O builder de gráficos C++ é uma ferramenta eficiente para:
- Como criar gráficos complexos
- Parametrizar gráficos (por exemplo, definir um delegado em
InferenceCalculator
, ativar/desativar partes do gráfico) - Eliminação de duplicação de gráficos (por exemplo, em vez de gráficos dedicados de CPU e GPU no pbtxt é possível ter um único código que crie os gráficos necessários, compartilhando o máximo possível possível)
- Suporte a entradas/saídas de gráficos opcionais
- Como personalizar gráficos por plataforma
Uso básico
Vamos conferir como o builder de gráficos C++ pode ser usado para um gráfico simples:
# Graph inputs.
input_stream: "input_tensors"
input_side_packet: "model"
# Graph outputs.
output_stream: "output_tensors"
node {
calculator: "InferenceCalculator"
input_stream: "TENSORS:input_tensors"
input_side_packet: "MODEL:model"
output_stream: "TENSORS:output_tensors"
options: {
[drishti.InferenceCalculatorOptions.ext] {
# Requesting GPU delegate.
delegate { gpu {} }
}
}
}
A função para criar o CalculatorGraphConfig
acima pode ter esta aparência:
CalculatorGraphConfig BuildGraph() {
Graph graph;
// Graph inputs.
Stream<std::vector<Tensor>> input_tensors =
graph.In(0).SetName("input_tensors").Cast<std::vector<Tensor>>();
SidePacket<TfLiteModelPtr> model =
graph.SideIn(0).SetName("model").Cast<TfLiteModelPtr>();
auto& inference_node = graph.AddNode("InferenceCalculator");
auto& inference_opts =
inference_node.GetOptions<InferenceCalculatorOptions>();
// Requesting GPU delegate.
inference_opts.mutable_delegate()->mutable_gpu();
input_tensors.ConnectTo(inference_node.In("TENSORS"));
model.ConnectTo(inference_node.SideIn("MODEL"));
Stream<std::vector<Tensor>> output_tensors =
inference_node.Out("TENSORS").Cast<std::vector<Tensor>>();
// Graph outputs.
output_tensors.SetName("output_tensors").ConnectTo(graph.Out(0));
// Get `CalculatorGraphConfig` to pass it into `CalculatorGraph`
return graph.GetConfig();
}
Breve resumo:
- Usar
Graph::In/SideIn
para receber entradas de gráfico comoStream/SidePacket
- Use
Node::Out/SideOut
para ter saídas de nó comoStream/SidePacket
- Use
Stream/SidePacket::ConnectTo
para conectar streams e pacotes laterais entradas de nó (Node::In/SideIn
) e saídas de gráfico (Graph::Out/SideOut
)- Existe um "atalho" operador
>>
, que pode ser usado em vez do FunçãoConnectTo
(por exemplo,x >> node.In("IN")
).
- Existe um "atalho" operador
- O
Stream/SidePacket::Cast
é usado para transmitir o pacote lateral ou o stream deAnyType
. (por exemplo,Stream<AnyType> in = graph.In(0);
) para um tipo específico- Usar tipos reais em vez de
AnyType
define um caminho melhor para como liberar os recursos do criador de gráficos e melhorar seus gráficos facilitar a leitura.
- Usar tipos reais em vez de
Uso Avançado
Funções do utilitário
Vamos extrair o código de construção de inferência em uma função utilitária dedicada para ajuda para legibilidade e reutilização de código:
// Updates graph to run inference.
Stream<std::vector<Tensor>> RunInference(
Stream<std::vector<Tensor>> tensors, SidePacket<TfLiteModelPtr> model,
const InferenceCalculatorOptions::Delegate& delegate, Graph& graph) {
auto& inference_node = graph.AddNode("InferenceCalculator");
auto& inference_opts =
inference_node.GetOptions<InferenceCalculatorOptions>();
*inference_opts.mutable_delegate() = delegate;
tensors.ConnectTo(inference_node.In("TENSORS"));
model.ConnectTo(inference_node.SideIn("MODEL"));
return inference_node.Out("TENSORS").Cast<std::vector<Tensor>>();
}
CalculatorGraphConfig BuildGraph() {
Graph graph;
// Graph inputs.
Stream<std::vector<Tensor>> input_tensors =
graph.In(0).SetName("input_tensors").Cast<std::vector<Tensor>>();
SidePacket<TfLiteModelPtr> model =
graph.SideIn(0).SetName("model").Cast<TfLiteModelPtr>();
InferenceCalculatorOptions::Delegate delegate;
delegate.mutable_gpu();
Stream<std::vector<Tensor>> output_tensors =
RunInference(input_tensors, model, delegate, graph);
// Graph outputs.
output_tensors.SetName("output_tensors").ConnectTo(graph.Out(0));
return graph.GetConfig();
}
Como resultado, RunInference
fornece uma interface clara que indica quais são os
entradas/saídas e os tipos deles.
Eles podem ser facilmente reutilizados, por exemplo, são apenas algumas linhas, se quiser executar um código inferência de modelo:
// Run first inference.
Stream<std::vector<Tensor>> output_tensors =
RunInference(input_tensors, model, delegate, graph);
// Run second inference on the output of the first one.
Stream<std::vector<Tensor>> extra_output_tensors =
RunInference(output_tensors, extra_model, delegate, graph);
E não é necessário duplicar nomes e tags (InferenceCalculator
,
TENSORS
, MODEL
) ou introduzir constantes dedicadas aqui e ali, aquelas que
Os detalhes estão localizados na função RunInference
.
Classes de utilitários
Claro, não se trata apenas das funções. Em alguns casos, é benéfico introduzir classes de utilitários que podem ajudar a criar o código de construção de gráficos mais legíveis e menos propensos a erros.
O MediaPipe oferece a calculadora PassThroughCalculator
, que é simplesmente transmitir
pelas entradas:
input_stream: "float_value"
input_stream: "int_value"
input_stream: "bool_value"
output_stream: "passed_float_value"
output_stream: "passed_int_value"
output_stream: "passed_bool_value"
node {
calculator: "PassThroughCalculator"
input_stream: "float_value"
input_stream: "int_value"
input_stream: "bool_value"
# The order must be the same as for inputs (or you can use explicit indexes)
output_stream: "passed_float_value"
output_stream: "passed_int_value"
output_stream: "passed_bool_value"
}
Vejamos o código de construção em C++ simples para gerar o gráfico acima:
CalculatorGraphConfig BuildGraph() {
Graph graph;
// Graph inputs.
Stream<float> float_value = graph.In(0).SetName("float_value").Cast<float>();
Stream<int> int_value = graph.In(1).SetName("int_value").Cast<int>();
Stream<bool> bool_value = graph.In(2).SetName("bool_value").Cast<bool>();
auto& pass_node = graph.AddNode("PassThroughCalculator");
float_value.ConnectTo(pass_node.In("")[0]);
int_value.ConnectTo(pass_node.In("")[1]);
bool_value.ConnectTo(pass_node.In("")[2]);
Stream<float> passed_float_value = pass_node.Out("")[0].Cast<float>();
Stream<int> passed_int_value = pass_node.Out("")[1].Cast<int>();
Stream<bool> passed_bool_value = pass_node.Out("")[2].Cast<bool>();
// Graph outputs.
passed_float_value.SetName("passed_float_value").ConnectTo(graph.Out(0));
passed_int_value.SetName("passed_int_value").ConnectTo(graph.Out(1));
passed_bool_value.SetName("passed_bool_value").ConnectTo(graph.Out(2));
// Get `CalculatorGraphConfig` to pass it into `CalculatorGraph`
return graph.GetConfig();
}
Embora a representação pbtxt
possa ser propensa a erros (quando temos muitas entradas para transmitir)
por completo), o código C++ fica ainda pior: tags vazias repetidas e chamadas Cast
. Vamos
Confira como podemos melhorar com a introdução de um PassThroughNodeBuilder
:
class PassThroughNodeBuilder {
public:
explicit PassThroughNodeBuilder(Graph& graph)
: node_(graph.AddNode("PassThroughCalculator")) {}
template <typename T>
Stream<T> PassThrough(Stream<T> stream) {
stream.ConnectTo(node_.In(index_));
return node_.Out(index_++).Cast<T>();
}
private:
int index_ = 0;
GenericNode& node_;
};
Agora, o código de construção do gráfico pode ficar assim:
CalculatorGraphConfig BuildGraph() {
Graph graph;
// Graph inputs.
Stream<float> float_value = graph.In(0).SetName("float_value").Cast<float>();
Stream<int> int_value = graph.In(1).SetName("int_value").Cast<int>();
Stream<bool> bool_value = graph.In(2).SetName("bool_value").Cast<bool>();
PassThroughNodeBuilder pass_node_builder(graph);
Stream<float> passed_float_value = pass_node_builder.PassThrough(float_value);
Stream<int> passed_int_value = pass_node_builder.PassThrough(int_value);
Stream<bool> passed_bool_value = pass_node_builder.PassThrough(bool_value);
// Graph outputs.
passed_float_value.SetName("passed_float_value").ConnectTo(graph.Out(0));
passed_int_value.SetName("passed_int_value").ConnectTo(graph.Out(1));
passed_bool_value.SetName("passed_bool_value").ConnectTo(graph.Out(2));
// Get `CalculatorGraphConfig` to pass it into `CalculatorGraph`
return graph.GetConfig();
}
Agora não é possível ter ordem ou índice incorretos na criação do cartão
e economize um pouco de digitação adivinhando o tipo de Cast
no PassThrough
entrada.
O que fazer e o que não fazer
Definir as entradas do grafo desde o início, se possível
No código abaixo:
- Pode ser difícil adivinhar quantas entradas há no gráfico.
- Pode ser propenso a erros em geral e difícil de manter no futuro (por exemplo, é um o índice correto? nome? E se algumas entradas forem removidas ou opcionais? etc.).
- A reutilização de
RunSomething
é limitada porque outros gráficos podem ter valores diferentes entradas
ERRADO: exemplo de código inválido.
Stream<D> RunSomething(Stream<A> a, Stream<B> b, Graph& graph) {
Stream<C> c = graph.In(2).SetName("c").Cast<C>(); // Bad.
// ...
}
CalculatorGraphConfig BuildGraph() {
Graph graph;
Stream<A> a = graph.In(0).SetName("a").Cast<A>();
// 10/100/N lines of code.
Stream<B> b = graph.In(1).SetName("b").Cast<B>() // Bad.
Stream<D> d = RunSomething(a, b, graph);
// ...
return graph.GetConfig();
}
Em vez disso, defina as entradas de gráfico logo no início do criador de gráficos:
DO (fazer): exemplo de código válido.
Stream<D> RunSomething(Stream<A> a, Stream<B> b, Stream<C> c, Graph& graph) {
// ...
}
CalculatorGraphConfig BuildGraph() {
Graph graph;
// Inputs.
Stream<A> a = graph.In(0).SetName("a").Cast<A>();
Stream<B> b = graph.In(1).SetName("b").Cast<B>();
Stream<C> c = graph.In(2).SetName("c").Cast<C>();
// 10/100/N lines of code.
Stream<D> d = RunSomething(a, b, c, graph);
// ...
return graph.GetConfig();
}
Use std::optional
se você tiver um stream de entrada ou um pacote secundário que não seja
sempre definido e colocá-lo bem no início:
DO (fazer): exemplo de código válido.
std::optional<Stream<A>> a;
if (needs_a) {
a = graph.In(0).SetName(a).Cast<A>();
}
Defina as saídas do gráfico no final
No código abaixo:
- Pode ser difícil adivinhar quantas saídas você tem no gráfico.
- Pode ser propenso a erros em geral e difícil de manter no futuro (por exemplo, é um o índice correto? nome? e se alguma saída for removida ou opcional? etc.).
- A reutilização de
RunSomething
é limitada, porque outros gráficos podem ter saídas diferentes
ERRADO: exemplo de código inválido.
void RunSomething(Stream<Input> input, Graph& graph) {
// ...
node.Out("OUTPUT_F")
.SetName("output_f").ConnectTo(graph.Out(2)); // Bad.
}
CalculatorGraphConfig BuildGraph() {
Graph graph;
// 10/100/N lines of code.
node.Out("OUTPUT_D")
.SetName("output_d").ConnectTo(graph.Out(0)); // Bad.
// 10/100/N lines of code.
node.Out("OUTPUT_E")
.SetName("output_e").ConnectTo(graph.Out(1)); // Bad.
// 10/100/N lines of code.
RunSomething(input, graph);
// ...
return graph.GetConfig();
}
Em vez disso, defina as saídas do gráfico no final do seu criador de gráficos:
DO (fazer): exemplo de código válido.
Stream<F> RunSomething(Stream<Input> input, Graph& graph) {
// ...
return node.Out("OUTPUT_F").Cast<F>();
}
CalculatorGraphConfig BuildGraph() {
Graph graph;
// 10/100/N lines of code.
Stream<D> d = node.Out("OUTPUT_D").Cast<D>();
// 10/100/N lines of code.
Stream<E> e = node.Out("OUTPUT_E").Cast<E>();
// 10/100/N lines of code.
Stream<F> f = RunSomething(input, graph);
// ...
// Outputs.
d.SetName("output_d").ConnectTo(graph.Out(0));
e.SetName("output_e").ConnectTo(graph.Out(1));
f.SetName("output_f").ConnectTo(graph.Out(2));
return graph.GetConfig();
}
Manter os nós separados uns dos outros
No MediaPipe, os streams de pacotes e os pacotes laterais são tão importantes quanto o processamento nós. E todos os requisitos de entrada de nó e produtos de saída são expressos claramente e de forma independente em termos de fluxos e pacotes laterais que consome e produz.
ERRADO: exemplo de código inválido.
CalculatorGraphConfig BuildGraph() {
Graph graph;
// Inputs.
Stream<A> a = graph.In(0).Cast<A>();
auto& node1 = graph.AddNode("Calculator1");
a.ConnectTo(node1.In("INPUT"));
auto& node2 = graph.AddNode("Calculator2");
node1.Out("OUTPUT").ConnectTo(node2.In("INPUT")); // Bad.
auto& node3 = graph.AddNode("Calculator3");
node1.Out("OUTPUT").ConnectTo(node3.In("INPUT_B")); // Bad.
node2.Out("OUTPUT").ConnectTo(node3.In("INPUT_C")); // Bad.
auto& node4 = graph.AddNode("Calculator4");
node1.Out("OUTPUT").ConnectTo(node4.In("INPUT_B")); // Bad.
node2.Out("OUTPUT").ConnectTo(node4.In("INPUT_C")); // Bad.
node3.Out("OUTPUT").ConnectTo(node4.In("INPUT_D")); // Bad.
// Outputs.
node1.Out("OUTPUT").SetName("b").ConnectTo(graph.Out(0)); // Bad.
node2.Out("OUTPUT").SetName("c").ConnectTo(graph.Out(1)); // Bad.
node3.Out("OUTPUT").SetName("d").ConnectTo(graph.Out(2)); // Bad.
node4.Out("OUTPUT").SetName("e").ConnectTo(graph.Out(3)); // Bad.
return graph.GetConfig();
}
No código acima:
- Os nós são acoplados uns aos outros, por exemplo, O
node4
sabe onde estão as entradas proveniente de (node1
,node2
,node3
) e complica a refatoração, manutenção e reutilização de código- Esse padrão de uso é um downgrade da representação proto, em que os nós são separados por padrão.
- As chamadas do
node#.Out("OUTPUT")
são duplicadas, e a legibilidade é prejudicada à medida que você é possível usar nomes mais limpos e também fornecer um tipo real.
Portanto, para corrigir os problemas acima, escreva o seguinte código de construção de gráfico:
DO (fazer): exemplo de código válido.
CalculatorGraphConfig BuildGraph() {
Graph graph;
// Inputs.
Stream<A> a = graph.In(0).Cast<A>();
// `node1` usage is limited to 3 lines below.
auto& node1 = graph.AddNode("Calculator1");
a.ConnectTo(node1.In("INPUT"));
Stream<B> b = node1.Out("OUTPUT").Cast<B>();
// `node2` usage is limited to 3 lines below.
auto& node2 = graph.AddNode("Calculator2");
b.ConnectTo(node2.In("INPUT"));
Stream<C> c = node2.Out("OUTPUT").Cast<C>();
// `node3` usage is limited to 4 lines below.
auto& node3 = graph.AddNode("Calculator3");
b.ConnectTo(node3.In("INPUT_B"));
c.ConnectTo(node3.In("INPUT_C"));
Stream<D> d = node3.Out("OUTPUT").Cast<D>();
// `node4` usage is limited to 5 lines below.
auto& node4 = graph.AddNode("Calculator4");
b.ConnectTo(node4.In("INPUT_B"));
c.ConnectTo(node4.In("INPUT_C"));
d.ConnectTo(node4.In("INPUT_D"));
Stream<E> e = node4.Out("OUTPUT").Cast<E>();
// Outputs.
b.SetName("b").ConnectTo(graph.Out(0));
c.SetName("c").ConnectTo(graph.Out(1));
d.SetName("d").ConnectTo(graph.Out(2));
e.SetName("e").ConnectTo(graph.Out(3));
return graph.GetConfig();
}
Agora, se necessário, é possível remover facilmente node1
e transformar b
em uma entrada de gráfico.
atualizações são necessárias para node2
, node3
, node4
(da mesma forma que na representação proto;
aliás), porque estão desacoplados um do outro.
No geral, o código acima replica o gráfico proto de forma mais precisa:
input_stream: "a"
node {
calculator: "Calculator1"
input_stream: "INPUT:a"
output_stream: "OUTPUT:b"
}
node {
calculator: "Calculator2"
input_stream: "INPUT:b"
output_stream: "OUTPUT:C"
}
node {
calculator: "Calculator3"
input_stream: "INPUT_B:b"
input_stream: "INPUT_C:c"
output_stream: "OUTPUT:d"
}
node {
calculator: "Calculator4"
input_stream: "INPUT_B:b"
input_stream: "INPUT_C:c"
input_stream: "INPUT_D:d"
output_stream: "OUTPUT:e"
}
output_stream: "b"
output_stream: "c"
output_stream: "d"
output_stream: "e"
Além disso, agora é possível extrair funções utilitárias para reutilização em outros gráficos:
DO (fazer): exemplo de código válido.
Stream<B> RunCalculator1(Stream<A> a, Graph& graph) {
auto& node = graph.AddNode("Calculator1");
a.ConnectTo(node.In("INPUT"));
return node.Out("OUTPUT").Cast<B>();
}
Stream<C> RunCalculator2(Stream<B> b, Graph& graph) {
auto& node = graph.AddNode("Calculator2");
b.ConnectTo(node.In("INPUT"));
return node.Out("OUTPUT").Cast<C>();
}
Stream<D> RunCalculator3(Stream<B> b, Stream<C> c, Graph& graph) {
auto& node = graph.AddNode("Calculator3");
b.ConnectTo(node.In("INPUT_B"));
c.ConnectTo(node.In("INPUT_C"));
return node.Out("OUTPUT").Cast<D>();
}
Stream<E> RunCalculator4(Stream<B> b, Stream<C> c, Stream<D> d, Graph& graph) {
auto& node = graph.AddNode("Calculator4");
b.ConnectTo(node.In("INPUT_B"));
c.ConnectTo(node.In("INPUT_C"));
d.ConnectTo(node.In("INPUT_D"));
return node.Out("OUTPUT").Cast<E>();
}
CalculatorGraphConfig BuildGraph() {
Graph graph;
// Inputs.
Stream<A> a = graph.In(0).Cast<A>();
Stream<B> b = RunCalculator1(a, graph);
Stream<C> c = RunCalculator2(b, graph);
Stream<D> d = RunCalculator3(b, c, graph);
Stream<E> e = RunCalculator4(b, c, d, graph);
// Outputs.
b.SetName("b").ConnectTo(graph.Out(0));
c.SetName("c").ConnectTo(graph.Out(1));
d.SetName("d").ConnectTo(graph.Out(2));
e.SetName("e").ConnectTo(graph.Out(3));
return graph.GetConfig();
}
Nós separados para melhorar a legibilidade
ERRADO: exemplo de código inválido.
CalculatorGraphConfig BuildGraph() {
Graph graph;
// Inputs.
Stream<A> a = graph.In(0).Cast<A>();
auto& node1 = graph.AddNode("Calculator1");
a.ConnectTo(node1.In("INPUT"));
Stream<B> b = node1.Out("OUTPUT").Cast<B>();
auto& node2 = graph.AddNode("Calculator2");
b.ConnectTo(node2.In("INPUT"));
Stream<C> c = node2.Out("OUTPUT").Cast<C>();
auto& node3 = graph.AddNode("Calculator3");
b.ConnectTo(node3.In("INPUT_B"));
c.ConnectTo(node3.In("INPUT_C"));
Stream<D> d = node3.Out("OUTPUT").Cast<D>();
auto& node4 = graph.AddNode("Calculator4");
b.ConnectTo(node4.In("INPUT_B"));
c.ConnectTo(node4.In("INPUT_C"));
d.ConnectTo(node4.In("INPUT_D"));
Stream<E> e = node4.Out("OUTPUT").Cast<E>();
// Outputs.
b.SetName("b").ConnectTo(graph.Out(0));
c.SetName("c").ConnectTo(graph.Out(1));
d.SetName("d").ConnectTo(graph.Out(2));
e.SetName("e").ConnectTo(graph.Out(3));
return graph.GetConfig();
}
No código acima, pode ser difícil entender a ideia de onde cada nó começa as pontas. Para melhorar isso e ajudar seus leitores de código, você pode simplesmente deixar espaços linhas antes e depois de cada nó:
DO (fazer): exemplo de código válido.
CalculatorGraphConfig BuildGraph() {
Graph graph;
// Inputs.
Stream<A> a = graph.In(0).Cast<A>();
auto& node1 = graph.AddNode("Calculator1");
a.ConnectTo(node1.In("INPUT"));
Stream<B> b = node1.Out("OUTPUT").Cast<B>();
auto& node2 = graph.AddNode("Calculator2");
b.ConnectTo(node2.In("INPUT"));
Stream<C> c = node2.Out("OUTPUT").Cast<C>();
auto& node3 = graph.AddNode("Calculator3");
b.ConnectTo(node3.In("INPUT_B"));
c.ConnectTo(node3.In("INPUT_C"));
Stream<D> d = node3.Out("OUTPUT").Cast<D>();
auto& node4 = graph.AddNode("Calculator4");
b.ConnectTo(node4.In("INPUT_B"));
c.ConnectTo(node4.In("INPUT_C"));
d.ConnectTo(node4.In("INPUT_D"));
Stream<E> e = node4.Out("OUTPUT").Cast<E>();
// Outputs.
b.SetName("b").ConnectTo(graph.Out(0));
c.SetName("c").ConnectTo(graph.Out(1));
d.SetName("d").ConnectTo(graph.Out(2));
e.SetName("e").ConnectTo(graph.Out(3));
return graph.GetConfig();
}
Além disso, a representação acima corresponde ao protótipo CalculatorGraphConfig
melhor representação dos dados.
Se você extrair nós em funções utilitárias, o escopo deles será dentro das funções e fica claro onde elas começam e terminam, então não há problema em ter:
DO (fazer): exemplo de código válido.
CalculatorGraphConfig BuildGraph() {
Graph graph;
// Inputs.
Stream<A> a = graph.In(0).Cast<A>();
Stream<B> b = RunCalculator1(a, graph);
Stream<C> c = RunCalculator2(b, graph);
Stream<D> d = RunCalculator3(b, c, graph);
Stream<E> e = RunCalculator4(b, c, d, graph);
// Outputs.
b.SetName("b").ConnectTo(graph.Out(0));
c.SetName("c").ConnectTo(graph.Out(1));
d.SetName("d").ConnectTo(graph.Out(2));
e.SetName("e").ConnectTo(graph.Out(3));
return graph.GetConfig();
}