API PaLM: guia de início rápido do Chat com Node.js

Ver em ai.google.dev Testar um bloco do Colab Veja o notebook no GitHub

Visão geral

Este guia de início rápido demonstra como usar a API PaLM, que oferece acesso a Os modelos de linguagem grandes mais recentes do Google, especificamente o SDK PaLM Node.js para casos de uso focados em diálogos, como chatbots.

Receber uma chave de API

Para começar, você precisará gerar uma chave de API. Defina-o como uma variável de ambiente:

import os
os.environ["API_KEY"] = "<YOUR API KEY>"

Instalar o cliente de API

Em um novo diretório, inicialize um projeto Node.js usando npm e instale o Biblioteca google-auth:

npm init -y

npm install google-auth-library
Wrote to /content/package.json:

{
  "name": "content",
  "version": "1.0.0",
  "main": "index.js",
  "scripts": {
    "test": "echo \"Error: no test specified\" && exit 1"
  },
  "keywords": [],
  "author": "",
  "license": "ISC",
  "dependencies": {
    "@google-ai/generativelanguage": "^1.0.1",
    "google-auth-library": "^9.0.0"
  },
  "devDependencies": {},
  "description": ""
}


+ google-auth-library@9.0.0
updated 1 package and audited 74 packages in 0.905s

3 packages are looking for funding
  run `npm fund` for details

found 0 vulnerabilities
npm WARN content@1.0.0 No description
npm WARN content@1.0.0 No repository field.

Em seguida, instale a biblioteca de cliente:

npm install @google-ai/generativelanguage

+ @google-ai/generativelanguage@1.0.1
updated 1 package and audited 74 packages in 2.274s

3 packages are looking for funding
  run `npm fund` for details

found 0 vulnerabilities
npm WARN content@1.0.0 No description
npm WARN content@1.0.0 No repository field.

Receber uma chave de API

Siga as instruções da página de configuração page para criar uma chave de API para o app. Você vai precisar dessa chave de API para a próxima etapa.

Gerar mensagens

Crie um novo arquivo index.js e adicione o código abaixo, fornecendo seu Chave da API PaLM pela variável de ambiente API_KEY:

%%writefile index.js

const { DiscussServiceClient } = require("@google-ai/generativelanguage");
const { GoogleAuth } = require("google-auth-library");

const MODEL_NAME = "models/chat-bison-001";
const API_KEY = process.env.API_KEY;

const client = new DiscussServiceClient({
  authClient: new GoogleAuth().fromAPIKey(API_KEY),
});

async function main() {
  const result = await client.generateMessage({
    model: MODEL_NAME, // Required. The model to use to generate the result.
    temperature: 0.5, // Optional. Value `0.0` always uses the highest-probability result.
    candidateCount: 1, // Optional. The number of candidate results to generate.
    prompt: {
      // optional, preamble context to prime responses
      context: "Respond to all questions with a rhyming poem.",
      // Optional. Examples for further fine-tuning of responses.
      examples: [
        {
          input: { content: "What is the capital of California?" },
          output: {
            content:
              `If the capital of California is what you seek,
Sacramento is where you ought to peek.`,
          },
        },
      ],
      // Required. Alternating prompt/response messages.
      messages: [{ content: "How tall is the Eiffel Tower?" }],
    },
  });

  console.log(result[0].candidates[0].content);
}

main();
Overwriting index.js

Em seguida, execute o script:

node index.js
The Eiffel Tower is 324 meters tall,
It's a sight to behold, tall and not small.
It's made of iron and weighs 10,100 tons,
It's a wonder of the world, it's a must-see for all.

Continue conversando

Para continuar uma conversa após uma mensagem de solicitação inicial, anexe a mensagem candidata retornada e o próximo comando:

%%writefile index.js
const { DiscussServiceClient } = require("@google-ai/generativelanguage");
const { GoogleAuth } = require("google-auth-library");

const MODEL_NAME = "models/chat-bison-001";
const API_KEY = process.env.API_KEY;

const client = new DiscussServiceClient({
  authClient: new GoogleAuth().fromAPIKey(API_KEY),
});

async function main() {
  let first = "Tell me a one short animal fact."
  let messages = [{ content: first }];

  const result = await client.generateMessage({
    model: MODEL_NAME,
    prompt: { messages },
  });

  console.log("User:\n\n", first, "\n\n")
  console.log("Palm:\n\n", result[0].candidates[0].content, "\n\n");

  let second = "Oh, where do those live?"

  messages.push({ content: result[0].candidates[0].content });
  messages.push({ content: second });

  const secondResult = await client.generateMessage({
    model: MODEL_NAME,
    prompt: { messages },
  });

  console.log("User:\n\n", second, "\n\n")
  console.log("Palm:\n\n", secondResult[0].candidates[0].content, "\n\n");
}

main();
Overwriting index.js
node index.js
User:

 Tell me a one short animal fact. 


Palm:

 The world's smallest mammal is the bumblebee bat, which weighs less than a penny. 


User:

 Oh, where do those live? 


Palm:

 The bumblebee bat is found in the rainforests of Thailand, Myanmar, and Laos. It is a small, nocturnal bat that feeds on insects. The bumblebee bat is the smallest mammal in the world, weighing only about 2 grams. It is about the size of a bumblebee, hence its name. The bumblebee bat is a very important part of the rainforest ecosystem. It helps to control insect populations and pollinate plants.