Xem trên ai.google.dev | Dùng thử sổ tay Colab | Xem sổ tay trên GitHub | Tải sổ tay xuống |
Trong sổ tay này, bạn sẽ tìm hiểu cách bắt đầu sử dụng dịch vụ điều chỉnh API PaLM bằng các lệnh curl hoặc API yêu cầu Python để gọi API PaLM REST. Tại đây, bạn sẽ tìm hiểu cách điều chỉnh mô hình văn bản đằng sau dịch vụ tạo văn bản của API PaLM.
Thiết lập
Xác thực
API PaLM cho phép bạn điều chỉnh mô hình dựa trên dữ liệu của riêng bạn. Vì đây là dữ liệu và mô hình đã điều chỉnh của bạn, nên bạn cần có các biện pháp kiểm soát quyền truy cập nghiêm ngặt hơn so với những gì Khóa API có thể cung cấp.
Trước khi có thể chạy hướng dẫn này, bạn cần phải thiết lập OAuth cho dự án của mình.
Nếu bạn muốn chạy sổ tay này trong Colab, hãy bắt đầu bằng cách tải tệp client_secret*.json
lên bằng tuỳ chọn "File > Upload" (Tệp > Tải lên).
cp client_secret*.json client_secret.json
ls
client_secret.json
Lệnh gcloud này sẽ chuyển tệp client_secret.json
thành thông tin xác thực có thể dùng để xác thực với dịch vụ.
import os
if 'COLAB_RELEASE_TAG' in os.environ:
# Use `--no-browser` in colab
!gcloud auth application-default login --no-browser --client-id-file client_secret.json --scopes='https://www.googleapis.com/auth/cloud-platform,https://www.googleapis.com/auth/generative-language.tuning'
else:
!gcloud auth application-default login --client-id-file client_secret.json --scopes='https://www.googleapis.com/auth/cloud-platform,https://www.googleapis.com/auth/generative-language.tuning'
Gọi API REST bằng CURL
Phần này đưa ra ví dụ về câu lệnh curl để gọi API REST. Bạn sẽ tìm hiểu cách tạo công việc điều chỉnh, kiểm tra trạng thái của công việc đó và sau khi hoàn tất, hãy thực hiện lệnh gọi suy luận.
Đặt biến
Đặt biến cho các giá trị định kỳ để sử dụng cho các lệnh gọi API REST còn lại. Mã này đang sử dụng thư viện os
của Python để đặt các biến môi trường có thể truy cập được trong tất cả các ô mã.
Điều này chỉ dành riêng cho môi trường sổ tay Colab. Mã trong ô mã tiếp theo tương đương với việc chạy các lệnh sau trong một thiết bị đầu cuối bash.
export access_token=$(gcloud auth application-default print-access-token)
export project_id=my-project-id
export base_url=https://generativelanguage.googleapis.com
import os
access_token = !gcloud auth application-default print-access-token
access_token = '\n'.join(access_token)
os.environ['access_token'] = access_token
os.environ['project_id'] = "project-id"
os.environ['base_url'] = "https://generativelanguage.googleapis.com"
Liệt kê các mô hình đã điều chỉnh
Xác minh chế độ thiết lập xác thực bằng cách liệt kê các mô hình đã điều chỉnh hiện có.
curl -X GET ${base_url}/v1beta3/tunedModels \
-H 'Content-Type: application/json' \
-H "Authorization: Bearer ${access_token}" \
-H "x-goog-user-project: ${project_id}" | grep name
"name": "tunedModels/testnumbergenerator-fvitocr834l6", "name": "tunedModels/my-display-name-81-9wpmc1m920vq", "displayName": "my display name 81", "name": "tunedModels/number-generator-model-kctlevca1g3q", "name": "tunedModels/my-display-name-81-r9wcuda14lyy", "displayName": "my display name 81", "name": "tunedModels/number-generator-model-w1eabln5adwp", % Total % Received % Xferd Average Speed Time Time Time Current Dload Upload Total Spent Left Speed 100 17583 0 17583 0 0 51600 0 --:--:-- --:--:-- --:--:-- 51563
Tạo mô hình đã điều chỉnh
Để tạo mô hình được điều chỉnh, bạn cần truyền tập dữ liệu của mình vào mô hình trong trường training_data
.
Trong ví dụ này, bạn sẽ điều chỉnh một mô hình để tạo số tiếp theo trong trình tự. Ví dụ: nếu dữ liệu đầu vào là 1
, thì mô hình sẽ xuất ra 2
. Nếu dữ liệu đầu vào là one hundred
, thì kết quả sẽ là one hundred one
.
curl -X POST ${base_url}/v1beta3/tunedModels \
-H 'Content-Type: application/json' \
-H "Authorization: Bearer ${access_token}" \
-H "x-goog-user-project: ${project_id}" \
-d '
{
"display_name": "number generator model",
"base_model": "models/text-bison-001",
"tuning_task": {
"hyperparameters": {
"batch_size": 2,
"learning_rate": 0.001,
"epoch_count":3,
},
"training_data": {
"examples": {
"examples": [
{
"text_input": "1",
"output": "2",
},{
"text_input": "3",
"output": "4",
},{
"text_input": "-3",
"output": "-2",
},{
"text_input": "twenty two",
"output": "twenty three",
},{
"text_input": "two hundred",
"output": "two hundred one",
},{
"text_input": "ninety nine",
"output": "one hundred",
},{
"text_input": "8",
"output": "9",
},{
"text_input": "-98",
"output": "-97",
},{
"text_input": "1,000",
"output": "1,001",
},{
"text_input": "10,100,000",
"output": "10,100,001",
},{
"text_input": "thirteen",
"output": "fourteen",
},{
"text_input": "eighty",
"output": "eighty one",
},{
"text_input": "one",
"output": "two",
},{
"text_input": "three",
"output": "four",
},{
"text_input": "seven",
"output": "eight",
}
]
}
}
}
}' | tee tunemodel.json
{ "name": "tunedModels/number-generator-model-q2d0uism5ivd/operations/xvyx09sjxlmh", "metadata": { "@type": "type.googleapis.com/google.ai.generativelanguage.v1beta3.CreateTunedModelMetadata", "totalSteps": 23, "tunedModel": "tunedModels/number-generator-model-q2d0uism5ivd" } } % Total % Received % Xferd Average Speed Time Time Time Current Dload Upload Total Spent Left Speed 100 2277 0 297 100 1980 146 975 0:00:02 0:00:02 --:--:-- 1121
Nhận trạng thái mô hình đã điều chỉnh
Trạng thái của mô hình này được đặt thành CREATING
trong quá trình huấn luyện và sẽ thay đổi thành ACTIVE
sau khi hoàn tất.
Dưới đây là một đoạn mã python để phân tích cú pháp tên mô hình đã tạo từ JSON phản hồi. Nếu đang chạy lệnh này trong một thiết bị đầu cuối, bạn có thể thử sử dụng trình phân tích cú pháp JSON bash để phân tích cú pháp phản hồi.
import json
first_page = json.load(open('tunemodel.json'))
os.environ['modelname'] = first_page['metadata']['tunedModel']
print(os.environ['modelname'])
tunedModels/number-generator-model-q2d0uism5ivd
Thực hiện một yêu cầu GET
khác với tên mô hình để lấy siêu dữ liệu mô hình, trong đó có trường trạng thái.
curl -X GET ${base_url}/v1beta3/${modelname} \
-H 'Content-Type: application/json' \
-H "Authorization: Bearer ${access_token}" \
-H "x-goog-user-project: ${project_id}" \ | grep state
"state": "CREATING", % Total % Received % Xferd Average Speed Time Time Time Current Dload Upload Total Spent Left Speed 100 494 0 494 0 0 760 0 --:--:-- --:--:-- --:--:-- 760 curl: (3) URL using bad/illegal format or missing URL
Chạy quy trình suy luận
Sau khi công việc điều chỉnh hoàn tất, bạn có thể sử dụng công việc đó để tạo văn bản bằng dịch vụ văn bản.
curl -X POST ${base_url}/v1beta3/${modelname}:generateText \
-H 'Content-Type: application/json' \
-H "Authorization: Bearer ${access_token}" \
-H "x-goog-user-project: ${project_id}" \
-d '{
"prompt": {
"text": "4"
},
"temperature": 1.0,
"candidate_count": 2}' | grep output
"output": "3 2 1", "output": "3 2", % Total % Received % Xferd Average Speed Time Time Time Current Dload Upload Total Spent Left Speed 100 1569 0 1447 100 122 183 15 0:00:08 0:00:07 0:00:01 310
Kết quả từ mô hình của bạn có thể chính xác hoặc không chính xác. Nếu mô hình đã điều chỉnh không đạt được các tiêu chuẩn bắt buộc, bạn có thể thử thêm các ví dụ chất lượng cao hơn, điều chỉnh các tham số siêu dữ liệu hoặc thêm phần mở đầu vào các ví dụ của mình. Bạn thậm chí có thể tạo một mô hình được điều chỉnh khác dựa trên mô hình đầu tiên bạn tạo.
Hãy xem hướng dẫn điều chỉnh để biết thêm hướng dẫn về cách cải thiện hiệu suất.
Gọi API REST với các yêu cầu Python
Bạn có thể gọi API còn lại bằng bất kỳ thư viện nào cho phép bạn gửi yêu cầu http. Nhóm ví dụ tiếp theo sử dụng thư viện yêu cầu Python và minh hoạ một số tính năng nâng cao hơn.
Đặt biến
access_token = !gcloud auth application-default print-access-token
access_token = '\n'.join(access_token)
project = 'project-id'
base_url = "https://generativelanguage.googleapis.com"
Nhập thư viện requests
.
import requests
import json
Liệt kê các mô hình đã điều chỉnh
Xác minh chế độ thiết lập xác thực bằng cách liệt kê các mô hình đã điều chỉnh hiện có.
headers={
'Authorization': 'Bearer ' + access_token,
'Content-Type': 'application/json',
'x-goog-user-project': project
}
result = requests.get(
url=f'{base_url}/v1beta3/tunedModels',
headers = headers,
)
result.json()
{'tunedModels': [{'name': 'tunedModels/testnumbergenerator-fvitocr834l6', 'baseModel': 'models/text-bison-001', 'displayName': 'test_number_generator', 'description': '{"description":"generates the next number in the sequence given the input text","exampleInput":"input: 1","exampleOutput":"output: 2","datasourceUrl":"https://drive.google.com/open?id=11Pdm6GNom4vlBMUHwO6yFjGQT3t1yi44WVShXMFnkVA&authuser=0&resourcekey=0-2d17tccbdBoThXMkNDvtag","showedTuningComplete":false}', 'state': 'ACTIVE', 'createTime': '2023-09-18T11:06:39.092786Z', 'updateTime': '2023-09-18T11:07:24.198359Z', 'tuningTask': {'startTime': '2023-09-18T11:06:39.461814784Z', 'completeTime': '2023-09-18T11:07:24.198359Z', 'snapshots': [{'step': 1, 'meanLoss': 16.613504, 'computeTime': '2023-09-18T11:06:44.532937624Z'}, {'step': 2, 'epoch': 1, 'meanLoss': 20.299532, 'computeTime': '2023-09-18T11:06:47.825134421Z'}, {'step': 3, 'epoch': 1, 'meanLoss': 8.169708, 'computeTime': '2023-09-18T11:06:50.580344344Z'}, {'step': 4, 'epoch': 2, 'meanLoss': 3.7588992, 'computeTime': '2023-09-18T11:06:53.219133748Z'}, {'step': 5, 'epoch': 3, 'meanLoss': 2.0643115, 'computeTime': '2023-09-18T11:06:55.828458606Z'}, {'step': 6, 'epoch': 3, 'meanLoss': 1.9765375, 'computeTime': '2023-09-18T11:06:58.426053772Z'}, {'step': 7, 'epoch': 4, 'meanLoss': 0.9276156, 'computeTime': '2023-09-18T11:07:01.231832398Z'}, {'step': 8, 'epoch': 5, 'meanLoss': 1.8424839, 'computeTime': '2023-09-18T11:07:03.822710074Z'}, {'step': 9, 'epoch': 5, 'meanLoss': 1.1747926, 'computeTime': '2023-09-18T11:07:06.441685551Z'}, {'step': 10, 'epoch': 6, 'meanLoss': 0.3079359, 'computeTime': '2023-09-18T11:07:08.793491157Z'}, {'step': 11, 'epoch': 7, 'meanLoss': 0.543368, 'computeTime': '2023-09-18T11:07:11.393264892Z'}, {'step': 12, 'epoch': 7, 'meanLoss': 0.35068464, 'computeTime': '2023-09-18T11:07:13.808021238Z'}, {'step': 13, 'epoch': 8, 'meanLoss': 0.026032856, 'computeTime': '2023-09-18T11:07:16.295972078Z'}, {'step': 14, 'epoch': 8, 'meanLoss': 0.108341046, 'computeTime': '2023-09-18T11:07:18.941247488Z'}, {'step': 15, 'epoch': 9, 'meanLoss': 0.016470395, 'computeTime': '2023-09-18T11:07:21.607654306Z'}, {'step': 16, 'epoch': 10, 'meanLoss': 0.063049875, 'computeTime': '2023-09-18T11:07:24.077271307Z'}], 'hyperparameters': {'epochCount': 10, 'batchSize': 16, 'learningRate': 0.02} }, 'temperature': 0.7, 'topP': 0.95, 'topK': 40}, {'name': 'tunedModels/my-display-name-81-9wpmc1m920vq', 'baseModel': 'models/text-bison-tuning-test', 'displayName': 'my display name 81', 'state': 'ACTIVE', 'createTime': '2023-09-18T22:02:08.690991Z', 'updateTime': '2023-09-18T22:02:28.806318Z', 'tuningTask': {'startTime': '2023-09-18T22:02:09.161100369Z', 'completeTime': '2023-09-18T22:02:28.806318Z', 'snapshots': [{'step': 1, 'meanLoss': 7.2774773, 'computeTime': '2023-09-18T22:02:12.453056368Z'}, {'step': 2, 'meanLoss': 6.1902447, 'computeTime': '2023-09-18T22:02:13.789508217Z'}, {'step': 3, 'meanLoss': 5.5545835, 'computeTime': '2023-09-18T22:02:15.136220505Z'}, {'step': 4, 'epoch': 1, 'meanLoss': 7.9237704, 'computeTime': '2023-09-18T22:02:16.474358517Z'}, {'step': 5, 'epoch': 1, 'meanLoss': 7.6770706, 'computeTime': '2023-09-18T22:02:17.758261108Z'}, {'step': 6, 'epoch': 1, 'meanLoss': 7.378622, 'computeTime': '2023-09-18T22:02:19.114072224Z'}, {'step': 7, 'epoch': 1, 'meanLoss': 4.485537, 'computeTime': '2023-09-18T22:02:20.927434115Z'}, {'step': 8, 'epoch': 2, 'meanLoss': 6.815181, 'computeTime': '2023-09-18T22:02:22.267906011Z'}, {'step': 9, 'epoch': 2, 'meanLoss': 6.411363, 'computeTime': '2023-09-18T22:02:24.078114085Z'}, {'step': 10, 'epoch': 2, 'meanLoss': 8.585093, 'computeTime': '2023-09-18T22:02:25.441598938Z'}, {'step': 11, 'epoch': 2, 'meanLoss': 4.901249, 'computeTime': '2023-09-18T22:02:27.108985392Z'}, {'step': 12, 'epoch': 3, 'meanLoss': 7.073003, 'computeTime': '2023-09-18T22:02:28.441662034Z'}], 'hyperparameters': {'epochCount': 3, 'batchSize': 4, 'learningRate': 0.001} }, 'temperature': 0.7, 'topP': 0.95, 'topK': 40}, {'name': 'tunedModels/number-generator-model-kctlevca1g3q', 'baseModel': 'models/text-bison-tuning-test', 'displayName': 'number generator model', 'state': 'ACTIVE', 'createTime': '2023-09-18T23:43:21.461545Z', 'updateTime': '2023-09-18T23:43:49.205493Z', 'tuningTask': {'startTime': '2023-09-18T23:43:21.542403958Z', 'completeTime': '2023-09-18T23:43:49.205493Z', 'snapshots': [{'step': 1, 'meanLoss': 7.342065, 'computeTime': '2023-09-18T23:43:23.356271969Z'}, {'step': 2, 'meanLoss': 7.255807, 'computeTime': '2023-09-18T23:43:24.620248223Z'}, {'step': 3, 'meanLoss': 5.4591417, 'computeTime': '2023-09-18T23:43:25.854505395Z'}, {'step': 4, 'meanLoss': 6.968665, 'computeTime': '2023-09-18T23:43:27.138260198Z'}, {'step': 5, 'meanLoss': 4.578809, 'computeTime': '2023-09-18T23:43:28.404943274Z'}, {'step': 6, 'meanLoss': 6.4862137, 'computeTime': '2023-09-18T23:43:29.631624883Z'}, {'step': 7, 'meanLoss': 9.781939, 'computeTime': '2023-09-18T23:43:30.801341449Z'}, {'step': 8, 'epoch': 1, 'meanLoss': 5.990006, 'computeTime': '2023-09-18T23:43:31.854703315Z'}, {'step': 9, 'epoch': 1, 'meanLoss': 8.846312, 'computeTime': '2023-09-18T23:43:33.075785103Z'}, {'step': 10, 'epoch': 1, 'meanLoss': 6.1585655, 'computeTime': '2023-09-18T23:43:34.310432174Z'}, {'step': 11, 'epoch': 1, 'meanLoss': 4.7877502, 'computeTime': '2023-09-18T23:43:35.381582526Z'}, {'step': 12, 'epoch': 1, 'meanLoss': 9.660514, 'computeTime': '2023-09-18T23:43:36.445446408Z'}, {'step': 13, 'epoch': 1, 'meanLoss': 5.6482882, 'computeTime': '2023-09-18T23:43:37.603237821Z'}, {'step': 14, 'epoch': 1, 'meanLoss': 3.162092, 'computeTime': '2023-09-18T23:43:38.671463397Z'}, {'step': 15, 'epoch': 2, 'meanLoss': 6.322996, 'computeTime': '2023-09-18T23:43:39.769742201Z'}, {'step': 16, 'epoch': 2, 'meanLoss': 6.781, 'computeTime': '2023-09-18T23:43:40.985967994Z'}, {'step': 17, 'epoch': 2, 'meanLoss': 5.136773, 'computeTime': '2023-09-18T23:43:42.235469710Z'}, {'step': 18, 'epoch': 2, 'meanLoss': 7.2091155, 'computeTime': '2023-09-18T23:43:43.415178581Z'}, {'step': 19, 'epoch': 2, 'meanLoss': 7.7508755, 'computeTime': '2023-09-18T23:43:44.775221774Z'}, {'step': 20, 'epoch': 2, 'meanLoss': 8.144815, 'computeTime': '2023-09-18T23:43:45.788824334Z'}, {'step': 21, 'epoch': 2, 'meanLoss': 5.485137, 'computeTime': '2023-09-18T23:43:46.812663998Z'}, {'step': 22, 'epoch': 2, 'meanLoss': 3.709197, 'computeTime': '2023-09-18T23:43:47.971764087Z'}, {'step': 23, 'epoch': 3, 'meanLoss': 6.0069466, 'computeTime': '2023-09-18T23:43:49.004191079Z'}], 'hyperparameters': {'epochCount': 3, 'batchSize': 2, 'learningRate': 0.001} }, 'temperature': 0.7, 'topP': 0.95, 'topK': 40}, {'name': 'tunedModels/my-display-name-81-r9wcuda14lyy', 'baseModel': 'models/text-bison-tuning-test', 'displayName': 'my display name 81', 'state': 'ACTIVE', 'createTime': '2023-09-18T23:52:06.980185Z', 'updateTime': '2023-09-18T23:52:26.679601Z', 'tuningTask': {'startTime': '2023-09-18T23:52:07.616953503Z', 'completeTime': '2023-09-18T23:52:26.679601Z', 'snapshots': [{'step': 1, 'meanLoss': 7.2774773, 'computeTime': '2023-09-18T23:52:10.278936662Z'}, {'step': 2, 'meanLoss': 6.2793097, 'computeTime': '2023-09-18T23:52:11.630844790Z'}, {'step': 3, 'meanLoss': 5.540499, 'computeTime': '2023-09-18T23:52:13.027840389Z'}, {'step': 4, 'epoch': 1, 'meanLoss': 7.977523, 'computeTime': '2023-09-18T23:52:14.368199020Z'}, {'step': 5, 'epoch': 1, 'meanLoss': 7.6197805, 'computeTime': '2023-09-18T23:52:15.872428752Z'}, {'step': 6, 'epoch': 1, 'meanLoss': 7.3851357, 'computeTime': '2023-09-18T23:52:17.213094182Z'}, {'step': 7, 'epoch': 1, 'meanLoss': 4.5342345, 'computeTime': '2023-09-18T23:52:19.090698421Z'}, {'step': 8, 'epoch': 2, 'meanLoss': 6.8603754, 'computeTime': '2023-09-18T23:52:20.494844731Z'}, {'step': 9, 'epoch': 2, 'meanLoss': 6.418575, 'computeTime': '2023-09-18T23:52:21.815997555Z'}, {'step': 10, 'epoch': 2, 'meanLoss': 8.659064, 'computeTime': '2023-09-18T23:52:23.524287192Z'}, {'step': 11, 'epoch': 2, 'meanLoss': 4.856765, 'computeTime': '2023-09-18T23:52:24.864661291Z'}, {'step': 12, 'epoch': 3, 'meanLoss': 7.1078596, 'computeTime': '2023-09-18T23:52:26.225055381Z'}], 'hyperparameters': {'epochCount': 3, 'batchSize': 4, 'learningRate': 0.001} }, 'temperature': 0.7, 'topP': 0.95, 'topK': 40}, {'name': 'tunedModels/number-generator-model-w1eabln5adwp', 'baseModel': 'models/text-bison-tuning-test', 'displayName': 'number generator model', 'state': 'ACTIVE', 'createTime': '2023-09-19T19:29:08.622497Z', 'updateTime': '2023-09-19T19:29:46.063853Z', 'tuningTask': {'startTime': '2023-09-19T19:29:08.806930486Z', 'completeTime': '2023-09-19T19:29:46.063853Z', 'snapshots': [{'step': 1, 'meanLoss': 7.342065, 'computeTime': '2023-09-19T19:29:13.023811994Z'}, {'step': 2, 'meanLoss': 7.1960244, 'computeTime': '2023-09-19T19:29:14.844046282Z'}, {'step': 3, 'meanLoss': 5.480289, 'computeTime': '2023-09-19T19:29:16.596884354Z'}, {'step': 4, 'meanLoss': 6.851822, 'computeTime': '2023-09-19T19:29:17.741735378Z'}, {'step': 5, 'meanLoss': 4.5535283, 'computeTime': '2023-09-19T19:29:18.914760812Z'}, {'step': 6, 'meanLoss': 6.449012, 'computeTime': '2023-09-19T19:29:20.053316042Z'}, {'step': 7, 'meanLoss': 9.842458, 'computeTime': '2023-09-19T19:29:21.371286675Z'}, {'step': 8, 'epoch': 1, 'meanLoss': 5.9831877, 'computeTime': '2023-09-19T19:29:22.915277044Z'}, {'step': 9, 'epoch': 1, 'meanLoss': 8.936815, 'computeTime': '2023-09-19T19:29:24.666461680Z'}, {'step': 10, 'epoch': 1, 'meanLoss': 6.14651, 'computeTime': '2023-09-19T19:29:26.793310451Z'}, {'step': 11, 'epoch': 1, 'meanLoss': 4.853589, 'computeTime': '2023-09-19T19:29:28.328297535Z'}, {'step': 12, 'epoch': 1, 'meanLoss': 9.6831045, 'computeTime': '2023-09-19T19:29:29.501236840Z'}, {'step': 13, 'epoch': 1, 'meanLoss': 5.706586, 'computeTime': '2023-09-19T19:29:30.612807978Z'}, {'step': 14, 'epoch': 1, 'meanLoss': 3.276942, 'computeTime': '2023-09-19T19:29:31.928747103Z'}, {'step': 15, 'epoch': 2, 'meanLoss': 6.1736736, 'computeTime': '2023-09-19T19:29:33.588699180Z'}, {'step': 16, 'epoch': 2, 'meanLoss': 6.857398, 'computeTime': '2023-09-19T19:29:35.239083809Z'}, {'step': 17, 'epoch': 2, 'meanLoss': 5.098094, 'computeTime': '2023-09-19T19:29:37.000705047Z'}, {'step': 18, 'epoch': 2, 'meanLoss': 7.27724, 'computeTime': '2023-09-19T19:29:38.532313231Z'}, {'step': 19, 'epoch': 2, 'meanLoss': 7.6310735, 'computeTime': '2023-09-19T19:29:39.696034301Z'}, {'step': 20, 'epoch': 2, 'meanLoss': 8.152623, 'computeTime': '2023-09-19T19:29:40.803342042Z'}, {'step': 21, 'epoch': 2, 'meanLoss': 5.451577, 'computeTime': '2023-09-19T19:29:42.445788199Z'}, {'step': 22, 'epoch': 2, 'meanLoss': 3.7990716, 'computeTime': '2023-09-19T19:29:43.866737307Z'}, {'step': 23, 'epoch': 3, 'meanLoss': 6.120624, 'computeTime': '2023-09-19T19:29:45.599248553Z'}], 'hyperparameters': {'epochCount': 3, 'batchSize': 2, 'learningRate': 0.001} }, 'temperature': 0.7, 'topP': 0.95, 'topK': 40}]}
Tạo mô hình đã điều chỉnh
Tương tự như ví dụ về Curl, bạn truyền tập dữ liệu thông qua trường training_data
.
operation = requests.post(
url = f'{base_url}/v1beta3/tunedModels',
headers=headers,
json= {
"display_name": "number generator",
"base_model": "models/text-bison-001",
"tuning_task": {
"hyperparameters": {
"batch_size": 4,
"learning_rate": 0.001,
"epoch_count":3,
},
"training_data": {
"examples": {
"examples": [
{
'text_input': '1',
'output': '2',
},{
'text_input': '3',
'output': '4',
},{
'text_input': '-3',
'output': '-2',
},{
'text_input': 'twenty two',
'output': 'twenty three',
},{
'text_input': 'two hundred',
'output': 'two hundred one',
},{
'text_input': 'ninety nine',
'output': 'one hundred',
},{
'text_input': '8',
'output': '9',
},{
'text_input': '-98',
'output': '-97',
},{
'text_input': '1,000',
'output': '1,001',
},{
'text_input': '10,100,000',
'output': '10,100,001',
},{
'text_input': 'thirteen',
'output': 'fourteen',
},{
'text_input': 'eighty',
'output': 'eighty one',
},{
'text_input': 'one',
'output': 'two',
},{
'text_input': 'three',
'output': 'four',
},{
'text_input': 'seven',
'output': 'eight',
}
]
}
}
}
}
)
operation
<Response [200]>
operation.json()
{'name': 'tunedModels/number-generator-ncqqnysl74dt/operations/qqlbwzfyzn0k', 'metadata': {'@type': 'type.googleapis.com/google.ai.generativelanguage.v1beta3.CreateTunedModelMetadata', 'totalSteps': 12, 'tunedModel': 'tunedModels/number-generator-ncqqnysl74dt'} }
Đặt một biến có tên là mô hình đã điều chỉnh để sử dụng cho các lệnh gọi còn lại.
name=operation.json()["metadata"]["tunedModel"]
name
'tunedModels/number-generator-ncqqnysl74dt'
Nhận trạng thái mô hình được điều chỉnh
Bạn có thể kiểm tra tiến trình của công việc điều chỉnh bằng cách kiểm tra trường trạng thái. CREATING
có nghĩa là công việc điều chỉnh vẫn đang diễn ra và ACTIVE
có nghĩa là quá trình huấn luyện đã hoàn tất và mô hình đã điều chỉnh đã sẵn sàng để sử dụng.
tuned_model = requests.get(
url = f'{base_url}/v1beta3/{name}',
headers=headers,
)
tuned_model.json()
{'name': 'tunedModels/number-generator-ncqqnysl74dt', 'baseModel': 'models/text-bison-001', 'displayName': 'number generator', 'state': 'CREATING', 'createTime': '2023-09-19T19:56:25.999303Z', 'updateTime': '2023-09-19T19:56:25.999303Z', 'tuningTask': {'startTime': '2023-09-19T19:56:26.297862545Z', 'hyperparameters': {'epochCount': 3, 'batchSize': 4, 'learningRate': 0.001} }, 'temperature': 0.7, 'topP': 0.95, 'topK': 40}
Mã bên dưới kiểm tra trường trạng thái mỗi 5 giây cho đến khi trường này không còn ở trạng thái CREATING
.
import time
import pprint
op_json = operation.json()
response = op_json.get('response')
error = op_json.get('error')
while response is None and error is None:
time.sleep(31)
operation = requests.get(
url = f'{base_url}/v1/{op_json["name"]}',
headers=headers,
)
op_json = operation.json()
response = op_json.get('response')
error = op_json.get('error')
percent = op_json['metadata'].get('completedPercent')
if percent is not None:
print(f"{percent:.2f}% - {op_json['metadata']['snapshots'][-1]}")
print()
if error is not None:
raise Exception(error)
21.28% - {'step': 40, 'epoch': 10, 'meanLoss': 2.4871845, 'computeTime': '2023-09-20T00:23:55.255785843Z'} 21.28% - {'step': 40, 'epoch': 10, 'meanLoss': 2.4871845, 'computeTime': '2023-09-20T00:23:55.255785843Z'} 43.09% - {'step': 81, 'epoch': 21, 'meanLoss': 0.032220088, 'computeTime': '2023-09-20T00:24:56.302837803Z'} 43.09% - {'step': 81, 'epoch': 21, 'meanLoss': 0.032220088, 'computeTime': '2023-09-20T00:24:56.302837803Z'} 63.83% - {'step': 120, 'epoch': 32, 'meanLoss': 0.0030430648, 'computeTime': '2023-09-20T00:25:57.228615435Z'} 63.83% - {'step': 120, 'epoch': 32, 'meanLoss': 0.0030430648, 'computeTime': '2023-09-20T00:25:57.228615435Z'} 85.11% - {'step': 160, 'epoch': 42, 'meanLoss': -1.1145603e-06, 'computeTime': '2023-09-20T00:26:57.819011896Z'} 100.00% - {'step': 188, 'epoch': 50, 'meanLoss': 0.00040101097, 'computeTime': '2023-09-20T00:27:40.024132813Z'}
Chạy quy trình suy luận
Sau khi công việc điều chỉnh hoàn tất, bạn có thể sử dụng công việc đó để tạo văn bản theo cách tương tự như khi sử dụng mô hình văn bản cơ sở.
import time
m = requests.post(
url = f'{base_url}/v1beta3/{name}:generateText',
headers=headers,
json= {
"prompt": {
"text": "9"
},
})
import pprint
print(m.json()['candidates'][0]['output'])
9
Kết quả từ mô hình của bạn có thể chính xác hoặc không. Nếu mô hình đã điều chỉnh không đạt được các tiêu chuẩn bắt buộc, bạn có thể thử thêm các ví dụ chất lượng cao hơn, điều chỉnh các tham số siêu dữ liệu hoặc thêm phần mở đầu vào các ví dụ của mình.
Các bước tiếp theo
- Hãy xem phần điều chỉnh nhanh bằng Python để bắt đầu lập trình bằng dịch vụ điều chỉnh.
- Hãy xem hướng dẫn điều chỉnh để biết thêm thông tin chi tiết về cách điều chỉnh mô hình sao cho phù hợp nhất với trường hợp sử dụng của bạn.