REST API: क्विकस्टार्ट ट्यूनिंग

ai.google.dev पर देखें Colab notebook को आज़माएं GitHub पर notebook देखें नोटबुक डाउनलोड करें

इस notebook में बताया गया है कि PaLM REST API को कॉल करने के लिए, कर्ल कमांड या Python अनुरोध एपीआई का इस्तेमाल करके, PaLM API की ट्यूनिंग सेवा को इस्तेमाल करने का तरीका जानें. यहां आपको PaLM API की टेक्स्ट जनरेट करने की सेवा के टेक्स्ट मॉडल को ट्यून करने का तरीका पता चलेगा.

सेटअप

प्रमाणीकृत करें

PaLM API की मदद से, मॉडल को अपने डेटा पर ट्यून किया जा सकता है. क्योंकि इसमें आपका डेटा और आपके ट्यून किए गए मॉडल, एपीआई-कुंजी की तुलना में, ज़्यादा सख्त ऐक्सेस कंट्रोल की ज़रूरत होती है.

इस ट्यूटोरियल को चलाने से पहले, आपको अपने प्रोजेक्ट के लिए OAuth सेटअप करें.

अगर आपको इस notebook को Colab में चलाना है, तो सबसे पहले अपना client_secret*.json फ़ाइल में "फ़ाइल > अपलोड करें" का विकल्प शामिल है.

कोलैब की फ़ाइल दिखाएं > अपलोड का विकल्प

cp client_secret*.json client_secret.json
ls
client_secret.json

यह gcloud कमांड client_secret.json फ़ाइल को क्रेडेंशियल में बदल देता है. इसका इस्तेमाल सेवा में पुष्टि के लिए किया जा सकता है.

import os
if 'COLAB_RELEASE_TAG' in os.environ:
  # Use `--no-browser` in colab
  !gcloud auth application-default login --no-browser --client-id-file client_secret.json --scopes='https://www.googleapis.com/auth/cloud-platform,https://www.googleapis.com/auth/generative-language.tuning'
else:
  !gcloud auth application-default login --client-id-file client_secret.json --scopes='https://www.googleapis.com/auth/cloud-platform,https://www.googleapis.com/auth/generative-language.tuning'

REST API को CURL के साथ कॉल करना

यह सेक्शन REST API को कॉल करने के लिए, कर्ल स्टेटमेंट के उदाहरण देता है. आप ट्यूनिंग जॉब बनाने का तरीका जानेंगे, इसका स्टेटस देखेंगे और पूरा हो जाने पर, अनुमान के लिए कॉल करेंगे.

वैरिएबल सेट करें

REST API के बाकी कॉल के लिए, बार-बार इस्तेमाल होने वाली वैल्यू के लिए वैरिएबल सेट करें. यह कोड, Python os लाइब्रेरी का इस्तेमाल करके ऐसे एनवायरमेंट वैरिएबल सेट करता है जिन्हें सभी कोड सेल से ऐक्सेस किया जा सकता है.

यह खास तौर पर Colab notebook के एनवायरमेंट के लिए है. अगले कोड सेल का कोड, bash टर्मिनल में नीचे दिए गए कमांड चलाने के बराबर है.

export access_token=$(gcloud auth application-default print-access-token)
export project_id=my-project-id
export base_url=https://generativelanguage.googleapis.com
import os

access_token = !gcloud auth application-default print-access-token
access_token = '\n'.join(access_token)

os.environ['access_token'] = access_token
os.environ['project_id'] = "project-id"
os.environ['base_url'] = "https://generativelanguage.googleapis.com"

ट्यून किए गए मॉडल की सूची बनाना

फ़िलहाल, ट्यून किए जाने वाले ऐसे मॉडल की सूची दें जो पुष्टि करने के लिए उपलब्ध हैं. इससे पुष्टि करने के अपने तरीके की पुष्टि हो जाएगी.


curl -X GET ${base_url}/v1beta3/tunedModels \
    -H 'Content-Type: application/json' \
    -H "Authorization: Bearer ${access_token}" \
    -H "x-goog-user-project: ${project_id}" | grep name
"name": "tunedModels/testnumbergenerator-fvitocr834l6",
      "name": "tunedModels/my-display-name-81-9wpmc1m920vq",
      "displayName": "my display name 81",
      "name": "tunedModels/number-generator-model-kctlevca1g3q",
      "name": "tunedModels/my-display-name-81-r9wcuda14lyy",
      "displayName": "my display name 81",
      "name": "tunedModels/number-generator-model-w1eabln5adwp",
% Total    % Received % Xferd  Average Speed   Time    Time     Time  Current
                                 Dload  Upload   Total   Spent    Left  Speed
100 17583    0 17583    0     0  51600      0 --:--:-- --:--:-- --:--:-- 51563

ट्यून किया गया मॉडल बनाएं

ट्यून किया जाने वाला मॉडल बनाने के लिए, आपको training_data फ़ील्ड में दिए गए मॉडल को अपना डेटासेट भेजना होगा.

इस उदाहरण के लिए, आपको क्रम में अगला नंबर जनरेट करने के लिए मॉडल को ट्यून करना होगा. उदाहरण के लिए, अगर इनपुट 1 है, तो मॉडल में 2 आउटपुट मिलेगा. अगर इनपुट one hundred है, तो आउटपुट one hundred one होना चाहिए.


curl -X POST ${base_url}/v1beta3/tunedModels \
    -H 'Content-Type: application/json' \
    -H "Authorization: Bearer ${access_token}" \
    -H "x-goog-user-project: ${project_id}" \
    -d '
      {
        "display_name": "number generator model",
        "base_model": "models/text-bison-001",
        "tuning_task": {
          "hyperparameters": {
            "batch_size": 2,
            "learning_rate": 0.001,
            "epoch_count":3,
          },
          "training_data": {
            "examples": {
              "examples": [
                {
                    "text_input": "1",
                    "output": "2",
                },{
                    "text_input": "3",
                    "output": "4",
                },{
                    "text_input": "-3",
                    "output": "-2",
                },{
                    "text_input": "twenty two",
                    "output": "twenty three",
                },{
                    "text_input": "two hundred",
                    "output": "two hundred one",
                },{
                    "text_input": "ninety nine",
                    "output": "one hundred",
                },{
                    "text_input": "8",
                    "output": "9",
                },{
                    "text_input": "-98",
                    "output": "-97",
                },{
                    "text_input": "1,000",
                    "output": "1,001",
                },{
                    "text_input": "10,100,000",
                    "output": "10,100,001",
                },{
                    "text_input": "thirteen",
                    "output": "fourteen",
                },{
                    "text_input": "eighty",
                    "output": "eighty one",
                },{
                    "text_input": "one",
                    "output": "two",
                },{
                    "text_input": "three",
                    "output": "four",
                },{
                    "text_input": "seven",
                    "output": "eight",
                }
              ]
            }
          }
        }
      }' | tee tunemodel.json
{
  "name": "tunedModels/number-generator-model-q2d0uism5ivd/operations/xvyx09sjxlmh",
  "metadata": {
    "@type": "type.googleapis.com/google.ai.generativelanguage.v1beta3.CreateTunedModelMetadata",
    "totalSteps": 23,
    "tunedModel": "tunedModels/number-generator-model-q2d0uism5ivd"
  }
}
% Total    % Received % Xferd  Average Speed   Time    Time     Time  Current
                                 Dload  Upload   Total   Spent    Left  Speed
100  2277    0   297  100  1980    146    975  0:00:02  0:00:02 --:--:--  1121

ट्यून किए गए मॉडल की स्थिति देखें

ट्रेनिंग के दौरान मॉडल की स्थिति, CREATING पर सेट है. पूरा होने के बाद, यह स्थिति बदलकर ACTIVE हो जाएगी.

नीचे एक छोटा सा Python कोड दिया गया है, ताकि JSON के रिस्पॉन्स से जनरेट किए गए मॉडल का नाम पार्स किया जा सके. अगर इसे किसी टर्मिनल में चलाया जा रहा है, तो जवाब को पार्स करने के लिए, bash JSON पार्सर का इस्तेमाल करें.

import json

first_page = json.load(open('tunemodel.json'))
os.environ['modelname'] = first_page['metadata']['tunedModel']

print(os.environ['modelname'])
tunedModels/number-generator-model-q2d0uism5ivd

राज्य फ़ील्ड वाला मॉडल मेटाडेटा पाने के लिए, मॉडल के नाम के साथ दूसरा GET अनुरोध करें.


curl -X GET ${base_url}/v1beta3/${modelname} \
    -H 'Content-Type: application/json' \
    -H "Authorization: Bearer ${access_token}" \
    -H "x-goog-user-project: ${project_id}" \ | grep state
"state": "CREATING",
% Total    % Received % Xferd  Average Speed   Time    Time     Time  Current
                                 Dload  Upload   Total   Spent    Left  Speed
100   494    0   494    0     0    760      0 --:--:-- --:--:-- --:--:--   760
curl: (3) URL using bad/illegal format or missing URL

रन का अनुमान

ट्यूनिंग का काम पूरा हो जाने पर, इसका इस्तेमाल टेक्स्ट सेवा की मदद से टेक्स्ट जनरेट करने के लिए किया जा सकता है.


curl -X POST ${base_url}/v1beta3/${modelname}:generateText \
    -H 'Content-Type: application/json' \
    -H "Authorization: Bearer ${access_token}" \
    -H "x-goog-user-project: ${project_id}" \
    -d '{
        "prompt": {
              "text": "4"
              },
        "temperature": 1.0,
        "candidate_count": 2}' | grep output
"output": "3 2 1",
      "output": "3 2",
% Total    % Received % Xferd  Average Speed   Time    Time     Time  Current
                                 Dload  Upload   Total   Spent    Left  Speed
100  1569    0  1447  100   122    183     15  0:00:08  0:00:07  0:00:01   310

आपके मॉडल का आउटपुट सही भी हो सकता है और नहीं भी. अगर ट्यून किया गया मॉडल आपके ज़रूरी मानकों के हिसाब से काम नहीं कर रहा है, तो अच्छी क्वालिटी के ज़्यादा उदाहरण जोड़े जा सकते हैं. साथ ही, हाइपर पैरामीटर में बदलाव किया जा सकता है या उदाहरणों में प्रीएंबल जोड़ा जा सकता है. आपके बनाए गए पहले मॉडल के आधार पर, एक अन्य ट्यून किया जा सकता है.

परफ़ॉर्मेंस को बेहतर बनाने के बारे में ज़्यादा जानकारी के लिए, ट्यूनिंग गाइड देखें.

Python अनुरोधों के साथ REST API को कॉल करना

बाकी एपीआई को ऐसी किसी भी लाइब्रेरी से कॉल किया जा सकता है जो आपको एचटीटीपी अनुरोध भेजने की अनुमति देती है. उदाहरणों के अगले सेट में, Python अनुरोधों की लाइब्रेरी का इस्तेमाल किया गया है. साथ ही, इसमें ज़्यादा बेहतर सुविधाओं के बारे में बताया गया है.

वैरिएबल सेट करें

access_token = !gcloud auth application-default print-access-token
access_token = '\n'.join(access_token)

project = 'project-id'
base_url = "https://generativelanguage.googleapis.com"

requests लाइब्रेरी इंपोर्ट करें.

import requests
import json

ट्यून किए गए मॉडल की सूची बनाना

फ़िलहाल, ट्यून किए जाने वाले ऐसे मॉडल की सूची दें जो पुष्टि करने के लिए उपलब्ध हैं. इससे पुष्टि करने के अपने तरीके की पुष्टि हो जाएगी.

headers={
  'Authorization': 'Bearer ' + access_token,
  'Content-Type': 'application/json',
  'x-goog-user-project': project
}

result = requests.get(
  url=f'{base_url}/v1beta3/tunedModels',
  headers = headers,
)
result.json()
{'tunedModels': [{'name': 'tunedModels/testnumbergenerator-fvitocr834l6',
   'baseModel': 'models/text-bison-001',
   'displayName': 'test_number_generator',
   'description': '{"description":"generates the  next number in the sequence given the input text","exampleInput":"input: 1","exampleOutput":"output: 2","datasourceUrl":"https://drive.google.com/open?id=11Pdm6GNom4vlBMUHwO6yFjGQT3t1yi44WVShXMFnkVA&authuser=0&resourcekey=0-2d17tccbdBoThXMkNDvtag","showedTuningComplete":false}',
   'state': 'ACTIVE',
   'createTime': '2023-09-18T11:06:39.092786Z',
   'updateTime': '2023-09-18T11:07:24.198359Z',
   'tuningTask': {'startTime': '2023-09-18T11:06:39.461814784Z',
    'completeTime': '2023-09-18T11:07:24.198359Z',
    'snapshots': [{'step': 1,
      'meanLoss': 16.613504,
      'computeTime': '2023-09-18T11:06:44.532937624Z'},
     {'step': 2,
      'epoch': 1,
      'meanLoss': 20.299532,
      'computeTime': '2023-09-18T11:06:47.825134421Z'},
     {'step': 3,
      'epoch': 1,
      'meanLoss': 8.169708,
      'computeTime': '2023-09-18T11:06:50.580344344Z'},
     {'step': 4,
      'epoch': 2,
      'meanLoss': 3.7588992,
      'computeTime': '2023-09-18T11:06:53.219133748Z'},
     {'step': 5,
      'epoch': 3,
      'meanLoss': 2.0643115,
      'computeTime': '2023-09-18T11:06:55.828458606Z'},
     {'step': 6,
      'epoch': 3,
      'meanLoss': 1.9765375,
      'computeTime': '2023-09-18T11:06:58.426053772Z'},
     {'step': 7,
      'epoch': 4,
      'meanLoss': 0.9276156,
      'computeTime': '2023-09-18T11:07:01.231832398Z'},
     {'step': 8,
      'epoch': 5,
      'meanLoss': 1.8424839,
      'computeTime': '2023-09-18T11:07:03.822710074Z'},
     {'step': 9,
      'epoch': 5,
      'meanLoss': 1.1747926,
      'computeTime': '2023-09-18T11:07:06.441685551Z'},
     {'step': 10,
      'epoch': 6,
      'meanLoss': 0.3079359,
      'computeTime': '2023-09-18T11:07:08.793491157Z'},
     {'step': 11,
      'epoch': 7,
      'meanLoss': 0.543368,
      'computeTime': '2023-09-18T11:07:11.393264892Z'},
     {'step': 12,
      'epoch': 7,
      'meanLoss': 0.35068464,
      'computeTime': '2023-09-18T11:07:13.808021238Z'},
     {'step': 13,
      'epoch': 8,
      'meanLoss': 0.026032856,
      'computeTime': '2023-09-18T11:07:16.295972078Z'},
     {'step': 14,
      'epoch': 8,
      'meanLoss': 0.108341046,
      'computeTime': '2023-09-18T11:07:18.941247488Z'},
     {'step': 15,
      'epoch': 9,
      'meanLoss': 0.016470395,
      'computeTime': '2023-09-18T11:07:21.607654306Z'},
     {'step': 16,
      'epoch': 10,
      'meanLoss': 0.063049875,
      'computeTime': '2023-09-18T11:07:24.077271307Z'}],
    'hyperparameters': {'epochCount': 10,
     'batchSize': 16,
     'learningRate': 0.02} },
   'temperature': 0.7,
   'topP': 0.95,
   'topK': 40},
  {'name': 'tunedModels/my-display-name-81-9wpmc1m920vq',
   'baseModel': 'models/text-bison-tuning-test',
   'displayName': 'my display name 81',
   'state': 'ACTIVE',
   'createTime': '2023-09-18T22:02:08.690991Z',
   'updateTime': '2023-09-18T22:02:28.806318Z',
   'tuningTask': {'startTime': '2023-09-18T22:02:09.161100369Z',
    'completeTime': '2023-09-18T22:02:28.806318Z',
    'snapshots': [{'step': 1,
      'meanLoss': 7.2774773,
      'computeTime': '2023-09-18T22:02:12.453056368Z'},
     {'step': 2,
      'meanLoss': 6.1902447,
      'computeTime': '2023-09-18T22:02:13.789508217Z'},
     {'step': 3,
      'meanLoss': 5.5545835,
      'computeTime': '2023-09-18T22:02:15.136220505Z'},
     {'step': 4,
      'epoch': 1,
      'meanLoss': 7.9237704,
      'computeTime': '2023-09-18T22:02:16.474358517Z'},
     {'step': 5,
      'epoch': 1,
      'meanLoss': 7.6770706,
      'computeTime': '2023-09-18T22:02:17.758261108Z'},
     {'step': 6,
      'epoch': 1,
      'meanLoss': 7.378622,
      'computeTime': '2023-09-18T22:02:19.114072224Z'},
     {'step': 7,
      'epoch': 1,
      'meanLoss': 4.485537,
      'computeTime': '2023-09-18T22:02:20.927434115Z'},
     {'step': 8,
      'epoch': 2,
      'meanLoss': 6.815181,
      'computeTime': '2023-09-18T22:02:22.267906011Z'},
     {'step': 9,
      'epoch': 2,
      'meanLoss': 6.411363,
      'computeTime': '2023-09-18T22:02:24.078114085Z'},
     {'step': 10,
      'epoch': 2,
      'meanLoss': 8.585093,
      'computeTime': '2023-09-18T22:02:25.441598938Z'},
     {'step': 11,
      'epoch': 2,
      'meanLoss': 4.901249,
      'computeTime': '2023-09-18T22:02:27.108985392Z'},
     {'step': 12,
      'epoch': 3,
      'meanLoss': 7.073003,
      'computeTime': '2023-09-18T22:02:28.441662034Z'}],
    'hyperparameters': {'epochCount': 3,
     'batchSize': 4,
     'learningRate': 0.001} },
   'temperature': 0.7,
   'topP': 0.95,
   'topK': 40},
  {'name': 'tunedModels/number-generator-model-kctlevca1g3q',
   'baseModel': 'models/text-bison-tuning-test',
   'displayName': 'number generator model',
   'state': 'ACTIVE',
   'createTime': '2023-09-18T23:43:21.461545Z',
   'updateTime': '2023-09-18T23:43:49.205493Z',
   'tuningTask': {'startTime': '2023-09-18T23:43:21.542403958Z',
    'completeTime': '2023-09-18T23:43:49.205493Z',
    'snapshots': [{'step': 1,
      'meanLoss': 7.342065,
      'computeTime': '2023-09-18T23:43:23.356271969Z'},
     {'step': 2,
      'meanLoss': 7.255807,
      'computeTime': '2023-09-18T23:43:24.620248223Z'},
     {'step': 3,
      'meanLoss': 5.4591417,
      'computeTime': '2023-09-18T23:43:25.854505395Z'},
     {'step': 4,
      'meanLoss': 6.968665,
      'computeTime': '2023-09-18T23:43:27.138260198Z'},
     {'step': 5,
      'meanLoss': 4.578809,
      'computeTime': '2023-09-18T23:43:28.404943274Z'},
     {'step': 6,
      'meanLoss': 6.4862137,
      'computeTime': '2023-09-18T23:43:29.631624883Z'},
     {'step': 7,
      'meanLoss': 9.781939,
      'computeTime': '2023-09-18T23:43:30.801341449Z'},
     {'step': 8,
      'epoch': 1,
      'meanLoss': 5.990006,
      'computeTime': '2023-09-18T23:43:31.854703315Z'},
     {'step': 9,
      'epoch': 1,
      'meanLoss': 8.846312,
      'computeTime': '2023-09-18T23:43:33.075785103Z'},
     {'step': 10,
      'epoch': 1,
      'meanLoss': 6.1585655,
      'computeTime': '2023-09-18T23:43:34.310432174Z'},
     {'step': 11,
      'epoch': 1,
      'meanLoss': 4.7877502,
      'computeTime': '2023-09-18T23:43:35.381582526Z'},
     {'step': 12,
      'epoch': 1,
      'meanLoss': 9.660514,
      'computeTime': '2023-09-18T23:43:36.445446408Z'},
     {'step': 13,
      'epoch': 1,
      'meanLoss': 5.6482882,
      'computeTime': '2023-09-18T23:43:37.603237821Z'},
     {'step': 14,
      'epoch': 1,
      'meanLoss': 3.162092,
      'computeTime': '2023-09-18T23:43:38.671463397Z'},
     {'step': 15,
      'epoch': 2,
      'meanLoss': 6.322996,
      'computeTime': '2023-09-18T23:43:39.769742201Z'},
     {'step': 16,
      'epoch': 2,
      'meanLoss': 6.781,
      'computeTime': '2023-09-18T23:43:40.985967994Z'},
     {'step': 17,
      'epoch': 2,
      'meanLoss': 5.136773,
      'computeTime': '2023-09-18T23:43:42.235469710Z'},
     {'step': 18,
      'epoch': 2,
      'meanLoss': 7.2091155,
      'computeTime': '2023-09-18T23:43:43.415178581Z'},
     {'step': 19,
      'epoch': 2,
      'meanLoss': 7.7508755,
      'computeTime': '2023-09-18T23:43:44.775221774Z'},
     {'step': 20,
      'epoch': 2,
      'meanLoss': 8.144815,
      'computeTime': '2023-09-18T23:43:45.788824334Z'},
     {'step': 21,
      'epoch': 2,
      'meanLoss': 5.485137,
      'computeTime': '2023-09-18T23:43:46.812663998Z'},
     {'step': 22,
      'epoch': 2,
      'meanLoss': 3.709197,
      'computeTime': '2023-09-18T23:43:47.971764087Z'},
     {'step': 23,
      'epoch': 3,
      'meanLoss': 6.0069466,
      'computeTime': '2023-09-18T23:43:49.004191079Z'}],
    'hyperparameters': {'epochCount': 3,
     'batchSize': 2,
     'learningRate': 0.001} },
   'temperature': 0.7,
   'topP': 0.95,
   'topK': 40},
  {'name': 'tunedModels/my-display-name-81-r9wcuda14lyy',
   'baseModel': 'models/text-bison-tuning-test',
   'displayName': 'my display name 81',
   'state': 'ACTIVE',
   'createTime': '2023-09-18T23:52:06.980185Z',
   'updateTime': '2023-09-18T23:52:26.679601Z',
   'tuningTask': {'startTime': '2023-09-18T23:52:07.616953503Z',
    'completeTime': '2023-09-18T23:52:26.679601Z',
    'snapshots': [{'step': 1,
      'meanLoss': 7.2774773,
      'computeTime': '2023-09-18T23:52:10.278936662Z'},
     {'step': 2,
      'meanLoss': 6.2793097,
      'computeTime': '2023-09-18T23:52:11.630844790Z'},
     {'step': 3,
      'meanLoss': 5.540499,
      'computeTime': '2023-09-18T23:52:13.027840389Z'},
     {'step': 4,
      'epoch': 1,
      'meanLoss': 7.977523,
      'computeTime': '2023-09-18T23:52:14.368199020Z'},
     {'step': 5,
      'epoch': 1,
      'meanLoss': 7.6197805,
      'computeTime': '2023-09-18T23:52:15.872428752Z'},
     {'step': 6,
      'epoch': 1,
      'meanLoss': 7.3851357,
      'computeTime': '2023-09-18T23:52:17.213094182Z'},
     {'step': 7,
      'epoch': 1,
      'meanLoss': 4.5342345,
      'computeTime': '2023-09-18T23:52:19.090698421Z'},
     {'step': 8,
      'epoch': 2,
      'meanLoss': 6.8603754,
      'computeTime': '2023-09-18T23:52:20.494844731Z'},
     {'step': 9,
      'epoch': 2,
      'meanLoss': 6.418575,
      'computeTime': '2023-09-18T23:52:21.815997555Z'},
     {'step': 10,
      'epoch': 2,
      'meanLoss': 8.659064,
      'computeTime': '2023-09-18T23:52:23.524287192Z'},
     {'step': 11,
      'epoch': 2,
      'meanLoss': 4.856765,
      'computeTime': '2023-09-18T23:52:24.864661291Z'},
     {'step': 12,
      'epoch': 3,
      'meanLoss': 7.1078596,
      'computeTime': '2023-09-18T23:52:26.225055381Z'}],
    'hyperparameters': {'epochCount': 3,
     'batchSize': 4,
     'learningRate': 0.001} },
   'temperature': 0.7,
   'topP': 0.95,
   'topK': 40},
  {'name': 'tunedModels/number-generator-model-w1eabln5adwp',
   'baseModel': 'models/text-bison-tuning-test',
   'displayName': 'number generator model',
   'state': 'ACTIVE',
   'createTime': '2023-09-19T19:29:08.622497Z',
   'updateTime': '2023-09-19T19:29:46.063853Z',
   'tuningTask': {'startTime': '2023-09-19T19:29:08.806930486Z',
    'completeTime': '2023-09-19T19:29:46.063853Z',
    'snapshots': [{'step': 1,
      'meanLoss': 7.342065,
      'computeTime': '2023-09-19T19:29:13.023811994Z'},
     {'step': 2,
      'meanLoss': 7.1960244,
      'computeTime': '2023-09-19T19:29:14.844046282Z'},
     {'step': 3,
      'meanLoss': 5.480289,
      'computeTime': '2023-09-19T19:29:16.596884354Z'},
     {'step': 4,
      'meanLoss': 6.851822,
      'computeTime': '2023-09-19T19:29:17.741735378Z'},
     {'step': 5,
      'meanLoss': 4.5535283,
      'computeTime': '2023-09-19T19:29:18.914760812Z'},
     {'step': 6,
      'meanLoss': 6.449012,
      'computeTime': '2023-09-19T19:29:20.053316042Z'},
     {'step': 7,
      'meanLoss': 9.842458,
      'computeTime': '2023-09-19T19:29:21.371286675Z'},
     {'step': 8,
      'epoch': 1,
      'meanLoss': 5.9831877,
      'computeTime': '2023-09-19T19:29:22.915277044Z'},
     {'step': 9,
      'epoch': 1,
      'meanLoss': 8.936815,
      'computeTime': '2023-09-19T19:29:24.666461680Z'},
     {'step': 10,
      'epoch': 1,
      'meanLoss': 6.14651,
      'computeTime': '2023-09-19T19:29:26.793310451Z'},
     {'step': 11,
      'epoch': 1,
      'meanLoss': 4.853589,
      'computeTime': '2023-09-19T19:29:28.328297535Z'},
     {'step': 12,
      'epoch': 1,
      'meanLoss': 9.6831045,
      'computeTime': '2023-09-19T19:29:29.501236840Z'},
     {'step': 13,
      'epoch': 1,
      'meanLoss': 5.706586,
      'computeTime': '2023-09-19T19:29:30.612807978Z'},
     {'step': 14,
      'epoch': 1,
      'meanLoss': 3.276942,
      'computeTime': '2023-09-19T19:29:31.928747103Z'},
     {'step': 15,
      'epoch': 2,
      'meanLoss': 6.1736736,
      'computeTime': '2023-09-19T19:29:33.588699180Z'},
     {'step': 16,
      'epoch': 2,
      'meanLoss': 6.857398,
      'computeTime': '2023-09-19T19:29:35.239083809Z'},
     {'step': 17,
      'epoch': 2,
      'meanLoss': 5.098094,
      'computeTime': '2023-09-19T19:29:37.000705047Z'},
     {'step': 18,
      'epoch': 2,
      'meanLoss': 7.27724,
      'computeTime': '2023-09-19T19:29:38.532313231Z'},
     {'step': 19,
      'epoch': 2,
      'meanLoss': 7.6310735,
      'computeTime': '2023-09-19T19:29:39.696034301Z'},
     {'step': 20,
      'epoch': 2,
      'meanLoss': 8.152623,
      'computeTime': '2023-09-19T19:29:40.803342042Z'},
     {'step': 21,
      'epoch': 2,
      'meanLoss': 5.451577,
      'computeTime': '2023-09-19T19:29:42.445788199Z'},
     {'step': 22,
      'epoch': 2,
      'meanLoss': 3.7990716,
      'computeTime': '2023-09-19T19:29:43.866737307Z'},
     {'step': 23,
      'epoch': 3,
      'meanLoss': 6.120624,
      'computeTime': '2023-09-19T19:29:45.599248553Z'}],
    'hyperparameters': {'epochCount': 3,
     'batchSize': 2,
     'learningRate': 0.001} },
   'temperature': 0.7,
   'topP': 0.95,
   'topK': 40}]}

ट्यून किया गया मॉडल बनाएं

Curl के उदाहरण की तरह ही, इसमें आपको training_data फ़ील्ड के ज़रिए डेटासेट पास करना होता है.

operation = requests.post(
    url = f'{base_url}/v1beta3/tunedModels',
    headers=headers,
    json= {
        "display_name": "number generator",
        "base_model": "models/text-bison-001",
        "tuning_task": {
          "hyperparameters": {
            "batch_size": 4,
            "learning_rate": 0.001,
            "epoch_count":3,
          },
          "training_data": {
            "examples": {
              "examples": [
                {
                    'text_input': '1',
                    'output': '2',
                },{
                    'text_input': '3',
                    'output': '4',
                },{
                    'text_input': '-3',
                    'output': '-2',
                },{
                    'text_input': 'twenty two',
                    'output': 'twenty three',
                },{
                    'text_input': 'two hundred',
                    'output': 'two hundred one',
                },{
                    'text_input': 'ninety nine',
                    'output': 'one hundred',
                },{
                    'text_input': '8',
                    'output': '9',
                },{
                    'text_input': '-98',
                    'output': '-97',
                },{
                    'text_input': '1,000',
                    'output': '1,001',
                },{
                    'text_input': '10,100,000',
                    'output': '10,100,001',
                },{
                    'text_input': 'thirteen',
                    'output': 'fourteen',
                },{
                    'text_input': 'eighty',
                    'output': 'eighty one',
                },{
                    'text_input': 'one',
                    'output': 'two',
                },{
                    'text_input': 'three',
                    'output': 'four',
                },{
                    'text_input': 'seven',
                    'output': 'eight',
                }
              ]
            }
          }
        }
      }
)
operation
<Response [200]>
operation.json()
{'name': 'tunedModels/number-generator-ncqqnysl74dt/operations/qqlbwzfyzn0k',
 'metadata': {'@type': 'type.googleapis.com/google.ai.generativelanguage.v1beta3.CreateTunedModelMetadata',
  'totalSteps': 12,
  'tunedModel': 'tunedModels/number-generator-ncqqnysl74dt'} }

बाकी कॉल के लिए इस्तेमाल करने के लिए, अपने ट्यून किए गए मॉडल के नाम के साथ एक वैरिएबल सेट करें.

name=operation.json()["metadata"]["tunedModel"]
name
'tunedModels/number-generator-ncqqnysl74dt'

ट्यून किए गए मॉडल की स्थिति देखें

आप राज्य फ़ील्ड देखकर ट्यूनिंग के काम की प्रगति देख सकते हैं. CREATING का मतलब है कि ट्यूनिंग का काम अब भी जारी है और ACTIVE का मतलब है कि ट्रेन पूरा हो गया है और ट्यून किया गया मॉडल इस्तेमाल के लिए तैयार है.

tuned_model = requests.get(
    url = f'{base_url}/v1beta3/{name}',
    headers=headers,
)
tuned_model.json()
{'name': 'tunedModels/number-generator-ncqqnysl74dt',
 'baseModel': 'models/text-bison-001',
 'displayName': 'number generator',
 'state': 'CREATING',
 'createTime': '2023-09-19T19:56:25.999303Z',
 'updateTime': '2023-09-19T19:56:25.999303Z',
 'tuningTask': {'startTime': '2023-09-19T19:56:26.297862545Z',
  'hyperparameters': {'epochCount': 3, 'batchSize': 4, 'learningRate': 0.001} },
 'temperature': 0.7,
 'topP': 0.95,
 'topK': 40}

नीचे दिया गया कोड हर 5 सेकंड में राज्य फ़ील्ड की जांच करता है, जब तक कि वह CREATING स्थिति में न रहे.

import time
import pprint

op_json = operation.json()
response = op_json.get('response')
error = op_json.get('error')

while response is None and error is None:
    time.sleep(31)

    operation = requests.get(
        url = f'{base_url}/v1/{op_json["name"]}',
        headers=headers,
    )

    op_json = operation.json()
    response = op_json.get('response')
    error = op_json.get('error')

    percent = op_json['metadata'].get('completedPercent')
    if percent is not None:
      print(f"{percent:.2f}% - {op_json['metadata']['snapshots'][-1]}")
      print()

if error is not None:
    raise Exception(error)
21.28% - {'step': 40, 'epoch': 10, 'meanLoss': 2.4871845, 'computeTime': '2023-09-20T00:23:55.255785843Z'}

21.28% - {'step': 40, 'epoch': 10, 'meanLoss': 2.4871845, 'computeTime': '2023-09-20T00:23:55.255785843Z'}

43.09% - {'step': 81, 'epoch': 21, 'meanLoss': 0.032220088, 'computeTime': '2023-09-20T00:24:56.302837803Z'}

43.09% - {'step': 81, 'epoch': 21, 'meanLoss': 0.032220088, 'computeTime': '2023-09-20T00:24:56.302837803Z'}

63.83% - {'step': 120, 'epoch': 32, 'meanLoss': 0.0030430648, 'computeTime': '2023-09-20T00:25:57.228615435Z'}

63.83% - {'step': 120, 'epoch': 32, 'meanLoss': 0.0030430648, 'computeTime': '2023-09-20T00:25:57.228615435Z'}

85.11% - {'step': 160, 'epoch': 42, 'meanLoss': -1.1145603e-06, 'computeTime': '2023-09-20T00:26:57.819011896Z'}

100.00% - {'step': 188, 'epoch': 50, 'meanLoss': 0.00040101097, 'computeTime': '2023-09-20T00:27:40.024132813Z'}

रन का अनुमान

ट्यूनिंग का काम पूरा हो जाने पर, टेक्स्ट जनरेट करने के लिए इसका इस्तेमाल उसी तरह किया जा सकता है जैसे बुनियादी टेक्स्ट मॉडल का इस्तेमाल करते हैं.

import time

m = requests.post(
    url = f'{base_url}/v1beta3/{name}:generateText',
    headers=headers,
    json= {
         "prompt": {
              "text": "9"
              },
    })
import pprint
print(m.json()['candidates'][0]['output'])
9

आपके मॉडल का आउटपुट सही भी हो सकता है और नहीं भी. अगर ट्यून किया गया मॉडल आपके ज़रूरी मानकों के हिसाब से काम नहीं कर रहा है, तो अच्छी क्वालिटी के ज़्यादा उदाहरण जोड़े जा सकते हैं. साथ ही, हाइपर पैरामीटर में बदलाव किया जा सकता है या उदाहरणों में प्रीएंबल जोड़ा जा सकता है.

अगले चरण