my house?"))
if err != nil {
	log.Fatal(err)
}
printResponse(res)

Оболочка

curl https://generativelanguage.googleapis.com/v1beta/models/gemini-1.5-flash:generateContent?key=$GOOGLE_API_KEY \
    -H 'Content-Type: application/json' \
    -X POST \
    -d '{
      "contents": [
        {"role":"user",
         "parts":[{
           "text": "Hello"}]},
        {"role": "model",
         "parts":[{
           "text": "Great to meet you. What would you like to know?"}]},
        {"role":"user",
         "parts":[{
           "text": "I have two dogs in my house. How many paws are in my house?"}]},
      ]
    }' 2> /dev/null | grep "text"

Котлин

val generativeModel =
    GenerativeModel(
        // Specify a Gemini model appropriate for your use case
        modelName = "gemini-1.5-flash",
        // Access your API key as a Build Configuration variable (see "Set up your API key" above)
        apiKey = BuildConfig.apiKey)

val chat =
    generativeModel.startChat(
        history =
            listOf(
                content(role = "user") { text("Hello, I have 2 dogs in my house.") },
                content(role = "model") {
                  text("Great to meet you. What would you like to know?")
                }))

val response = chat.sendMessage("How many paws are in my house?")
print(response.text)

Быстрый

let generativeModel =
  GenerativeModel(
    // Specify a Gemini model appropriate for your use case
    name: "gemini-1.5-flash",
    // Access your API key from your on-demand resource .plist file (see "Set up your API key"
    // above)
    apiKey: APIKey.default
  )

// Optionally specify existing chat history
let history = [
  ModelContent(role: "user", parts: "Hello, I have 2 dogs in my house."),
  ModelContent(role: "model", parts: "Great to meet you. What would you like to know?"),
]

// Initialize the chat with optional chat history
let chat = generativeModel.startChat(history: history)

// To generate text output, call sendMessage and pass in the message
let response = try await chat.sendMessage("How many paws are in my house?")
if let text = response.text {
  print(text)
}

Дарт

final model = GenerativeModel(
  model: 'gemini-1.5-flash',
  apiKey: apiKey,
);
final chat = model.startChat(history: [
  Content.text('hello'),
  Content.model([TextPart('Great to meet you. What would you like to know?')])
]);
var response =
    await chat.sendMessage(Content.text('I have 2 dogs in my house.'));
print(response.text);
response =
    await chat.sendMessage(Content.text('How many paws are in my house?'));
print(response.text);

Ява

// Specify a Gemini model appropriate for your use case
GenerativeModel gm =
    new GenerativeModel(
        /* modelName */ "gemini-1.5-flash",
        // Access your API key as a Build Configuration variable (see "Set up your API key"
        // above)
        /* apiKey */ BuildConfig.apiKey);
GenerativeModelFutures model = GenerativeModelFutures.from(gm);

// (optional) Create previous chat history for context
Content.Builder userContentBuilder = new Content.Builder();
userContentBuilder.setRole("user");
userContentBuilder.addText("Hello, I have 2 dogs in my house.");
Content userContent = userContentBuilder.build();

Content.Builder modelContentBuilder = new Content.Builder();
modelContentBuilder.setRole("model");
modelContentBuilder.addText("Great to meet you. What would you like to know?");
Content modelContent = userContentBuilder.build();

List<Content> history = Arrays.asList(userContent, modelContent);

// Initialize the chat
ChatFutures chat = model.startChat(history);

// Create a new user message
Content.Builder userMessageBuilder = new Content.Builder();
userMessageBuilder.setRole("user");
userMessageBuilder.addText("How many paws are in my house?");
Content userMessage = userMessageBuilder.build();

// For illustrative purposes only. You should use an executor that fits your needs.
Executor executor = Executors.newSingleThreadExecutor();

// Send the message
ListenableFuture<GenerateContentResponse> response = chat.sendMessage(userMessage);

Futures.addCallback(
    response,
    new FutureCallback<GenerateContentResponse>() {
      @Override
      public void onSuccess(GenerateContentResponse result) {
        String resultText = result.getText();
        System.out.println(resultText);
      }

      @Override
      public void onFailure(Throwable t) {
        t.printStackTrace();
      }
    },
    executor);

Кэш

Питон

document = genai.upload_file(path=media / "a11.txt")
model_name = "gemini-1.5-flash-001"
cache = genai.caching.CachedContent.create(
    model=model_name,
    system_instruction="You are an expert analyzing transcripts.",
    contents=[document],
)
print(cache)

model = genai.GenerativeModel.from_cached_content(cache)
response = model.generate_content("Please summarize this transcript")
print(response.text)

Node.js

// Make sure to include these imports:
// import { GoogleAICacheManager, GoogleAIFileManager } from "@google/generative-ai/server";
// import { GoogleGenerativeAI } from "@google/generative-ai";
const cacheManager = new GoogleAICacheManager(process.env.API_KEY);
const fileManager = new GoogleAIFileManager(process.env.API_KEY);

const uploadResult = await fileManager.uploadFile(`${mediaPath}/a11.txt`, {
  mimeType: "text/plain",
});

const cacheResult = await cacheManager.create({
  model: "models/gemini-1.5-flash-001",
  contents: [
    {
      role: "user",
      parts: [
        {
          fileData: {
            fileUri: uploadResult.file.uri,
            mimeType: uploadResult.file.mimeType,
          },
        },
      ],
    },
  ],
});

console.log(cacheResult);

const genAI = new GoogleGenerativeAI(process.env.API_KEY);
const model = genAI.getGenerativeModelFromCachedContent(cacheResult);
const result = await model.generateContent(
  "Please summarize this transcript.",
);
console.log(result.response.text());

Тюнингованная модель

Питон

model = genai.GenerativeModel(model_name="tunedModels/my-increment-model")
result = model.generate_content("III")
print(result.text)  # "IV"

Режим JSON

Питон

import typing_extensions as typing

class Recipe(typing.TypedDict):
    recipe_name: str
    ingredients: list[str]

model = genai.GenerativeModel("gemini-1.5-pro-latest")
result = model.generate_content(
    "List a few popular cookie recipes.",
    generation_config=genai.GenerationConfig(
        response_mime_type="application/json", response_schema=list[Recipe]
    ),
)
print(result)

Node.js

// Make sure to include these imports:
// import { GoogleGenerativeAI, SchemaType } from "@google/generative-ai";
const genAI = new GoogleGenerativeAI(process.env.API_KEY);

const schema = {
  description: "List of recipes",
  type: SchemaType.ARRAY,
  items: {
    type: SchemaType.OBJECT,
    properties: {
      recipeName: {
        type: SchemaType.STRING,
        description: "Name of the recipe",
        nullable: false,
      },
    },
    required: ["recipeName"],
  },
};

const model = genAI.getGenerativeModel({
  model: "gemini-1.5-pro",
  generationConfig: {
    responseMimeType: "application/json",
    responseSchema: schema,
  },
});

const result = await model.generateContent(
  "List a few popular cookie recipes.",
);
console.log(result.response.text());

Идти

model := client.GenerativeModel("gemini-1.5-pro-latest")
// Ask the model to respond with JSON.
model.ResponseMIMEType = "application/json"
// Specify the schema.
model.ResponseSchema = &genai.Schema{
	Type:  genai.TypeArray,
	Items: &genai.Schema{Type: genai.TypeString},
}
resp, err := model.GenerateContent(ctx, genai.Text("List a few popular cookie recipes using this JSON schema."))
if err != nil {
	log.Fatal(err)
}
for _, part := range resp.Candidates[0].Content.Parts {
	if txt, ok := part.(genai.Text); ok {
		var recipes []string
		if err := json.Unmarshal([]byte(txt), &recipes); err != nil {
			log.Fatal(err)
		}
		fmt.Println(recipes)
	}
}

Оболочка

curl "https://generativelanguage.googleapis.com/v1beta/models/gemini-1.5-flash:generateContent?key=$GOOGLE_API_KEY" \
-H 'Content-Type: application/json' \
-d '{
    "contents": [{
      "parts":[
        {"text": "List 5 popular cookie recipes"}
        ]
    }],
    "generationConfig": {
        "response_mime_type": "application/json",
        "response_schema": {
          "type": "ARRAY",
          "items": {
            "type": "OBJECT",
            "properties": {
              "recipe_name": {"type":"STRING"},
            }
          }
        }
    }
}' 2> /dev/null | head

Котлин

val generativeModel =
    GenerativeModel(
        // Specify a Gemini model appropriate for your use case
        modelName = "gemini-1.5-pro",
        // Access your API key as a Build Configuration variable (see "Set up your API key" above)
        apiKey = BuildConfig.apiKey,
        generationConfig = generationConfig {
            responseMimeType = "application/json"
            responseSchema = Schema(
                name = "recipes",
                description = "List of recipes",
                type = FunctionType.ARRAY,
                items = Schema(
                    name = "recipe",
                    description = "A recipe",
                    type = FunctionType.OBJECT,
                    properties = mapOf(
                        "recipeName" to Schema(
                            name = "recipeName",
                            description = "Name of the recipe",
                            type = FunctionType.STRING,
                            nullable = false
                        ),
                    ),
                    required = listOf("recipeName")
                ),
            )
        })

val prompt = "List a few popular cookie recipes."
val response = generativeModel.generateContent(prompt)
print(response.text)

Быстрый

let jsonSchema = Schema(
  type: .array,
  description: "List of recipes",
  items: Schema(
    type: .object,
    properties: [
      "recipeName": Schema(type: .string, description: "Name of the recipe", nullable: false),
    ],
    requiredProperties: ["recipeName"]
  )
)

let generativeModel = GenerativeModel(
  // Specify a model that supports controlled generation like Gemini 1.5 Pro
  name: "gemini-1.5-pro",
  // Access your API key from your on-demand resource .plist file (see "Set up your API key"
  // above)
  apiKey: APIKey.default,
  generationConfig: GenerationConfig(
    responseMIMEType: "application/json",
    responseSchema: jsonSchema
  )
)

let prompt = "List a few popular cookie recipes."
let response = try await generativeModel.generateContent(prompt)
if let text = response.text {
  print(text)
}

Дарт

final schema = Schema.array(
    description: 'List of recipes',
    items: Schema.object(properties: {
      'recipeName':
          Schema.string(description: 'Name of the recipe.', nullable: false)
    }, requiredProperties: [
      'recipeName'
    ]));

final model = GenerativeModel(
    model: 'gemini-1.5-pro',
    apiKey: apiKey,
    generationConfig: GenerationConfig(
        responseMimeType: 'application/json', responseSchema: schema));

final prompt = 'List a few popular cookie recipes.';
final response = await model.generateContent([Content.text(prompt)]);
print(response.text);

Ява

Schema<List<String>> schema =
    new Schema(
        /* name */ "recipes",
        /* description */ "List of recipes",
        /* format */ null,
        /* nullable */ false,
        /* list */ null,
        /* properties */ null,
        /* required */ null,
        /* items */ new Schema(
            /* name */ "recipe",
            /* description */ "A recipe",
            /* format */ null,
            /* nullable */ false,
            /* list */ null,
            /* properties */ Map.of(
                "recipeName",
                new Schema(
                    /* name */ "recipeName",
                    /* description */ "Name of the recipe",
                    /* format */ null,
                    /* nullable */ false,
                    /* list */ null,
                    /* properties */ null,
                    /* required */ null,
                    /* items */ null,
                    /* type */ FunctionType.STRING)),
            /* required */ null,
            /* items */ null,
            /* type */ FunctionType.OBJECT),
        /* type */ FunctionType.ARRAY);

GenerationConfig.Builder configBuilder = new GenerationConfig.Builder();
configBuilder.responseMimeType = "application/json";
configBuilder.responseSchema = schema;

GenerationConfig generationConfig = configBuilder.build();

// Specify a Gemini model appropriate for your use case
GenerativeModel gm =
    new GenerativeModel(
        /* modelName */ "gemini-1.5-pro",
        // Access your API key as a Build Configuration variable (see "Set up your API key"
        // above)
        /* apiKey */ BuildConfig.apiKey,
        /* generationConfig */ generationConfig);
GenerativeModelFutures model = GenerativeModelFutures.from(gm);

Content content = new Content.Builder().addText("List a few popular cookie recipes.").build();

// For illustrative purposes only. You should use an executor that fits your needs.
Executor executor = Executors.newSingleThreadExecutor();

ListenableFuture<GenerateContentResponse> response = model.generateContent(content);
Futures.addCallback(
    response,
    new FutureCallback<GenerateContentResponse>() {
      @Override
      public void onSuccess(GenerateContentResponse result) {
        String resultText = result.getText();
        System.out.println(resultText);
      }

      @Override
      public void onFailure(Throwable t) {
        t.printStackTrace();
      }
    },
    executor);

Выполнение кода

Питон

model = genai.GenerativeModel(model_name="gemini-1.5-flash", tools="code_execution")
response = model.generate_content(
    (
        "What is the sum of the first 50 prime numbers? "
        "Generate and run code for the calculation, and make sure you get all 50."
    )
)

# Each `part` either contains `text`, `executable_code` or an `execution_result`
for part in response.candidates[0].content.parts:
    print(part, "\n")

print("-" * 80)
# The `.text` accessor joins the parts into a markdown compatible text representation.
print("\n\n", response.text)

Котлин


val model = GenerativeModel(
    // Specify a Gemini model appropriate for your use case
    modelName = "gemini-1.5-pro",
    // Access your API key as a Build Configuration variable (see "Set up your API key" above)
    apiKey = BuildConfig.apiKey,
    tools = listOf(Tool.CODE_EXECUTION)
)

val response = model.generateContent("What is the sum of the first 50 prime numbers?")

// Each `part` either contains `text`, `executable_code` or an `execution_result`
println(response.candidates[0].content.parts.joinToString("\n"))

// Alternatively, you can use the `text` accessor which joins the parts into a markdown compatible
// text representation
println(response.text)

Ява

// Specify a Gemini model appropriate for your use case
GenerativeModel gm =
        new GenerativeModel(
                /* modelName */ "gemini-1.5-pro",
                // Access your API key as a Build Configuration variable (see "Set up your API key"
                // above)
                /* apiKey */ BuildConfig.apiKey,
                /* generationConfig */ null,
                /* safetySettings */ null,
                /* requestOptions */ new RequestOptions(),
                /* tools */ Collections.singletonList(Tool.CODE_EXECUTION));
GenerativeModelFutures model = GenerativeModelFutures.from(gm);

Content inputContent =
        new Content.Builder().addText("What is the sum of the first 50 prime numbers?").build();

// For illustrative purposes only. You should use an executor that fits your needs.
Executor executor = Executors.newSingleThreadExecutor();

ListenableFuture<GenerateContentResponse> response = model.generateContent(inputContent);
Futures.addCallback(
        response,
        new FutureCallback<GenerateContentResponse>() {
            @Override
            public void onSuccess(GenerateContentResponse result) {
                // Each `part` either contains `text`, `executable_code` or an
                // `execution_result`
                Candidate candidate = result.getCandidates().get(0);
                for (Part part : candidate.getContent().getParts()) {
                    System.out.println(part);
                }

                // Alternatively, you can use the `text` accessor which joins the parts into a
                // markdown compatible text representation
                String resultText = result.getText();
                System.out.println(resultText);
            }

            @Override
            public void onFailure(Throwable t) {
                t.printStackTrace();
            }
        },
        executor);

Вызов функции

Питон

def add(a: float, b: float):
    """returns a + b."""
    return a + b

def subtract(a: float, b: float):
    """returns a - b."""
    return a - b

def multiply(a: float, b: float):
    """returns a * b."""
    return a * b

def divide(a: float, b: float):
    """returns a / b."""
    return a / b

model = genai.GenerativeModel(
    model_name="gemini-1.5-flash", tools=[add, subtract, multiply, divide]
)
chat = model.start_chat(enable_automatic_function_calling=True)
response = chat.send_message(
    "I have 57 cats, each owns 44 mittens, how many mittens is that in total?"
)
print(response.text)

Node.js

// Make sure to include these imports:
// import { GoogleGenerativeAI } from "@google/generative-ai";
async function setLightValues(brightness, colorTemperature) {
  // This mock API returns the requested lighting values
  return {
    brightness,
    colorTemperature,
  };
}

const controlLightFunctionDeclaration = {
  name: "controlLight",
  parameters: {
    type: "OBJECT",
    description: "Set the brightness and color temperature of a room light.",
    properties: {
      brightness: {
        type: "NUMBER",
        description:
          "Light level from 0 to 100. Zero is off and 100 is full brightness.",
      },
      colorTemperature: {
        type: "STRING",
        description:
          "Color temperature of the light fixture which can be `daylight`, `cool` or `warm`.",
      },
    },
    required: ["brightness", "colorTemperature"],
  },
};

// Executable function code. Put it in a map keyed by the function name
// so that you can call it once you get the name string from the model.
const functions = {
  controlLight: ({ brightness, colorTemperature }) => {
    return setLightValues(brightness, colorTemperature);
  },
};

const genAI = new GoogleGenerativeAI(process.env.API_KEY);
const model = genAI.getGenerativeModel({
  model: "gemini-1.5-flash",
  tools: { functionDeclarations: [controlLightFunctionDeclaration] },
});
const chat = model.startChat();
const prompt = "Dim the lights so the room feels cozy and warm.";

// Send the message to the model.
const result = await chat.sendMessage(prompt);

// For simplicity, this uses the first function call found.
const call = result.response.functionCalls()[0];

if (call) {
  // Call the executable function named in the function call
  // with the arguments specified in the function call and
  // let it call the hypothetical API.
  const apiResponse = await functions[call.name](call.args);

  // Send the API response back to the model so it can generate
  // a text response that can be displayed to the user.
  const result2 = await chat.sendMessage([
    {
      functionResponse: {
        name: "controlLight",
        response: apiResponse,
      },
    },
  ]);

  // Log the text response.
  console.log(result2.response.text());
}

Оболочка


cat > tools.json << EOF
{
  "function_declarations": [
    {
      "name": "enable_lights",
      "description": "Turn on the lighting system.",
      "parameters": { "type": "object" }
    },
    {
      "name": "set_light_color",
      "description": "Set the light color. Lights must be enabled for this to work.",
      "parameters": {
        "type": "object",
        "properties": {
          "rgb_hex": {
            "type": "string",
            "description": "The light color as a 6-digit hex string, e.g. ff0000 for red."
          }
        },
        "required": [
          "rgb_hex"
        ]
      }
    },
    {
      "name": "stop_lights",
      "description": "Turn off the lighting system.",
      "parameters": { "type": "object" }
    }
  ]
} 
EOF

curl "https://generativelanguage.googleapis.com/v1beta/models/gemini-1.5-pro-latest:generateContent?key=$GOOGLE_API_KEY" \
  -H 'Content-Type: application/json' \
  -d @<(echo '
  {
    "system_instruction": {
      "parts": {
        "text": "You are a helpful lighting system bot. You can turn lights on and off, and you can set the color. Do not perform any other tasks."
      }
    },
    "tools": ['$(source "$tools")'],

    "tool_config": {
      "function_calling_config": {"mode": "none"}
    },

    "contents": {
      "role": "user",
      "parts": {
        "text": "What can you do?"
      }
    }
  }
') 2>/dev/null |sed -n '/"content"/,/"finishReason"/p'

Котлин

fun multiply(a: Double, b: Double) = a * b

val multiplyDefinition = defineFunction(
    name = "multiply",
    description = "returns the product of the provided numbers.",
    parameters = listOf(
    Schema.double("a", "First number"),
    Schema.double("b", "Second number")
    )
)

val usableFunctions = listOf(multiplyDefinition)

val generativeModel =
    GenerativeModel(
        // Specify a Gemini model appropriate for your use case
        modelName = "gemini-1.5-flash",
        // Access your API key as a Build Configuration variable (see "Set up your API key" above)
        apiKey = BuildConfig.apiKey,
        // List the functions definitions you want to make available to the model
        tools = listOf(Tool(usableFunctions))
    )

val chat = generativeModel.startChat()
val prompt = "I have 57 cats, each owns 44 mittens, how many mittens is that in total?"

// Send the message to the generative model
var response = chat.sendMessage(prompt)

// Check if the model responded with a function call
response.functionCalls.first { it.name == "multiply" }.apply {
    val a: String by args
    val b: String by args

    val result = JSONObject(mapOf("result" to multiply(a.toDouble(), b.toDouble())))
    response = chat.sendMessage(
        content(role = "function") {
            part(FunctionResponsePart("multiply", result))
        }
    )
}

// Whenever the model responds with text, show it in the UI
response.text?.let { modelResponse ->
    println(modelResponse)
}

Быстрый

// Calls a hypothetical API to control a light bulb and returns the values that were set.
func controlLight(brightness: Double, colorTemperature: String) -> JSONObject {
  return ["brightness": .number(brightness), "colorTemperature": .string(colorTemperature)]
}

let generativeModel =
  GenerativeModel(
    // Use a model that supports function calling, like a Gemini 1.5 model
    name: "gemini-1.5-flash",
    // Access your API key from your on-demand resource .plist file (see "Set up your API key"
    // above)
    apiKey: APIKey.default,
    tools: [Tool(functionDeclarations: [
      FunctionDeclaration(
        name: "controlLight",
        description: "Set the brightness and color temperature of a room light.",
        parameters: [
          "brightness": Schema(
            type: .number,
            format: "double",
            description: "Light level from 0 to 100. Zero is off and 100 is full brightness."
          ),
          "colorTemperature": Schema(
            type: .string,
            format: "enum",
            description: "Color temperature of the light fixture.",
            enumValues: ["daylight", "cool", "warm"]
          ),
        ],
        requiredParameters: ["brightness", "colorTemperature"]
      ),
    ])]
  )

let chat = generativeModel.startChat()

let prompt = "Dim the lights so the room feels cozy and warm."

// Send the message to the model.
let response1 = try await chat.sendMessage(prompt)

// Check if the model responded with a function call.
// For simplicity, this sample uses the first function call found.
guard let functionCall = response1.functionCalls.first else {
  fatalError("Model did not respond with a function call.")
}
// Print an error if the returned function was not declared
guard functionCall.name == "controlLight" else {
  fatalError("Unexpected function called: \(functionCall.name)")
}
// Verify that the names and types of the parameters match the declaration
guard case let .number(brightness) = functionCall.args["brightness"] else {
  fatalError("Missing argument: brightness")
}
guard case let .string(colorTemperature) = functionCall.args["colorTemperature"] else {
  fatalError("Missing argument: colorTemperature")
}

// Call the executable function named in the FunctionCall with the arguments specified in the
// FunctionCall and let it call the hypothetical API.
let apiResponse = controlLight(brightness: brightness, colorTemperature: colorTemperature)

// Send the API response back to the model so it can generate a text response that can be
// displayed to the user.
let response2 = try await chat.sendMessage([ModelContent(
  role: "function",
  parts: [.functionResponse(FunctionResponse(name: "controlLight", response: apiResponse))]
)])

if let text = response2.text {
  print(text)
}

Дарт

Map<String, Object?> setLightValues(Map<String, Object?> args) {
  return args;
}

final controlLightFunction = FunctionDeclaration(
    'controlLight',
    'Set the brightness and color temperature of a room light.',
    Schema.object(properties: {
      'brightness': Schema.number(
          description:
              'Light level from 0 to 100. Zero is off and 100 is full brightness.',
          nullable: false),
      'colorTemperatur': Schema.string(
          description:
              'Color temperature of the light fixture which can be `daylight`, `cool`, or `warm`',
          nullable: false),
    }));

final functions = {controlLightFunction.name: setLightValues};
FunctionResponse dispatchFunctionCall(FunctionCall call) {
  final function = functions[call.name]!;
  final result = function(call.args);
  return FunctionResponse(call.name, result);
}

final model = GenerativeModel(
  model: 'gemini-1.5-pro',
  apiKey: apiKey,
  tools: [
    Tool(functionDeclarations: [controlLightFunction])
  ],
);

final prompt = 'Dim the lights so the room feels cozy and warm.';
final content = [Content.text(prompt)];
var response = await model.generateContent(content);

List<FunctionCall> functionCalls;
while ((functionCalls = response.functionCalls.toList()).isNotEmpty) {
  var responses = <FunctionResponse>[
    for (final functionCall in functionCalls)
      dispatchFunctionCall(functionCall)
  ];
  content
    ..add(response.candidates.first.content)
    ..add(Content.functionResponses(responses));
  response = await model.generateContent(content);
}
print('Response: ${response.text}');

Ява

FunctionDeclaration multiplyDefinition =
    defineFunction(
        /* name  */ "multiply",
        /* description */ "returns a * b.",
        /* parameters */ Arrays.asList(
            Schema.numDouble("a", "First parameter"),
            Schema.numDouble("b", "Second parameter")),
        /* required */ Arrays.asList("a", "b"));

Tool tool = new Tool(Arrays.asList(multiplyDefinition), null);

// Specify a Gemini model appropriate for your use case
GenerativeModel gm =
    new GenerativeModel(
        /* modelName */ "gemini-1.5-flash",
        // Access your API key as a Build Configuration variable (see "Set up your API key"
        // above)
        /* apiKey */ BuildConfig.apiKey,
        /* generationConfig (optional) */ null,
        /* safetySettings (optional) */ null,
        /* requestOptions (optional) */ new RequestOptions(),
        /* functionDeclarations (optional) */ Arrays.asList(tool));
GenerativeModelFutures model = GenerativeModelFutures.from(gm);

// Create prompt
Content.Builder userContentBuilder = new Content.Builder();
userContentBuilder.setRole("user");
userContentBuilder.addText(
    "I have 57 cats, each owns 44 mittens, how many mittens is that in total?");
Content userMessage = userContentBuilder.build();

// For illustrative purposes only. You should use an executor that fits your needs.
Executor executor = Executors.newSingleThreadExecutor();

// Initialize the chat
ChatFutures chat = model.startChat();

// Send the message
ListenableFuture<GenerateContentResponse> response = chat.sendMessage(userMessage);

Futures.addCallback(
    response,
    new FutureCallback<GenerateContentResponse>() {
      @Override
      public void onSuccess(GenerateContentResponse result) {
        if (!result.getFunctionCalls().isEmpty()) {
          handleFunctionCall(result);
        }
        if (!result.getText().isEmpty()) {
          System.out.println(result.getText());
        }
      }

      @Override
      public void onFailure(Throwable t) {
        t.printStackTrace();
      }

      private void handleFunctionCall(GenerateContentResponse result) {
        FunctionCallPart multiplyFunctionCallPart =
            result.getFunctionCalls().stream()
                .filter(fun -> fun.getName().equals("multiply"))
                .findFirst()
                .get();
        double a = Double.parseDouble(multiplyFunctionCallPart.getArgs().get("a"));
        double b = Double.parseDouble(multiplyFunctionCallPart.getArgs().get("b"));

        try {
          // `multiply(a, b)` is a regular java function defined in another class
          FunctionResponsePart functionResponsePart =
              new FunctionResponsePart(
                  "multiply", new JSONObject().put("result", multiply(a, b)));

          // Create prompt
          Content.Builder functionCallResponse = new Content.Builder();
          userContentBuilder.setRole("user");
          userContentBuilder.addPart(functionResponsePart);
          Content userMessage = userContentBuilder.build();

          chat.sendMessage(userMessage);
        } catch (JSONException e) {
          throw new RuntimeException(e);
        }
      }
    },
    executor);

Конфигурация генерации

Питон

model = genai.GenerativeModel("gemini-1.5-flash")
response = model.generate_content(
    "Tell me a story about a magic backpack.",
    generation_config=genai.types.GenerationConfig(
        # Only one candidate for now.
        candidate_count=1,
        stop_sequences=["x"],
        max_output_tokens=20,
        temperature=1.0,
    ),
)

print(response.text)

Node.js

// Make sure to include these imports:
// import { GoogleGenerativeAI } from "@google/generative-ai";
const genAI = new GoogleGenerativeAI(process.env.API_KEY);
const model = genAI.getGenerativeModel({
  model: "gemini-1.5-flash",
  generationConfig: {
    candidateCount: 1,
    stopSequences: ["x"],
    maxOutputTokens: 20,
    temperature: 1.0,
  },
});

const result = await model.generateContent(
  "Tell me a story about a magic backpack.",
);
console.log(result.response.text());

Идти

model := client.GenerativeModel("gemini-1.5-pro-latest")
model.SetTemperature(0.9)
model.SetTopP(0.5)
model.SetTopK(20)
model.SetMaxOutputTokens(100)
model.SystemInstruction = genai.NewUserContent(genai.Text("You are Yoda from Star Wars."))
model.ResponseMIMEType = "application/json"
resp, err := model.GenerateContent(ctx, genai.Text("What is the average size of a swallow?"))
if err != nil {
	log.Fatal(err)
}
printResponse(resp)

Оболочка

curl https://generativelanguage.googleapis.com/v1beta/models/gemini-1.5-flash:generateContent?key=$GOOGLE_API_KEY \
    -H 'Content-Type: application/json' \
    -X POST \
    -d '{
        "contents": [{
            "parts":[
                {"text": "Write a story about a magic backpack."}
            ]
        }],
        "safetySettings": [
            {
                "category": "HARM_CATEGORY_DANGEROUS_CONTENT",
                "threshold": "BLOCK_ONLY_HIGH"
            }
        ],
        "generationConfig": {
            "stopSequences": [
                "Title"
            ],
            "temperature": 1.0,
            "maxOutputTokens": 800,
            "topP": 0.8,
            "topK": 10
        }
    }'  2> /dev/null | grep "text"

Котлин

val config = generationConfig {
  temperature = 0.9f
  topK = 16
  topP = 0.1f
  maxOutputTokens = 200
  stopSequences = listOf("red")
}

val generativeModel =
    GenerativeModel(
        // Specify a Gemini model appropriate for your use case
        modelName = "gemini-1.5-flash",
        apiKey = BuildConfig.apiKey,
        generationConfig = config)

Быстрый

let config = GenerationConfig(
  temperature: 0.9,
  topP: 0.1,
  topK: 16,
  candidateCount: 1,
  maxOutputTokens: 200,
  stopSequences: ["red", "orange"]
)

let generativeModel =
  GenerativeModel(
    // Specify a Gemini model appropriate for your use case
    name: "gemini-1.5-flash",
    // Access your API key from your on-demand resource .plist file (see "Set up your API key"
    // above)
    apiKey: APIKey.default,
    generationConfig: config
  )

Дарт

final model = GenerativeModel(
  model: 'gemini-1.5-flash',
  apiKey: apiKey,
);
final prompt = 'Tell me a story about a magic backpack.';

final response = await model.generateContent(
  [Content.text(prompt)],
  generationConfig: GenerationConfig(
    candidateCount: 1,
    stopSequences: ['x'],
    maxOutputTokens: 20,
    temperature: 1.0,
  ),
);
print(response.text);

Ява

GenerationConfig.Builder configBuilder = new GenerationConfig.Builder();
configBuilder.temperature = 0.9f;
configBuilder.topK = 16;
configBuilder.topP = 0.1f;
configBuilder.maxOutputTokens = 200;
configBuilder.stopSequences = Arrays.asList("red");

GenerationConfig generationConfig = configBuilder.build();

// Specify a Gemini model appropriate for your use case
GenerativeModel gm =
    new GenerativeModel("gemini-1.5-flash", BuildConfig.apiKey, generationConfig);

GenerativeModelFutures model = GenerativeModelFutures.from(gm);

Настройки безопасности

Питон

model = genai.GenerativeModel("gemini-1.5-flash")
unsafe_prompt = "I support Martians Soccer Club and I think Jupiterians Football Club sucks! Write a ironic phrase about them."
response = model.generate_content(
    unsafe_prompt,
    safety_settings={
        "HATE": "MEDIUM",
        "HARASSMENT": "BLOCK_ONLY_HIGH",
    },
)
# If you want to set all the safety_settings to the same value you can just pass that value:
response = model.generate_content(unsafe_prompt, safety_settings="MEDIUM")
try:
    print(response.text)
except:
    print("No information generated by the model.")

print(response.candidates[0].safety_ratings)

Node.js

// Make sure to include these imports:
// import { GoogleGenerativeAI, HarmCategory, HarmBlockThreshold } from "@google/generative-ai";
const genAI = new GoogleGenerativeAI(process.env.API_KEY);
const model = genAI.getGenerativeModel({
  model: "gemini-1.5-flash",
  safetySettings: [
    {
      category: HarmCategory.HARM_CATEGORY_HARASSMENT,
      threshold: HarmBlockThreshold.BLOCK_MEDIUM_AND_ABOVE,
    },
    {
      category: HarmCategory.HARM_CATEGORY_HATE_SPEECH,
      threshold: HarmBlockThreshold.BLOCK_LOW_AND_ABOVE,
    },
  ],
});

const unsafePrompt =
  "I support Martians Soccer Club and I think " +
  "Jupiterians Football Club sucks! Write an ironic phrase telling " +
  "them how I feel about them.";

const result = await model.generateContent(unsafePrompt);

try {
  result.response.text();
} catch (e) {
  console.error(e);
  console.log(result.response.candidates[0].safetyRatings);
}

Идти

model := client.GenerativeModel("gemini-1.5-flash")
model.SafetySettings = []*genai.SafetySetting{
	{
		Category:  genai.HarmCategoryDangerousContent,
		Threshold: genai.HarmBlockLowAndAbove,
	},
	{
		Category:  genai.HarmCategoryHarassment,
		Threshold: genai.HarmBlockMediumAndAbove,
	},
}
resp, err := model.GenerateContent(ctx, genai.Text("I support Martians Soccer Club and I think Jupiterians Football Club sucks! Write a ironic phrase about them."))
if err != nil {
	log.Fatal(err)
}
printResponse(resp)

Оболочка

echo '{
    "safetySettings": [
        {"category": "HARM_CATEGORY_HARASSMENT", "threshold": "BLOCK_ONLY_HIGH"},
        {"category": "HARM_CATEGORY_HATE_SPEECH", "threshold": "BLOCK_MEDIUM_AND_ABOVE"}
    ],
    "contents": [{
        "parts":[{
            "text": "'I support Martians Soccer Club and I think Jupiterians Football Club sucks! Write a ironic phrase about them.'"}]}]}' > request.json

curl "https://generativelanguage.googleapis.com/v1beta/models/gemini-1.5-flash:generateContent?key=$GOOGLE_API_KEY" \
    -H 'Content-Type: application/json' \
    -X POST \
    -d @request.json 2> /dev/null

Котлин

val harassmentSafety = SafetySetting(HarmCategory.HARASSMENT, BlockThreshold.ONLY_HIGH)

val hateSpeechSafety = SafetySetting(HarmCategory.HATE_SPEECH, BlockThreshold.MEDIUM_AND_ABOVE)

val generativeModel =
    GenerativeModel(
        // The Gemini 1.5 models are versatile and work with most use cases
        modelName = "gemini-1.5-flash",
        apiKey = BuildConfig.apiKey,
        safetySettings = listOf(harassmentSafety, hateSpeechSafety))

Быстрый

let safetySettings = [
  SafetySetting(harmCategory: .dangerousContent, threshold: .blockLowAndAbove),
  SafetySetting(harmCategory: .harassment, threshold: .blockMediumAndAbove),
  SafetySetting(harmCategory: .hateSpeech, threshold: .blockOnlyHigh),
]

let generativeModel =
  GenerativeModel(
    // Specify a Gemini model appropriate for your use case
    name: "gemini-1.5-flash",
    // Access your API key from your on-demand resource .plist file (see "Set up your API key"
    // above)
    apiKey: APIKey.default,
    safetySettings: safetySettings
  )

Дарт

final model = GenerativeModel(
  model: 'gemini-1.5-flash',
  apiKey: apiKey,
);
final prompt = 'I support Martians Soccer Club and I think '
    'Jupiterians Football Club sucks! Write an ironic phrase telling '
    'them how I feel about them.';

final response = await model.generateContent(
  [Content.text(prompt)],
  safetySettings: [
    SafetySetting(HarmCategory.harassment, HarmBlockThreshold.medium),
    SafetySetting(HarmCategory.hateSpeech, HarmBlockThreshold.low),
  ],
);
try {
  print(response.text);
} catch (e) {
  print(e);
  for (final SafetyRating(:category, :probability)
      in response.candidates.first.safetyRatings!) {
    print('Safety Rating: $category - $probability');
  }
}

Ява

SafetySetting harassmentSafety =
    new SafetySetting(HarmCategory.HARASSMENT, BlockThreshold.ONLY_HIGH);

SafetySetting hateSpeechSafety =
    new SafetySetting(HarmCategory.HATE_SPEECH, BlockThreshold.MEDIUM_AND_ABOVE);

// Specify a Gemini model appropriate for your use case
GenerativeModel gm =
    new GenerativeModel(
        "gemini-1.5-flash",
        BuildConfig.apiKey,
        null, // generation config is optional
        Arrays.asList(harassmentSafety, hateSpeechSafety));

GenerativeModelFutures model = GenerativeModelFutures.from(gm);

Системная инструкция

Питон

model = genai.GenerativeModel(
    "models/gemini-1.5-flash",
    system_instruction="You are a cat. Your name is Neko.",
)
response = model.generate_content("Good morning! How are you?")
print(response.text)

Node.js

// Make sure to include these imports:
// import { GoogleGenerativeAI } from "@google/generative-ai";
const genAI = new GoogleGenerativeAI(process.env.API_KEY);
const model = genAI.getGenerativeModel({
  model: "gemini-1.5-flash",
  systemInstruction: "You are a cat. Your name is Neko.",
});

const prompt = "Good morning! How are you?";

const result = await model.generateContent(prompt);
const response = result.response;
const text = response.text();
console.log(text);

Идти

model := client.GenerativeModel("gemini-1.5-flash")
model.SystemInstruction = genai.NewUserContent(genai.Text("You are a cat. Your name is Neko."))
resp, err := model.GenerateContent(ctx, genai.Text("Good morning! How are you?"))
if err != nil {
	log.Fatal(err)
}
printResponse(resp)

Оболочка

curl "https://generativelanguage.googleapis.com/v1beta/models/gemini-1.5-flash:generateContent?key=$GOOGLE_API_KEY" \
-H 'Content-Type: application/json' \
-d '{ "system_instruction": {
    "parts":
      { "text": "You are a cat. Your name is Neko."}},
    "contents": {
      "parts": {
        "text": "Hello there"}}}'

Котлин

val generativeModel =
    GenerativeModel(
        // Specify a Gemini model appropriate for your use case
        modelName = "gemini-1.5-flash",
        apiKey = BuildConfig.apiKey,
        systemInstruction = content { text("You are a cat. Your name is Neko.") },
    )

Быстрый

let generativeModel =
  GenerativeModel(
    // Specify a model that supports system instructions, like a Gemini 1.5 model
    name: "gemini-1.5-flash",
    // Access your API key from your on-demand resource .plist file (see "Set up your API key"
    // above)
    apiKey: APIKey.default,
    systemInstruction: ModelContent(role: "system", parts: "You are a cat. Your name is Neko.")
  )

Дарт

final model = GenerativeModel(
  model: 'gemini-1.5-flash',
  apiKey: apiKey,
  systemInstruction: Content.system('You are a cat. Your name is Neko.'),
);
final prompt = 'Good morning! How are you?';

final response = await model.generateContent([Content.text(prompt)]);
print(response.text);

Ява

GenerativeModel model =
    new GenerativeModel(
        // Specify a Gemini model appropriate for your use case
        /* modelName */ "gemini-1.5-flash",
        /* apiKey */ BuildConfig.apiKey,
        /* generationConfig (optional) */ null,
        /* safetySettings (optional) */ null,
        /* requestOptions (optional) */ new RequestOptions(),
        /* tools (optional) */ null,
        /* toolsConfig (optional) */ null,
        /* systemInstruction (optional) */ new Content.Builder()
            .addText("You are a cat. Your name is Neko.")
            .build());

Тело ответа

В случае успеха тело ответа содержит экземпляр GenerateContentResponse .

Метод: models.streamGenerateContent

Генерирует потоковый ответ из модели с учетом входных данных GenerateContentRequest .

Конечная точка

опубликуйте https://generativelanguage.googleapis.com/v1beta/{model=models/*}:streamGenerateContent

Параметры пути

model string

Необходимый. Имя Model , используемой для создания завершения.

Формат: name=models/{model} . Он принимает форму models/{model} .

Тело запроса

Тело запроса содержит данные следующей структуры:

Поля
объект contents[] object ( Content )

Необходимый. Содержание текущего разговора с моделью.

Для однооборотных запросов это один экземпляр. Для многоходовых запросов, таких как чат , это повторяющееся поле, содержащее историю разговоров и последний запрос.

объект tools[] object ( Tool )

Необязательный. Список Tools Model может использовать для генерации следующего ответа.

Tool — это часть кода, которая позволяет системе взаимодействовать с внешними системами для выполнения действия или набора действий за пределами знаний и области Model . Поддерживаемые ToolFunction и codeExecution . Дополнительные сведения см. в руководствах по вызову функций и выполнению кода .

объект toolConfig object ( ToolConfig )

Необязательный. Конфигурация инструмента для любого Tool указанного в запросе. Пример использования см. в руководстве по вызову функций .

Объект safetySettings[] object ( SafetySetting )

Необязательный. Список уникальных экземпляров SafetySetting для блокировки небезопасного контента.

Это будет применено к GenerateContentRequest.contents и GenerateContentResponse.candidates . Для каждого типа SafetyCategory не должно быть более одного параметра. API будет блокировать любое содержимое и ответы, которые не соответствуют пороговым значениям, установленным этими настройками. Этот список переопределяет настройки по умолчанию для каждой SafetyCategory указанной в параметре SafetySettings. Если в списке нет SafetySetting для данной SafetyCategory , API будет использовать параметр безопасности по умолчанию для этой категории. Поддерживаются категории вреда HARM_CATEGORY_HATE_SPEECH, HARM_CATEGORY_SEXUALLY_EXPLICIT, HARM_CATEGORY_DANGEROUS_CONTENT, HARM_CATEGORY_HARASSMENT. Обратитесь к руководству для получения подробной информации о доступных настройках безопасности. Также обратитесь к руководству по безопасности , чтобы узнать, как учитывать вопросы безопасности в ваших приложениях искусственного интеллекта.

Объект systemInstruction object ( Content )

Необязательный. Системные инструкции, установленные разработчиком. Пока только текст.

Объект generationConfig object ( GenerationConfig )

Необязательный. Параметры конфигурации для создания модели и выходных данных.

string cachedContent

Необязательный. Имя содержимого, кэшированного для использования в качестве контекста для прогнозирования. Формат: cachedContents/{cachedContent}

Пример запроса

Текст

Питон

model = genai.GenerativeModel("gemini-1.5-flash")
response = model.generate_content("Write a story about a magic backpack.", stream=True)
for chunk in response:
    print(chunk.text)
    print("_" * 80)

Node.js

// Make sure to include these imports:
// import { GoogleGenerativeAI } from "@google/generative-ai";
const genAI = new GoogleGenerativeAI(process.env.API_KEY);
const model = genAI.getGenerativeModel({ model: "gemini-1.5-flash" });

const prompt = "Write a story about a magic backpack.";

const result = await model.generateContentStream(prompt);

// Print text as it comes in.
for await (const chunk of result.stream) {
  const chunkText = chunk.text();
  process.stdout.write(chunkText);
}

Идти

model := client.GenerativeModel("gemini-1.5-flash")
iter := model.GenerateContentStream(ctx, genai.Text("Write a story about a magic backpack."))
for {
	resp, err := iter.Next()
	if err == iterator.Done {
		break
	}
	if err != nil {
		log.Fatal(err)
	}
	printResponse(resp)
}

Оболочка

curl "https://generativelanguage.googleapis.com/v1beta/models/gemini-1.5-flash:streamGenerateContent?alt=sse&key=${GOOGLE_API_KEY}" \
        -H 'Content-Type: application/json' \
        --no-buffer \
        -d '{ "contents":[{"parts":[{"text": "Write a story about a magic backpack."}]}]}'

Котлин

val generativeModel =
    GenerativeModel(
        // Specify a Gemini model appropriate for your use case
        modelName = "gemini-1.5-flash",
        // Access your API key as a Build Configuration variable (see "Set up your API key" above)
        apiKey = BuildConfig.apiKey)

val prompt = "Write a story about a magic backpack."
// Use streaming with text-only input
generativeModel.generateContentStream(prompt).collect { chunk -> print(chunk.text) }

Быстрый

let generativeModel =
  GenerativeModel(
    // Specify a Gemini model appropriate for your use case
    name: "gemini-1.5-flash",
    // Access your API key from your on-demand resource .plist file (see "Set up your API key"
    // above)
    apiKey: APIKey.default
  )

let prompt = "Write a story about a magic backpack."
// Use streaming with text-only input
for try await response in generativeModel.generateContentStream(prompt) {
  if let text = response.text {
    print(text)
  }
}

Дарт

final model = GenerativeModel(
  model: 'gemini-1.5-flash',
  apiKey: apiKey,
);
final prompt = 'Write a story about a magic backpack.';

final responses = model.generateContentStream([Content.text(prompt)]);
await for (final response in responses) {
  print(response.text);
}

Ява

// Specify a Gemini model appropriate for your use case
GenerativeModel gm =
    new GenerativeModel(
        /* modelName */ "gemini-1.5-flash",
        // Access your API key as a Build Configuration variable (see "Set up your API key"
        // above)
        /* apiKey */ BuildConfig.apiKey);
GenerativeModelFutures model = GenerativeModelFutures.from(gm);

Content content =
    new Content.Builder().addText("Write a story about a magic backpack.").build();

Publisher<GenerateContentResponse> streamingResponse = model.generateContentStream(content);

StringBuilder outputContent = new StringBuilder();

streamingResponse.subscribe(
    new Subscriber<GenerateContentResponse>() {
      @Override
      public void onNext(GenerateContentResponse generateContentResponse) {
        String chunk = generateContentResponse.getText();
        outputContent.append(chunk);
      }

      @Override
      public void onComplete() {
        System.out.println(outputContent);
      }

      @Override
      public void onError(Throwable t) {
        t.printStackTrace();
      }

      @Override
      public void onSubscribe(Subscription s) {
        s.request(Long.MAX_VALUE);
      }
    });

Изображение

Питон

import PIL.Image

model = genai.GenerativeModel("gemini-1.5-flash")
organ = PIL.Image.open(media / "organ.jpg")
response = model.generate_content(["Tell me about this instrument", organ], stream=True)
for chunk in response:
    print(chunk.text)
    print("_" * 80)

Node.js

// Make sure to include these imports:
// import { GoogleGenerativeAI } from "@google/generative-ai";
const genAI = new GoogleGenerativeAI(process.env.API_KEY);
const model = genAI.getGenerativeModel({ model: "gemini-1.5-flash" });

function fileToGenerativePart(path, mimeType) {
  return {
    inlineData: {
      data: Buffer.from(fs.readFileSync(path)).toString("base64"),
      mimeType,
    },
  };
}

const prompt = "Describe how this product might be manufactured.";
// Note: The only accepted mime types are some image types, image/*.
const imagePart = fileToGenerativePart(
  `${mediaPath}/jetpack.jpg`,
  "image/jpeg",
);

const result = await model.generateContentStream([prompt, imagePart]);

// Print text as it comes in.
for await (const chunk of result.stream) {
  const chunkText = chunk.text();
  process.stdout.write(chunkText);
}

Идти

model := client.GenerativeModel("gemini-1.5-flash")

imgData, err := os.ReadFile(filepath.Join(testDataDir, "organ.jpg"))
if err != nil {
	log.Fatal(err)
}
iter := model.GenerateContentStream(ctx,
	genai.Text("Tell me about this instrument"),
	genai.ImageData("jpeg", imgData))
for {
	resp, err := iter.Next()
	if err == iterator.Done {
		break
	}
	if err != nil {
		log.Fatal(err)
	}
	printResponse(resp)
}

Оболочка

curl "https://generativelanguage.googleapis.com/v1beta/models/gemini-1.5-flash:streamGenerateContent?alt=sse&key=$GOOGLE_API_KEY" \
    -H 'Content-Type: application/json' \
    -X POST \
    -d '{
      "contents": [{
        "parts":[
            {"text": "Tell me about this instrument"},
            {
              "inline_data": {
                "mime_type":"image/jpeg",
                "data": "'$(base64 $B64FLAGS $IMG_PATH)'"
              }
            }
        ]
        }]
       }' 2> /dev/null

Котлин

val generativeModel =
    GenerativeModel(
        // Specify a Gemini model appropriate for your use case
        modelName = "gemini-1.5-flash",
        // Access your API key as a Build Configuration variable (see "Set up your API key" above)
        apiKey = BuildConfig.apiKey)

val image: Bitmap = BitmapFactory.decodeResource(context.resources, R.drawable.image)
val inputContent = content {
  image(image)
  text("What's in this picture?")
}

generativeModel.generateContentStream(inputContent).collect { chunk -> print(chunk.text) }

Быстрый

let generativeModel =
  GenerativeModel(
    // Specify a Gemini model appropriate for your use case
    name: "gemini-1.5-flash",
    // Access your API key from your on-demand resource .plist file (see "Set up your API key"
    // above)
    apiKey: APIKey.default
  )

guard let image = UIImage(systemName: "cloud.sun") else { fatalError() }

let prompt = "What's in this picture?"

for try await response in generativeModel.generateContentStream(image, prompt) {
  if let text = response.text {
    print(text)
  }
}

Дарт

final model = GenerativeModel(
  model: 'gemini-1.5-flash',
  apiKey: apiKey,
);

Future<DataPart> fileToPart(String mimeType, String path) async {
  return DataPart(mimeType, await File(path).readAsBytes());
}

final prompt = 'Describe how this product might be manufactured.';
final image = await fileToPart('image/jpeg', 'resources/jetpack.jpg');

final responses = model.generateContentStream([
  Content.multi([TextPart(prompt), image])
]);
await for (final response in responses) {
  print(response.text);
}

Ява

// Specify a Gemini model appropriate for your use case
GenerativeModel gm =
    new GenerativeModel(
        /* modelName */ "gemini-1.5-flash",
        // Access your API key as a Build Configuration variable (see "Set up your API key"
        // above)
        /* apiKey */ BuildConfig.apiKey);
GenerativeModelFutures model = GenerativeModelFutures.from(gm);

Bitmap image1 = BitmapFactory.decodeResource(context.getResources(), R.drawable.image1);
Bitmap image2 = BitmapFactory.decodeResource(context.getResources(), R.drawable.image2);

Content content =
    new Content.Builder()
        .addText("What's different between these pictures?")
        .addImage(image1)
        .addImage(image2)
        .build();

// For illustrative purposes only. You should use an executor that fits your needs.
Executor executor = Executors.newSingleThreadExecutor();

Publisher<GenerateContentResponse> streamingResponse = model.generateContentStream(content);

StringBuilder outputContent = new StringBuilder();

streamingResponse.subscribe(
    new Subscriber<GenerateContentResponse>() {
      @Override
      public void onNext(GenerateContentResponse generateContentResponse) {
        String chunk = generateContentResponse.getText();
        outputContent.append(chunk);
      }

      @Override
      public void onComplete() {
        System.out.println(outputContent);
      }

      @Override
      public void onError(Throwable t) {
        t.printStackTrace();
      }

      @Override
      public void onSubscribe(Subscription s) {
        s.request(Long.MAX_VALUE);
      }
    });

Аудио

Питон

model = genai.GenerativeModel("gemini-1.5-flash")
sample_audio = genai.upload_file(media / "sample.mp3")
response = model.generate_content(["Give me a summary of this audio file.", sample_audio])

for chunk in response:
    print(chunk.text)
    print("_" * 80)

Оболочка

# Use File API to upload audio data to API request.
MIME_TYPE=$(file -b --mime-type "${AUDIO_PATH}")
NUM_BYTES=$(wc -c < "${AUDIO_PATH}")
DISPLAY_NAME=AUDIO

tmp_header_file=upload-header.tmp

# Initial resumable request defining metadata.
# The upload url is in the response headers dump them to a file.
curl "${BASE_URL}/upload/v1beta/files?key=${GOOGLE_API_KEY}" \
  -D upload-header.tmp \
  -H "X-Goog-Upload-Protocol: resumable" \
  -H "X-Goog-Upload-Command: start" \
  -H "X-Goog-Upload-Header-Content-Length: ${NUM_BYTES}" \
  -H "X-Goog-Upload-Header-Content-Type: ${MIME_TYPE}" \
  -H "Content-Type: application/json" \
  -d "{'file': {'display_name': '${DISPLAY_NAME}'}}" 2> /dev/null

upload_url=$(grep -i "x-goog-upload-url: " "${tmp_header_file}" | cut -d" " -f2 | tr -d "\r")
rm "${tmp_header_file}"

# Upload the actual bytes.
curl "${upload_url}" \
  -H "Content-Length: ${NUM_BYTES}" \
  -H "X-Goog-Upload-Offset: 0" \
  -H "X-Goog-Upload-Command: upload, finalize" \
  --data-binary "@${AUDIO_PATH}" 2> /dev/null > file_info.json

file_uri=$(jq ".file.uri" file_info.json)
echo file_uri=$file_uri

curl "https://generativelanguage.googleapis.com/v1beta/models/gemini-1.5-flash:streamGenerateContent?alt=sse&key=$GOOGLE_API_KEY" \
    -H 'Content-Type: application/json' \
    -X POST \
    -d '{
      "contents": [{
        "parts":[
          {"text": "Please describe this file."},
          {"file_data":{"mime_type": "audio/mpeg", "file_uri": '$file_uri'}}]
        }]
       }' 2> /dev/null > response.json

cat response.json
echo

Видео

Питон

import time

# Video clip (CC BY 3.0) from https://peach.blender.org/download/
myfile = genai.upload_file(media / "Big_Buck_Bunny.mp4")
print(f"{myfile=}")

# Videos need to be processed before you can use them.
while myfile.state.name == "PROCESSING":
    print("processing video...")
    time.sleep(5)
    myfile = genai.get_file(myfile.name)

model = genai.GenerativeModel("gemini-1.5-flash")

response = model.generate_content([myfile, "Describe this video clip"])
for chunk in response:
    print(chunk.text)
    print("_" * 80)

Node.js

// Make sure to include these imports:
// import { GoogleGenerativeAI } from "@google/generative-ai";
// import { GoogleAIFileManager, FileState } from "@google/generative-ai/server";
const genAI = new GoogleGenerativeAI(process.env.API_KEY);
const model = genAI.getGenerativeModel({ model: "gemini-1.5-flash" });

const fileManager = new GoogleAIFileManager(process.env.API_KEY);

const uploadResult = await fileManager.uploadFile(
  `${mediaPath}/Big_Buck_Bunny.mp4`,
  { mimeType: "video/mp4" },
);

let file = await fileManager.getFile(uploadResult.file.name);
while (file.state === FileState.PROCESSING) {
  process.stdout.write(".");
  // Sleep for 10 seconds
  await new Promise((resolve) => setTimeout(resolve, 10_000));
  // Fetch the file from the API again
  file = await fileManager.getFile(uploadResult.file.name);
}

if (file.state === FileState.FAILED) {
  throw new Error("Video processing failed.");
}

const prompt = "Describe this video clip";
const videoPart = {
  fileData: {
    fileUri: uploadResult.file.uri,
    mimeType: uploadResult.file.mimeType,
  },
};

const result = await model.generateContentStream([prompt, videoPart]);
// Print text as it comes in.
for await (const chunk of result.stream) {
  const chunkText = chunk.text();
  process.stdout.write(chunkText);
}

Идти

model := client.GenerativeModel("gemini-1.5-flash")

file, err := client.UploadFileFromPath(ctx, filepath.Join(testDataDir, "earth.mp4"), nil)
if err != nil {
	log.Fatal(err)
}
defer client.DeleteFile(ctx, file.Name)

iter := model.GenerateContentStream(ctx,
	genai.Text("Describe this video clip"),
	genai.FileData{URI: file.URI})
for {
	resp, err := iter.Next()
	if err == iterator.Done {
		break
	}
	if err != nil {
		log.Fatal(err)
	}
	printResponse(resp)
}

Оболочка

# Use File API to upload audio data to API request.
MIME_TYPE=$(file -b --mime-type "${VIDEO_PATH}")
NUM_BYTES=$(wc -c < "${VIDEO_PATH}")
DISPLAY_NAME=VIDEO_PATH

# Initial resumable request defining metadata.
# The upload url is in the response headers dump them to a file.
curl "${BASE_URL}/upload/v1beta/files?key=${GOOGLE_API_KEY}" \
  -D upload-header.tmp \
  -H "X-Goog-Upload-Protocol: resumable" \
  -H "X-Goog-Upload-Command: start" \
  -H "X-Goog-Upload-Header-Content-Length: ${NUM_BYTES}" \
  -H "X-Goog-Upload-Header-Content-Type: ${MIME_TYPE}" \
  -H "Content-Type: application/json" \
  -d "{'file': {'display_name': '${DISPLAY_NAME}'}}" 2> /dev/null

upload_url=$(grep -i "x-goog-upload-url: " "${tmp_header_file}" | cut -d" " -f2 | tr -d "\r")
rm "${tmp_header_file}"

# Upload the actual bytes.
curl "${upload_url}" \
  -H "Content-Length: ${NUM_BYTES}" \
  -H "X-Goog-Upload-Offset: 0" \
  -H "X-Goog-Upload-Command: upload, finalize" \
  --data-binary "@${VIDEO_PATH}" 2> /dev/null > file_info.json

file_uri=$(jq ".file.uri" file_info.json)
echo file_uri=$file_uri

state=$(jq ".file.state" file_info.json)
echo state=$state

while [[ "($state)" = *"PROCESSING"* ]];
do
  echo "Processing video..."
  sleep 5
  # Get the file of interest to check state
  curl https://generativelanguage.googleapis.com/v1beta/files/$name > file_info.json
  state=$(jq ".file.state" file_info.json)
done

curl "https://generativelanguage.googleapis.com/v1beta/models/gemini-1.5-flash:streamGenerateContent?alt=sse&key=$GOOGLE_API_KEY" \
    -H 'Content-Type: application/json' \
    -X POST \
    -d '{
      "contents": [{
        "parts":[
          {"text": "Please describe this file."},
          {"file_data":{"mime_type": "video/mp4", "file_uri": '$file_uri'}}]
        }]
       }' 2> /dev/null > response.json

cat response.json
echo

PDF

Питон

model = genai.GenerativeModel("gemini-1.5-flash")
sample_pdf = genai.upload_file(media / "test.pdf")
response = model.generate_content(["Give me a summary of this document:", sample_pdf])

for chunk in response:
    print(chunk.text)
    print("_" * 80)

Оболочка

MIME_TYPE=$(file -b --mime-type "${PDF_PATH}")
NUM_BYTES=$(wc -c < "${PDF_PATH}")
DISPLAY_NAME=TEXT


echo $MIME_TYPE
tmp_header_file=upload-header.tmp

# Initial resumable request defining metadata.
# The upload url is in the response headers dump them to a file.
curl "${BASE_URL}/upload/v1beta/files?key=${GOOGLE_API_KEY}" \
  -D upload-header.tmp \
  -H "X-Goog-Upload-Protocol: resumable" \
  -H "X-Goog-Upload-Command: start" \
  -H "X-Goog-Upload-Header-Content-Length: ${NUM_BYTES}" \
  -H "X-Goog-Upload-Header-Content-Type: ${MIME_TYPE}" \
  -H "Content-Type: application/json" \
  -d "{'file': {'display_name': '${DISPLAY_NAME}'}}" 2> /dev/null

upload_url=$(grep -i "x-goog-upload-url: " "${tmp_header_file}" | cut -d" " -f2 | tr -d "\r")
rm "${tmp_header_file}"

# Upload the actual bytes.
curl "${upload_url}" \
  -H "Content-Length: ${NUM_BYTES}" \
  -H "X-Goog-Upload-Offset: 0" \
  -H "X-Goog-Upload-Command: upload, finalize" \
  --data-binary "@${PDF_PATH}" 2> /dev/null > file_info.json

file_uri=$(jq ".file.uri" file_info.json)
echo file_uri=$file_uri

# Now generate content using that file
curl "https://generativelanguage.googleapis.com/v1beta/models/gemini-1.5-flash:streamGenerateContent?alt=sse&key=$GOOGLE_API_KEY" \
    -H 'Content-Type: application/json' \
    -X POST \
    -d '{
      "contents": [{
        "parts":[
          {"text": "Can you add a few more lines to this poem?"},
          {"file_data":{"mime_type": "application/pdf", "file_uri": '$file_uri'}}]
        }]
       }' 2> /dev/null > response.json

cat response.json
echo

Чат

Питон

model = genai.GenerativeModel("gemini-1.5-flash")
chat = model.start_chat(
    history=[
        {"role": "user", "parts": "Hello"},
        {"role": "model", "parts": "Great to meet you. What would you like to know?"},
    ]
)
response = chat.send_message("I have 2 dogs in my house.", stream=True)
for chunk in response:
    print(chunk.text)
    print("_" * 80)
response = chat.send_message("How many paws are in my house?", stream=True)
for chunk in response:
    print(chunk.text)
    print("_" * 80)

print(chat.history)

Node.js

// Make sure to include these imports:
// import { GoogleGenerativeAI } from "@google/generative-ai";
const genAI = new GoogleGenerativeAI(process.env.API_KEY);
const model = genAI.getGenerativeModel({ model: "gemini-1.5-flash" });
const chat = model.startChat({
  history: [
    {
      role: "user",
      parts: [{ text: "Hello" }],
    },
    {
      role: "model",
      parts: [{ text: "Great to meet you. What would you like to know?" }],
    },
  ],
});
let result = await chat.sendMessageStream("I have 2 dogs in my house.");
for await (const chunk of result.stream) {
  const chunkText = chunk.text();
  process.stdout.write(chunkText);
}
result = await chat.sendMessageStream("How many paws are in my house?");
for await (const chunk of result.stream) {
  const chunkText = chunk.text();
  process.stdout.write(chunkText);
}

Идти

model := client.GenerativeModel("gemini-1.5-flash")
cs := model.StartChat()

cs.History = []*genai.Content{
	{
		Parts: []genai.Part{
			genai.Text("Hello, I have 2 dogs in my house."),
		},
		Role: "user",
	},
	{
		Parts: []genai.Part{
			genai.Text("Great to meet you. What would you like to know?"),
		},
		Role: "model",
	},
}

iter := cs.SendMessageStream(ctx, genai.Text("How many paws are in my house?"))
for {
	resp, err := iter.Next()
	if err == iterator.Done {
		break
	}
	if err != nil {
		log.Fatal(err)
	}
	printResponse(resp)
}

Оболочка

curl https://generativelanguage.googleapis.com/v1beta/models/gemini-1.5-flash:streamGenerateContent?alt=sse&key=$GOOGLE_API_KEY \
    -H 'Content-Type: application/json' \
    -X POST \
    -d '{
      "contents": [
        {"role":"user",
         "parts":[{
           "text": "Hello"}]},
        {"role": "model",
         "parts":[{
           "text": "Great to meet you. What would you like to know?"}]},
        {"role":"user",
         "parts":[{
           "text": "I have two dogs in my house. How many paws are in my house?"}]},
      ]
    }' 2> /dev/null | grep "text"

Котлин

// Use streaming with multi-turn conversations (like chat)
val generativeModel =
    GenerativeModel(
        // Specify a Gemini model appropriate for your use case
        modelName = "gemini-1.5-flash",
        // Access your API key as a Build Configuration variable (see "Set up your API key" above)
        apiKey = BuildConfig.apiKey)

val chat =
    generativeModel.startChat(
        history =
            listOf(
                content(role = "user") { text("Hello, I have 2 dogs in my house.") },
                content(role = "model") {
                  text("Great to meet you. What would you like to know?")
                }))

chat.sendMessageStream("How many paws are in my house?").collect { chunk -> print(chunk.text) }

Быстрый

let generativeModel =
  GenerativeModel(
    // Specify a Gemini model appropriate for your use case
    name: "gemini-1.5-flash",
    // Access your API key from your on-demand resource .plist file (see "Set up your API key"
    // above)
    apiKey: APIKey.default
  )

// Optionally specify existing chat history
let history = [
  ModelContent(role: "user", parts: "Hello, I have 2 dogs in my house."),
  ModelContent(role: "model", parts: "Great to meet you. What would you like to know?"),
]

// Initialize the chat with optional chat history
let chat = generativeModel.startChat(history: history)

// To stream generated text output, call sendMessageStream and pass in the message
let contentStream = chat.sendMessageStream("How many paws are in my house?")
for try await chunk in contentStream {
  if let text = chunk.text {
    print(text)
  }
}

Дарт

final model = GenerativeModel(
  model: 'gemini-1.5-flash',
  apiKey: apiKey,
);
final chat = model.startChat(history: [
  Content.text('hello'),
  Content.model([TextPart('Great to meet you. What would you like to know?')])
]);
var responses =
    chat.sendMessageStream(Content.text('I have 2 dogs in my house.'));
await for (final response in responses) {
  print(response.text);
  print('_' * 80);
}
responses =
    chat.sendMessageStream(Content.text('How many paws are in my house?'));
await for (final response in responses) {
  print(response.text);
  print('_' * 80);
}

Ява

// Specify a Gemini model appropriate for your use case
GenerativeModel gm =
    new GenerativeModel(
        /* modelName */ "gemini-1.5-flash",
        // Access your API key as a Build Configuration variable (see "Set up your API key"
        // above)
        /* apiKey */ BuildConfig.apiKey);
GenerativeModelFutures model = GenerativeModelFutures.from(gm);

// (optional) Create previous chat history for context
Content.Builder userContentBuilder = new Content.Builder();
userContentBuilder.setRole("user");
userContentBuilder.addText("Hello, I have 2 dogs in my house.");
Content userContent = userContentBuilder.build();

Content.Builder modelContentBuilder = new Content.Builder();
modelContentBuilder.setRole("model");
modelContentBuilder.addText("Great to meet you. What would you like to know?");
Content modelContent = userContentBuilder.build();

List<Content> history = Arrays.asList(userContent, modelContent);

// Initialize the chat
ChatFutures chat = model.startChat(history);

// Create a new user message
Content.Builder userMessageBuilder = new Content.Builder();
userMessageBuilder.setRole("user");
userMessageBuilder.addText("How many paws are in my house?");
Content userMessage = userMessageBuilder.build();

// Use streaming with text-only input
Publisher<GenerateContentResponse> streamingResponse = model.generateContentStream(userMessage);

StringBuilder outputContent = new StringBuilder();

streamingResponse.subscribe(
    new Subscriber<GenerateContentResponse>() {
      @Override
      public void onNext(GenerateContentResponse generateContentResponse) {
        String chunk = generateContentResponse.getText();
        outputContent.append(chunk);
      }

      @Override
      public void onComplete() {
        System.out.println(outputContent);
      }

      @Override
      public void onSubscribe(Subscription s) {
        s.request(Long.MAX_VALUE);
      }

      @Override
      public void onError(Throwable t) {}

    });

Тело ответа

В случае успеха тело ответа содержит поток экземпляров GenerateContentResponse .

ГенерироватьКонтентОтвет

Ответ модели, поддерживающей ответы нескольких кандидатов.

Рейтинги безопасности и фильтрация контента сообщаются как для приглашения в GenerateContentResponse.prompt_feedback , так и для каждого кандидата в finishReason и safetyRatings . API: - Возвращает либо всех запрошенных кандидатов, либо ни одного из них. - Не возвращает кандидатов вообще, только если что-то не так с подсказкой (проверьте promptFeedback ). - Сообщает отзывы о каждом кандидате в finishReason и safetyRatings .

Поля
объект candidates[] object ( Candidate )

Ответы кандидата от модели.

object ( PromptFeedback ) promptFeedback ( PromptFeedback )

Возвращает отзыв о приглашении, связанный с фильтрами содержимого.

объект usageMetadata object ( UsageMetadata )

Только вывод. Метаданные об использовании токена запросов генерации.

JSON-представление
{
  "candidates": [
    {
      object (Candidate)
    }
  ],
  "promptFeedback": {
    object (PromptFeedback)
  },
  "usageMetadata": {
    object (UsageMetadata)
  }
}

ПодсказкаОбратная связь

Набор метаданных обратной связи, указанный в приглашении GenerateContentRequest.content .

Поля
перечисление blockReason enum ( BlockReason )

Необязательный. Если установлено, приглашение блокируется и кандидаты не возвращаются. Перефразируйте подсказку.

Объект safetyRatings[] object ( SafetyRating )

Оценки за безопасность подсказки. В каждой категории может быть не более одного рейтинга.

JSON-представление
{
  "blockReason": enum (BlockReason),
  "safetyRatings": [
    {
      object (SafetyRating)
    }
  ]
}

БлокПричина

Указывает причину, по которой приглашение было заблокировано.

Перечисления
BLOCK_REASON_UNSPECIFIED Значение по умолчанию. Это значение не используется.
SAFETY Подсказка заблокирована по соображениям безопасности. Проверьте safetyRatings , чтобы понять, какая категория безопасности заблокировала его.
OTHER Подсказка заблокирована по неизвестным причинам.
BLOCKLIST Подсказка заблокирована из-за терминов, включенных в черный список терминологии.
PROHIBITED_CONTENT Подсказка заблокирована из-за запрещенного контента.

Использованиеметаданные

Метаданные об использовании токена запроса генерации.

Поля
promptTokenCount integer

Количество токенов в приглашении. Если установлен cachedContent , это по-прежнему общий эффективный размер приглашения, что означает, что он включает в себя количество токенов в кэшированном контенте.

integer cachedContentTokenCount

Количество токенов в кэшированной части приглашения (кэшированный контент)

integer candidatesTokenCount

Общее количество токенов среди всех сгенерированных кандидатов на ответ.

totalTokenCount integer

Общее количество токенов для запроса на создание (приглашение + кандидаты на ответ).

JSON-представление
{
  "promptTokenCount": integer,
  "cachedContentTokenCount": integer,
  "candidatesTokenCount": integer,
  "totalTokenCount": integer
}

Кандидат

Кандидат на ответ, созданный на основе модели.

Поля
объект content object ( Content )

Только вывод. Сгенерированный контент, возвращенный из модели.

перечисление finishReason enum ( FinishReason )

Необязательный. Только вывод. Причина, по которой модель перестала генерировать токены.

Если пусто, модель не прекратила генерировать токены.

Объект safetyRatings[] object ( SafetyRating )

Список оценок безопасности кандидата-ответчика.

В каждой категории может быть не более одного рейтинга.

объект citationMetadata object ( CitationMetadata )

Только вывод. Информация о цитировании кандидата, созданного моделью.

Это поле может быть заполнено информацией о декламации любого текста, включенного в content . Это отрывки, которые «зачитаны» из материалов, защищенных авторским правом, в основных учебных данных LLM.

integer tokenCount

Только вывод. Количество токенов для этого кандидата.

number avgLogprobs

Только вывод.

объект logprobsResult object ( LogprobsResult )

Только вывод. Оценки логарифмического правдоподобия для токенов ответа и верхних токенов

integer index

Только вывод. Индекс кандидата в списке откликнувшихся кандидатов.

JSON-представление
{
  "content": {
    object (Content)
  },
  "finishReason": enum (FinishReason),
  "safetyRatings": [
    {
      object (SafetyRating)
    }
  ],
  "citationMetadata": {
    object (CitationMetadata)
  },
  "tokenCount": integer,
  "avgLogprobs": number,
  "logprobsResult": {
    object (LogprobsResult)
  },
  "index": integer
}

FinishReason

Определяет причину, по которой модель перестала генерировать токены.

Перечисления
FINISH_REASON_UNSPECIFIED Значение по умолчанию. Это значение не используется.
STOP Естественная точка остановки модели или предусмотренная последовательность остановок.
MAX_TOKENS Достигнуто максимальное количество токенов, указанное в запросе.
SAFETY Содержимое кандидата на ответ было помечено по соображениям безопасности.
RECITATION Содержимое кандидата на ответ было помечено по причине повторения.
LANGUAGE Содержимое кандидата на ответ было помечено как использующее неподдерживаемый язык.
OTHER Неизвестная причина.
BLOCKLIST Генерация токенов остановлена, поскольку контент содержит запрещенные термины.
PROHIBITED_CONTENT Генерация токенов остановлена ​​из-за потенциального содержания запрещенного контента.
SPII Генерация токенов остановлена, поскольку контент потенциально содержит конфиденциальную информацию, позволяющую установить личность (SPII).
MALFORMED_FUNCTION_CALL Вызов функции, сгенерированный моделью, недействителен.

LogprobsResult

Результат logprobs

Поля
объект topCandidates[] object ( TopCandidates )

Длина = общее количество шагов декодирования.

object ( Candidate ) chosenCandidates[] (Кандидат)

Длина = общее количество шагов декодирования. Выбранные кандидаты могут быть или не быть в топКандидатах.

JSON-представление
{
  "topCandidates": [
    {
      object (TopCandidates)
    }
  ],
  "chosenCandidates": [
    {
      object (Candidate)
    }
  ]
}

ТопКандидаты

Кандидаты с максимальными логарифмическими вероятностями на каждом этапе декодирования.

Поля
объект candidates[] object ( Candidate )

Сортировано по логарифмической вероятности в порядке убывания.

JSON-представление
{
  "candidates": [
    {
      object (Candidate)
    }
  ]
}

Кандидат

Кандидат на токен и оценку logprobs.

Поля
string token

Строковое значение токена кандидата.

tokenId integer

Значение идентификатора токена кандидата.

logProbability number

Логарифм вероятности кандидата.

JSON-представление
{
  "token": string,
  "tokenId": integer,
  "logProbability": number
}

Метаданные цитирования

Коллекция источников для части контента.

Поля
объект citationSources[] object ( CitationSource )

Ссылки на источники для конкретного ответа.

JSON-представление
{
  "citationSources": [
    {
      object (CitationSource)
    }
  ]
}

ЦитированиеИсточник

Ссылка на источник части конкретного ответа.

Поля
startIndex integer

Необязательный. Начало сегмента ответа, приписываемого этому источнику.

Индекс указывает начало сегмента, измеряется в байтах.

integer endIndex

Необязательный. Конец присвоенного сегмента, эксклюзивный.

string uri

Необязательный. URI, который считается источником части текста.

string license

Необязательный. Лицензия на проект GitHub, указанный в качестве источника для сегмента.

Информация о лицензии необходима для цитирования кода.

JSON-представление
{
  "startIndex": integer,
  "endIndex": integer,
  "uri": string,
  "license": string
}

Конфигурация поколения

Параметры конфигурации для создания модели и выходных данных. Не все параметры можно настроить для каждой модели.

Поля
stopSequences[] string

Необязательный. Набор последовательностей символов (до 5), которые останавливают генерацию вывода. Если указано, API остановится при первом появлении stop_sequence . Последовательность остановки не будет включена в ответ.

string responseMimeType

Необязательный. MIME-тип сгенерированного текста-кандидата. Поддерживаемые типы MIME: text/plain : (по умолчанию) текстовый вывод. application/json : ответ JSON в кандидатах на ответ. text/x.enum : ENUM как строковый ответ в кандидатах на ответ. Обратитесь к документации для получения списка всех поддерживаемых текстовых типов MIME.

Объект responseSchema object ( Schema )

Необязательный. Выходная схема сгенерированного текста-кандидата. Схемы должны быть подмножеством схемы OpenAPI и могут быть объектами, примитивами или массивами.

Если установлено, также должен быть установлен совместимый тип responseMimeType . Совместимые типы MIME: application/json : схема ответа JSON. Дополнительные сведения см. в руководстве по созданию текста JSON .

integer candidateCount

Необязательный. Количество сгенерированных ответов для возврата.

В настоящее время для этого значения можно установить только значение 1. Если оно не установлено, по умолчанию оно будет равно 1.

integer maxOutputTokens

Необязательный. Максимальное количество токенов, которые можно включить в кандидата ответа.

Примечание. Значение по умолчанию зависит от модели. См. атрибут Model.output_token_limit Model возвращаемой функцией getModel .

number temperature

Необязательный. Управляет случайностью вывода.

Примечание. Значение по умолчанию зависит от модели. См. атрибут Model.temperature Model возвращаемый функцией getModel .

Значения могут варьироваться от [0,0, 2,0].

number topP

Необязательный. Максимальная совокупная вероятность токенов, которую следует учитывать при выборке.

В модели используется комбинированная выборка Top-k и Top-p (ядро).

Токены сортируются на основе присвоенных им вероятностей, поэтому учитываются только наиболее вероятные токены. Выборка Top-k напрямую ограничивает максимальное количество рассматриваемых токенов, тогда как выборка Nucleus ограничивает количество токенов на основе кумулятивной вероятности.

Примечание. Значение по умолчанию зависит от Model и задается атрибутом Model.top_p возвращаемым функцией getModel . Пустой атрибут topK указывает, что модель не применяет выборку top-k и не позволяет устанавливать topK для запросов.

integer topK

Необязательный. Максимальное количество токенов, которые следует учитывать при выборке.

В моделях Gemini используется выборка Top-p (ядра) или комбинация Top-k и выборки ядра. Выборка Top-k рассматривает набор наиболее вероятных токенов topK . Модели, работающие с выборкой ядер, не позволяют устанавливать topK.

Примечание. Значение по умолчанию зависит от Model и задается атрибутом Model.top_p возвращаемым функцией getModel . Пустой атрибут topK указывает, что модель не применяет выборку top-k и не позволяет устанавливать topK для запросов.

presencePenalty number

Необязательный. Штраф за присутствие применяется к пробам журнала следующего токена, если токен уже был замечен в ответе.

Этот штраф является бинарным, включается/выключается и не зависит от количества раз использования токена (после первого). Используйте frequencyPenalty для получения штрафа, который увеличивается с каждым использованием.

Положительное наказание будет препятствовать использованию токенов, которые уже использовались в ответе, увеличивая словарный запас.

Отрицательное наказание будет стимулировать использование токенов, которые уже использовались в ответе, уменьшая словарный запас.

frequencyPenalty number

Необязательный. Штраф за частоту, применяемый к лог-пробам следующего токена, умножается на количество раз, когда каждый токен был замечен в ответе на данный момент.

Положительный штраф будет препятствовать использованию уже использованных токенов, пропорционально количеству раз, когда токен использовался: чем больше используется токен, тем сложнее модели снова использовать этот токен, увеличивая словарный запас. ответов.

Внимание: отрицательный штраф будет стимулировать модель к повторному использованию токенов пропорционально количеству раз, когда токен использовался. Небольшие отрицательные значения уменьшат словарный запас ответа. Большие отрицательные значения заставят модель начать повторять общий токен до тех пор, пока он не достигнет предела maxOutputTokens : «...the the the...».

responseLogprobs boolean

Необязательный. Если это правда, экспортируйте результаты logprobs в ответ.

integer logprobs

Необязательный. Действительно только в том случае, если responseLogprobs=True . Это устанавливает количество лучших журнальных проб, возвращаемых на каждом этапе декодирования в Candidate.logprobs_result .

JSON-представление
{
  "stopSequences": [
    string
  ],
  "responseMimeType": string,
  "responseSchema": {
    object (Schema)
  },
  "candidateCount": integer,
  "maxOutputTokens": integer,
  "temperature": number,
  "topP": number,
  "topK": integer,
  "presencePenalty": number,
  "frequencyPenalty": number,
  "responseLogprobs": boolean,
  "logprobs": integer
}

Категория Вреда

Категория рейтинга.

Эти категории охватывают различные виды вреда, которые разработчики, возможно, захотят устранить.

Перечисления
HARM_CATEGORY_UNSPECIFIED Категория не указана.
HARM_CATEGORY_DEROGATORY PaLM — негативные или вредные комментарии, направленные против личности и/или защищенного атрибута.
HARM_CATEGORY_TOXICITY PaLM – грубый, неуважительный или оскорбительный контент.
HARM_CATEGORY_VIOLENCE PaLM — описывает сценарии, изображающие насилие против отдельного человека или группы, или общие описания кровавых событий.
HARM_CATEGORY_SEXUAL PaLM — содержит ссылки на сексуальные действия или другой непристойный контент.
HARM_CATEGORY_MEDICAL PaLM — пропагандирует непроверенные медицинские советы.
HARM_CATEGORY_DANGEROUS PaLM — Опасный контент, который пропагандирует, облегчает или поощряет вредные действия.
HARM_CATEGORY_HARASSMENT Близнецы — контент с преследованием.
HARM_CATEGORY_HATE_SPEECH Близнецы — разжигание ненависти и контент.
HARM_CATEGORY_SEXUALLY_EXPLICIT Близнецы – контент откровенно сексуального характера.
HARM_CATEGORY_DANGEROUS_CONTENT Близнецы – Опасный контент.
HARM_CATEGORY_CIVIC_INTEGRITY Близнецы — контент, который может быть использован для нанесения ущерба гражданской целостности.

Рейтинг безопасности

Рейтинг безопасности части контента.

Рейтинг безопасности содержит категорию вреда и уровень вероятности вреда в этой категории для части контента. Контент классифицируется по безопасности по ряду категорий вреда, и сюда включена вероятность классификации вреда.

Поля
перечисление category enum ( HarmCategory )

Необходимый. Категория для этого рейтинга.

probability enum ( HarmProbability )

Необходимый. Вероятность вреда для этого контента.

blocked boolean

Был ли этот контент заблокирован из-за такого рейтинга?

JSON-представление
{
  "category": enum (HarmCategory),
  "probability": enum (HarmProbability),
  "blocked": boolean
}

ВредВероятность

Вероятность того, что часть контента является вредоносной.

Система классификации дает вероятность того, что контент небезопасен. Это не указывает на тяжесть вреда для части контента.

Перечисления
HARM_PROBABILITY_UNSPECIFIED Вероятность не указана.
NEGLIGIBLE Контент имеет ничтожную вероятность оказаться небезопасным.
LOW Контент имеет низкую вероятность оказаться небезопасным.
MEDIUM Контент имеет средний шанс оказаться небезопасным.
HIGH Контент имеет высокую вероятность оказаться небезопасным.

Настройка безопасности

Настройка безопасности, влияющая на поведение блокировки безопасности.

Передача параметра безопасности для категории изменяет допустимую вероятность блокировки контента.

Поля
перечисление category enum ( HarmCategory )

Необходимый. Категория для этого параметра.

перечисление threshold enum ( HarmBlockThreshold )

Необходимый. Управляет порогом вероятности, при котором блокируется вред.

JSON-представление
{
  "category": enum (HarmCategory),
  "threshold": enum (HarmBlockThreshold)
}

ВредБлокПорог

Блокировать при определенной вероятности нанесения вреда и за ее пределами.

Перечисления
HARM_BLOCK_THRESHOLD_UNSPECIFIED Порог не указан.
BLOCK_LOW_AND_ABOVE Контент с НЕзначительным значением будет разрешен.
BLOCK_MEDIUM_AND_ABOVE Контент с НЕЗНАЧИТЕЛЬНЫМ и НИЗКИМ уровнем будет разрешен.
BLOCK_ONLY_HIGH Контент с параметрами НЕБОЛЬШОЙ, НИЗКИЙ и СРЕДНИЙ будет разрешен.
BLOCK_NONE Весь контент будет разрешен.
OFF Отключите защитный фильтр.