Creazione di grafici in C++

Il generatore di grafici C++ è un potente strumento per:

  • Creazione di grafici complessi
  • Parametrizzazione dei grafici (ad esempio, impostazione di un delegato su InferenceCalculator, attivazione/disattivazione di parti del grafico)
  • Deduplicazione dei grafici (ad esempio, invece di grafici dedicati a CPU e GPU in pbtxt, puoi avere un unico codice che costruisce i grafici richiesti, condividendo il più possibile)
  • Supporto di input/output di grafici facoltativi
  • Personalizzazione dei grafici per piattaforma

Utilizzo di base

Vediamo come si può utilizzare il generatore di grafici C++ per un semplice grafico:

# Graph inputs.
input_stream: "input_tensors"
input_side_packet: "model"

# Graph outputs.
output_stream: "output_tensors"

node {
  calculator: "InferenceCalculator"
  input_stream: "TENSORS:input_tensors"
  input_side_packet: "MODEL:model"
  output_stream: "TENSORS:output_tensors"
  options: {
    [drishti.InferenceCalculatorOptions.ext] {
      # Requesting GPU delegate.
      delegate { gpu {} }
    }
  }
}

La funzione per creare l'elemento CalculatorGraphConfig sopra riportato può avere il seguente aspetto:

CalculatorGraphConfig BuildGraph() {
  Graph graph;

  // Graph inputs.
  Stream<std::vector<Tensor>> input_tensors =
      graph.In(0).SetName("input_tensors").Cast<std::vector<Tensor>>();
  SidePacket<TfLiteModelPtr> model =
      graph.SideIn(0).SetName("model").Cast<TfLiteModelPtr>();

  auto& inference_node = graph.AddNode("InferenceCalculator");
  auto& inference_opts =
      inference_node.GetOptions<InferenceCalculatorOptions>();
  // Requesting GPU delegate.
  inference_opts.mutable_delegate()->mutable_gpu();
  input_tensors.ConnectTo(inference_node.In("TENSORS"));
  model.ConnectTo(inference_node.SideIn("MODEL"));
  Stream<std::vector<Tensor>> output_tensors =
      inference_node.Out("TENSORS").Cast<std::vector<Tensor>>();

  // Graph outputs.
  output_tensors.SetName("output_tensors").ConnectTo(graph.Out(0));

  // Get `CalculatorGraphConfig` to pass it into `CalculatorGraph`
  return graph.GetConfig();
}

Breve riepilogo:

  • Utilizza Graph::In/SideIn per ottenere input grafico come Stream/SidePacket
  • Utilizza Node::Out/SideOut per ottenere output del nodo come Stream/SidePacket
  • Usa Stream/SidePacket::ConnectTo per collegare i flussi e i pacchetti laterali agli ingressi dei nodi (Node::In/SideIn) e agli output del grafico (Graph::Out/SideOut)
    • È presente un operatore di "scorciatoia" >> che puoi utilizzare al posto della funzione ConnectTo (ad es. x >> node.In("IN")).
  • Stream/SidePacket::Cast viene utilizzato per trasmettere il flusso o il pacchetto laterale di AnyType (ad es. Stream<AnyType> in = graph.In(0);) a un tipo particolare
    • L'utilizzo di tipi effettivi invece di AnyType ti consente di intraprendere un percorso migliore per sfruttare le funzionalità del generatore di grafici e migliorare la leggibilità dei grafici.

Utilizzo avanzato

Funzioni di utilità

Estraiamo il codice di costruzione dell'inferenza in una funzione di utilità dedicata per favorire la leggibilità e il riutilizzo del codice:

// Updates graph to run inference.
Stream<std::vector<Tensor>> RunInference(
    Stream<std::vector<Tensor>> tensors, SidePacket<TfLiteModelPtr> model,
    const InferenceCalculatorOptions::Delegate& delegate, Graph& graph) {
  auto& inference_node = graph.AddNode("InferenceCalculator");
  auto& inference_opts =
      inference_node.GetOptions<InferenceCalculatorOptions>();
  *inference_opts.mutable_delegate() = delegate;
  tensors.ConnectTo(inference_node.In("TENSORS"));
  model.ConnectTo(inference_node.SideIn("MODEL"));
  return inference_node.Out("TENSORS").Cast<std::vector<Tensor>>();
}

CalculatorGraphConfig BuildGraph() {
  Graph graph;

  // Graph inputs.
  Stream<std::vector<Tensor>> input_tensors =
      graph.In(0).SetName("input_tensors").Cast<std::vector<Tensor>>();
  SidePacket<TfLiteModelPtr> model =
      graph.SideIn(0).SetName("model").Cast<TfLiteModelPtr>();

  InferenceCalculatorOptions::Delegate delegate;
  delegate.mutable_gpu();
  Stream<std::vector<Tensor>> output_tensors =
      RunInference(input_tensors, model, delegate, graph);

  // Graph outputs.
  output_tensors.SetName("output_tensors").ConnectTo(graph.Out(0));

  return graph.GetConfig();
}

Di conseguenza, RunInference fornisce un'interfaccia chiara che indica quali sono gli input/output e il relativo tipo.

Può essere facilmente riutilizzato. Ad esempio, sono solo poche righe se vuoi eseguire un'ulteriore inferenza del modello:

  // Run first inference.
  Stream<std::vector<Tensor>> output_tensors =
      RunInference(input_tensors, model, delegate, graph);
  // Run second inference on the output of the first one.
  Stream<std::vector<Tensor>> extra_output_tensors =
      RunInference(output_tensors, extra_model, delegate, graph);

Inoltre, non è necessario duplicare nomi e tag (InferenceCalculator, TENSORS, MODEL) o introdurre costanti dedicate qua e là: questi dettagli sono localizzati nella funzione RunInference.

Classi di società di servizi pubblici

Non si tratta solo di funzioni, ma in alcuni casi è utile introdurre classi di utilità che contribuiscano a rendere il codice di creazione del grafico più leggibile e meno soggetto a errori.

MediaPipe offre il calcolatore PassThroughCalculator, che trasmette semplicemente i suoi input:

input_stream: "float_value"
input_stream: "int_value"
input_stream: "bool_value"

output_stream: "passed_float_value"
output_stream: "passed_int_value"
output_stream: "passed_bool_value"

node {
  calculator: "PassThroughCalculator"
  input_stream: "float_value"
  input_stream: "int_value"
  input_stream: "bool_value"
  # The order must be the same as for inputs (or you can use explicit indexes)
  output_stream: "passed_float_value"
  output_stream: "passed_int_value"
  output_stream: "passed_bool_value"
}

Esaminiamo il semplice codice di costruzione di C++ per creare il grafico riportato sopra:

CalculatorGraphConfig BuildGraph() {
  Graph graph;

  // Graph inputs.
  Stream<float> float_value = graph.In(0).SetName("float_value").Cast<float>();
  Stream<int> int_value = graph.In(1).SetName("int_value").Cast<int>();
  Stream<bool> bool_value = graph.In(2).SetName("bool_value").Cast<bool>();

  auto& pass_node = graph.AddNode("PassThroughCalculator");
  float_value.ConnectTo(pass_node.In("")[0]);
  int_value.ConnectTo(pass_node.In("")[1]);
  bool_value.ConnectTo(pass_node.In("")[2]);
  Stream<float> passed_float_value = pass_node.Out("")[0].Cast<float>();
  Stream<int> passed_int_value = pass_node.Out("")[1].Cast<int>();
  Stream<bool> passed_bool_value = pass_node.Out("")[2].Cast<bool>();

  // Graph outputs.
  passed_float_value.SetName("passed_float_value").ConnectTo(graph.Out(0));
  passed_int_value.SetName("passed_int_value").ConnectTo(graph.Out(1));
  passed_bool_value.SetName("passed_bool_value").ConnectTo(graph.Out(2));

  // Get `CalculatorGraphConfig` to pass it into `CalculatorGraph`
  return graph.GetConfig();
}

Mentre la rappresentazione pbtxt potrebbe essere soggetta a errori (quando abbiamo molti input da trasmettere), il codice C++ sembra ancora peggio: tag vuoti ripetuti e chiamate Cast. Vediamo come possiamo migliorare introducendo un PassThroughNodeBuilder:

class PassThroughNodeBuilder {
 public:
  explicit PassThroughNodeBuilder(Graph& graph)
      : node_(graph.AddNode("PassThroughCalculator")) {}

  template <typename T>
  Stream<T> PassThrough(Stream<T> stream) {
    stream.ConnectTo(node_.In(index_));
    return node_.Out(index_++).Cast<T>();
  }

 private:
  int index_ = 0;
  GenericNode& node_;
};

E ora il codice di costruzione del grafico può avere il seguente aspetto:

CalculatorGraphConfig BuildGraph() {
  Graph graph;

  // Graph inputs.
  Stream<float> float_value = graph.In(0).SetName("float_value").Cast<float>();
  Stream<int> int_value = graph.In(1).SetName("int_value").Cast<int>();
  Stream<bool> bool_value = graph.In(2).SetName("bool_value").Cast<bool>();

  PassThroughNodeBuilder pass_node_builder(graph);
  Stream<float> passed_float_value = pass_node_builder.PassThrough(float_value);
  Stream<int> passed_int_value = pass_node_builder.PassThrough(int_value);
  Stream<bool> passed_bool_value = pass_node_builder.PassThrough(bool_value);

  // Graph outputs.
  passed_float_value.SetName("passed_float_value").ConnectTo(graph.Out(0));
  passed_int_value.SetName("passed_int_value").ConnectTo(graph.Out(1));
  passed_bool_value.SetName("passed_bool_value").ConnectTo(graph.Out(2));

  // Get `CalculatorGraphConfig` to pass it into `CalculatorGraph`
  return graph.GetConfig();
}

Ora non puoi più avere un ordine o un indice errato nel codice di costruzione pass-through e risparmiare qualche tipo di testo da digitare indovinare il tipo di Cast dall'input PassThrough.

Cosa fare e cosa non fare

Se possibile, definisci gli input del grafico all'inizio

Nel codice seguente:

  • Può essere difficile indovinare quanti input hai nel grafico.
  • Può essere generalmente soggetto a errori ed è difficile da gestire in futuro (ad esempio, si tratta di un indice corretto, del nome o se alcuni input vengono rimossi o resi facoltativi? e così via).
  • Il riutilizzo di RunSomething è limitato perché altri grafici potrebbero avere input diversi

COSA NON FARE: esempio di codice errato.

Stream<D> RunSomething(Stream<A> a, Stream<B> b, Graph& graph) {
  Stream<C> c = graph.In(2).SetName("c").Cast<C>();  // Bad.
  // ...
}

CalculatorGraphConfig BuildGraph() {
  Graph graph;

  Stream<A> a = graph.In(0).SetName("a").Cast<A>();
  // 10/100/N lines of code.
  Stream<B> b = graph.In(1).SetName("b").Cast<B>()  // Bad.
  Stream<D> d = RunSomething(a, b, graph);
  // ...

  return graph.GetConfig();
}

Definisci invece gli input del grafico all'inizio del generatore di grafici:

COSA FARE: esempio di codice corretto.

Stream<D> RunSomething(Stream<A> a, Stream<B> b, Stream<C> c, Graph& graph) {
  // ...
}

CalculatorGraphConfig BuildGraph() {
  Graph graph;

  // Inputs.
  Stream<A> a = graph.In(0).SetName("a").Cast<A>();
  Stream<B> b = graph.In(1).SetName("b").Cast<B>();
  Stream<C> c = graph.In(2).SetName("c").Cast<C>();

  // 10/100/N lines of code.
  Stream<D> d = RunSomething(a, b, c, graph);
  // ...

  return graph.GetConfig();
}

Utilizza std::optional se hai un flusso di input o un pacchetto laterale non sempre definito e inseriscilo all'inizio:

COSA FARE: esempio di codice corretto.

std::optional<Stream<A>> a;
if (needs_a) {
  a = graph.In(0).SetName(a).Cast<A>();
}

Definisci gli output del grafico alla fine

Nel codice seguente:

  • Può essere difficile indovinare quanti output hai nel grafico.
  • Può essere generalmente soggetto a errori ed è difficile da gestire in futuro (ad esempio, si tratta di un indice corretto, del nome? E se alcuni outpu vengano rimossi o resi facoltativi? e così via).
  • Il riutilizzo di RunSomething è limitato perché altri grafici potrebbero avere output diversi

COSA NON FARE: esempio di codice errato.

void RunSomething(Stream<Input> input, Graph& graph) {
  // ...
  node.Out("OUTPUT_F")
      .SetName("output_f").ConnectTo(graph.Out(2));  // Bad.
}

CalculatorGraphConfig BuildGraph() {
  Graph graph;

  // 10/100/N lines of code.
  node.Out("OUTPUT_D")
      .SetName("output_d").ConnectTo(graph.Out(0));  // Bad.
  // 10/100/N lines of code.
  node.Out("OUTPUT_E")
      .SetName("output_e").ConnectTo(graph.Out(1));  // Bad.
  // 10/100/N lines of code.
  RunSomething(input, graph);
  // ...

  return graph.GetConfig();
}

Definisci invece gli output del grafico alla fine del generatore di grafici:

COSA FARE: esempio di codice corretto.

Stream<F> RunSomething(Stream<Input> input, Graph& graph) {
  // ...
  return node.Out("OUTPUT_F").Cast<F>();
}

CalculatorGraphConfig BuildGraph() {
  Graph graph;

  // 10/100/N lines of code.
  Stream<D> d = node.Out("OUTPUT_D").Cast<D>();
  // 10/100/N lines of code.
  Stream<E> e = node.Out("OUTPUT_E").Cast<E>();
  // 10/100/N lines of code.
  Stream<F> f = RunSomething(input, graph);
  // ...

  // Outputs.
  d.SetName("output_d").ConnectTo(graph.Out(0));
  e.SetName("output_e").ConnectTo(graph.Out(1));
  f.SetName("output_f").ConnectTo(graph.Out(2));

  return graph.GetConfig();
}

Mantieni i nodi disaccoppiati tra loro

In MediaPipe, i flussi di pacchetti e i pacchetti laterali hanno la stessa importanza dei nodi di elaborazione. Tutti i requisiti di input e i prodotti di output dei nodi vengono espressi in modo chiaro e indipendente in termini di flussi e pacchetti secondari che consuma e produce.

COSA NON FARE: esempio di codice errato.

CalculatorGraphConfig BuildGraph() {
  Graph graph;

  // Inputs.
  Stream<A> a = graph.In(0).Cast<A>();

  auto& node1 = graph.AddNode("Calculator1");
  a.ConnectTo(node1.In("INPUT"));

  auto& node2 = graph.AddNode("Calculator2");
  node1.Out("OUTPUT").ConnectTo(node2.In("INPUT"));  // Bad.

  auto& node3 = graph.AddNode("Calculator3");
  node1.Out("OUTPUT").ConnectTo(node3.In("INPUT_B"));  // Bad.
  node2.Out("OUTPUT").ConnectTo(node3.In("INPUT_C"));  // Bad.

  auto& node4 = graph.AddNode("Calculator4");
  node1.Out("OUTPUT").ConnectTo(node4.In("INPUT_B"));  // Bad.
  node2.Out("OUTPUT").ConnectTo(node4.In("INPUT_C"));  // Bad.
  node3.Out("OUTPUT").ConnectTo(node4.In("INPUT_D"));  // Bad.

  // Outputs.
  node1.Out("OUTPUT").SetName("b").ConnectTo(graph.Out(0));  // Bad.
  node2.Out("OUTPUT").SetName("c").ConnectTo(graph.Out(1));  // Bad.
  node3.Out("OUTPUT").SetName("d").ConnectTo(graph.Out(2));  // Bad.
  node4.Out("OUTPUT").SetName("e").ConnectTo(graph.Out(3));  // Bad.

  return graph.GetConfig();
}

Nel codice riportato sopra:

  • I nodi sono accoppiati l'uno all'altro, ad esempio node4 sa da dove provengono i suoi input (node1, node2, node3) e questo complica refactoring, manutenzione e riutilizzo del codice
    • Questo pattern di utilizzo è un downgrade dalla rappresentazione proto, in cui i nodi sono disaccoppiati per impostazione predefinita.
  • Le chiamate node#.Out("OUTPUT") sono duplicate e la leggibilità ne riduce, perché potresti utilizzare nomi più chiari e fornire anche un tipo effettivo.

Quindi, per risolvere i problemi sopra indicati, puoi scrivere il seguente codice di creazione del grafico:

COSA FARE: esempio di codice corretto.

CalculatorGraphConfig BuildGraph() {
  Graph graph;

  // Inputs.
  Stream<A> a = graph.In(0).Cast<A>();

  // `node1` usage is limited to 3 lines below.
  auto& node1 = graph.AddNode("Calculator1");
  a.ConnectTo(node1.In("INPUT"));
  Stream<B> b = node1.Out("OUTPUT").Cast<B>();

  // `node2` usage is limited to 3 lines below.
  auto& node2 = graph.AddNode("Calculator2");
  b.ConnectTo(node2.In("INPUT"));
  Stream<C> c = node2.Out("OUTPUT").Cast<C>();

  // `node3` usage is limited to 4 lines below.
  auto& node3 = graph.AddNode("Calculator3");
  b.ConnectTo(node3.In("INPUT_B"));
  c.ConnectTo(node3.In("INPUT_C"));
  Stream<D> d = node3.Out("OUTPUT").Cast<D>();

  // `node4` usage is limited to 5 lines below.
  auto& node4 = graph.AddNode("Calculator4");
  b.ConnectTo(node4.In("INPUT_B"));
  c.ConnectTo(node4.In("INPUT_C"));
  d.ConnectTo(node4.In("INPUT_D"));
  Stream<E> e = node4.Out("OUTPUT").Cast<E>();

  // Outputs.
  b.SetName("b").ConnectTo(graph.Out(0));
  c.SetName("c").ConnectTo(graph.Out(1));
  d.SetName("d").ConnectTo(graph.Out(2));
  e.SetName("e").ConnectTo(graph.Out(3));

  return graph.GetConfig();
}

Ora, se necessario, puoi facilmente rimuovere node1 e rendere b un input del grafico e non sono necessari aggiornamenti per node2, node3 e node4 (come nella rappresentazione proto), perché sono disaccoppiati l'uno dall'altro.

Nel complesso, il codice riportato sopra replica il grafico proto in modo più dettagliato:

input_stream: "a"

node {
  calculator: "Calculator1"
  input_stream: "INPUT:a"
  output_stream: "OUTPUT:b"
}

node {
  calculator: "Calculator2"
  input_stream: "INPUT:b"
  output_stream: "OUTPUT:C"
}

node {
  calculator: "Calculator3"
  input_stream: "INPUT_B:b"
  input_stream: "INPUT_C:c"
  output_stream: "OUTPUT:d"
}

node {
  calculator: "Calculator4"
  input_stream: "INPUT_B:b"
  input_stream: "INPUT_C:c"
  input_stream: "INPUT_D:d"
  output_stream: "OUTPUT:e"
}

output_stream: "b"
output_stream: "c"
output_stream: "d"
output_stream: "e"

Inoltre, ora puoi estrarre funzioni di utilità per riutilizzarle ulteriormente in altri grafici:

COSA FARE: esempio di codice corretto.

Stream<B> RunCalculator1(Stream<A> a, Graph& graph) {
  auto& node = graph.AddNode("Calculator1");
  a.ConnectTo(node.In("INPUT"));
  return node.Out("OUTPUT").Cast<B>();
}

Stream<C> RunCalculator2(Stream<B> b, Graph& graph) {
  auto& node = graph.AddNode("Calculator2");
  b.ConnectTo(node.In("INPUT"));
  return node.Out("OUTPUT").Cast<C>();
}

Stream<D> RunCalculator3(Stream<B> b, Stream<C> c, Graph& graph) {
  auto& node = graph.AddNode("Calculator3");
  b.ConnectTo(node.In("INPUT_B"));
  c.ConnectTo(node.In("INPUT_C"));
  return node.Out("OUTPUT").Cast<D>();
}

Stream<E> RunCalculator4(Stream<B> b, Stream<C> c, Stream<D> d, Graph& graph) {
  auto& node = graph.AddNode("Calculator4");
  b.ConnectTo(node.In("INPUT_B"));
  c.ConnectTo(node.In("INPUT_C"));
  d.ConnectTo(node.In("INPUT_D"));
  return node.Out("OUTPUT").Cast<E>();
}

CalculatorGraphConfig BuildGraph() {
  Graph graph;

  // Inputs.
  Stream<A> a = graph.In(0).Cast<A>();

  Stream<B> b = RunCalculator1(a, graph);
  Stream<C> c = RunCalculator2(b, graph);
  Stream<D> d = RunCalculator3(b, c, graph);
  Stream<E> e = RunCalculator4(b, c, d, graph);

  // Outputs.
  b.SetName("b").ConnectTo(graph.Out(0));
  c.SetName("c").ConnectTo(graph.Out(1));
  d.SetName("d").ConnectTo(graph.Out(2));
  e.SetName("e").ConnectTo(graph.Out(3));

  return graph.GetConfig();
}

Nodi separati per una migliore leggibilità

COSA NON FARE: esempio di codice errato.

CalculatorGraphConfig BuildGraph() {
  Graph graph;

  // Inputs.
  Stream<A> a = graph.In(0).Cast<A>();
  auto& node1 = graph.AddNode("Calculator1");
  a.ConnectTo(node1.In("INPUT"));
  Stream<B> b = node1.Out("OUTPUT").Cast<B>();
  auto& node2 = graph.AddNode("Calculator2");
  b.ConnectTo(node2.In("INPUT"));
  Stream<C> c = node2.Out("OUTPUT").Cast<C>();
  auto& node3 = graph.AddNode("Calculator3");
  b.ConnectTo(node3.In("INPUT_B"));
  c.ConnectTo(node3.In("INPUT_C"));
  Stream<D> d = node3.Out("OUTPUT").Cast<D>();
  auto& node4 = graph.AddNode("Calculator4");
  b.ConnectTo(node4.In("INPUT_B"));
  c.ConnectTo(node4.In("INPUT_C"));
  d.ConnectTo(node4.In("INPUT_D"));
  Stream<E> e = node4.Out("OUTPUT").Cast<E>();
  // Outputs.
  b.SetName("b").ConnectTo(graph.Out(0));
  c.SetName("c").ConnectTo(graph.Out(1));
  d.SetName("d").ConnectTo(graph.Out(2));
  e.SetName("e").ConnectTo(graph.Out(3));

  return graph.GetConfig();
}

Nel codice riportato sopra, può essere difficile capire il punto di inizio e di fine di ogni nodo. Per migliorare questa funzionalità e agevolare i lettori di codice, puoi semplicemente inserire delle righe vuote prima e dopo ogni nodo:

COSA FARE: esempio di codice corretto.

CalculatorGraphConfig BuildGraph() {
  Graph graph;

  // Inputs.
  Stream<A> a = graph.In(0).Cast<A>();

  auto& node1 = graph.AddNode("Calculator1");
  a.ConnectTo(node1.In("INPUT"));
  Stream<B> b = node1.Out("OUTPUT").Cast<B>();

  auto& node2 = graph.AddNode("Calculator2");
  b.ConnectTo(node2.In("INPUT"));
  Stream<C> c = node2.Out("OUTPUT").Cast<C>();

  auto& node3 = graph.AddNode("Calculator3");
  b.ConnectTo(node3.In("INPUT_B"));
  c.ConnectTo(node3.In("INPUT_C"));
  Stream<D> d = node3.Out("OUTPUT").Cast<D>();

  auto& node4 = graph.AddNode("Calculator4");
  b.ConnectTo(node4.In("INPUT_B"));
  c.ConnectTo(node4.In("INPUT_C"));
  d.ConnectTo(node4.In("INPUT_D"));
  Stream<E> e = node4.Out("OUTPUT").Cast<E>();

  // Outputs.
  b.SetName("b").ConnectTo(graph.Out(0));
  c.SetName("c").ConnectTo(graph.Out(1));
  d.SetName("d").ConnectTo(graph.Out(2));
  e.SetName("e").ConnectTo(graph.Out(3));

  return graph.GetConfig();
}

Inoltre, la rappresentazione sopra corrisponde meglio alla rappresentazione protocollo CalculatorGraphConfig.

Se estrai i nodi in funzioni di utilità, questi hanno già il loro ambito all'interno delle funzioni ed è chiaro dove iniziano e finiscono, quindi è perfettamente possibile avere:

COSA FARE: esempio di codice corretto.

CalculatorGraphConfig BuildGraph() {
  Graph graph;

  // Inputs.
  Stream<A> a = graph.In(0).Cast<A>();

  Stream<B> b = RunCalculator1(a, graph);
  Stream<C> c = RunCalculator2(b, graph);
  Stream<D> d = RunCalculator3(b, c, graph);
  Stream<E> e = RunCalculator4(b, c, d, graph);

  // Outputs.
  b.SetName("b").ConnectTo(graph.Out(0));
  c.SetName("c").ConnectTo(graph.Out(1));
  d.SetName("d").ConnectTo(graph.Out(2));
  e.SetName("e").ConnectTo(graph.Out(3));

  return graph.GetConfig();
}