REST API:調整快速入門導覽課程

在 ai.google.dev 上查看 試用 Colab 筆記本 在 GitHub 中查看筆記本 下載筆記本

在這個 Notebook 中,您將瞭解如何開始使用 PaLM API 調整服務,使用 curl 指令或 Python 要求 API 呼叫 PaLM REST API。以下說明如何調整 PaLM API 文字生成服務的文字模型。

設定

驗證

PaLM API 可讓您使用自有資料調整模型。由於這是您的資料和經過調整的模型,因此需要比 API 金鑰更嚴格的存取權控管機制。

您必須先為專案設定 OAuth,才能執行本教學課程。

如果想在 Colab 中執行這個筆記本,請先使用「File」>「Upload」選項上傳 client_secret*.json 檔案。

顯示 Colab 的「檔案」>「上傳」選項

cp client_secret*.json client_secret.json
ls
client_secret.json

這個 gcloud 指令會將 client_secret.json 檔案轉換為可用於驗證服務的憑證。

import os
if 'COLAB_RELEASE_TAG' in os.environ:
  # Use `--no-browser` in colab
  !gcloud auth application-default login --no-browser --client-id-file client_secret.json --scopes='https://www.googleapis.com/auth/cloud-platform,https://www.googleapis.com/auth/generative-language.tuning'
else:
  !gcloud auth application-default login --client-id-file client_secret.json --scopes='https://www.googleapis.com/auth/cloud-platform,https://www.googleapis.com/auth/generative-language.tuning'

使用 CURL 呼叫 REST API

本節提供呼叫 REST API 的範例 curl 陳述式。您將瞭解如何建立調整工作、檢查其狀態,以及在完成後發出推論呼叫。

設定變數

設定變數,用於在其餘的 REST API 呼叫中使用重複的值。程式碼會使用 Python os 程式庫設定環境變數,這些變數可在所有程式碼單元中存取。

這項功能僅適用於 Colab 筆記本環境。下一個程式碼儲存格中的程式碼,相當於在 bash 終端機中執行下列指令。

export access_token=$(gcloud auth application-default print-access-token)
export project_id=my-project-id
export base_url=https://generativelanguage.googleapis.com
import os

access_token = !gcloud auth application-default print-access-token
access_token = '\n'.join(access_token)

os.environ['access_token'] = access_token
os.environ['project_id'] = "project-id"
os.environ['base_url'] = "https://generativelanguage.googleapis.com"

列出調整後的模型

列出目前可用的經過調整的模型,驗證驗證設定。


curl -X GET ${base_url}/v1beta3/tunedModels \
    -H 'Content-Type: application/json' \
    -H "Authorization: Bearer ${access_token}" \
    -H "x-goog-user-project: ${project_id}" | grep name
"name": "tunedModels/testnumbergenerator-fvitocr834l6",
      "name": "tunedModels/my-display-name-81-9wpmc1m920vq",
      "displayName": "my display name 81",
      "name": "tunedModels/number-generator-model-kctlevca1g3q",
      "name": "tunedModels/my-display-name-81-r9wcuda14lyy",
      "displayName": "my display name 81",
      "name": "tunedModels/number-generator-model-w1eabln5adwp",
% Total    % Received % Xferd  Average Speed   Time    Time     Time  Current
                                 Dload  Upload   Total   Spent    Left  Speed
100 17583    0 17583    0     0  51600      0 --:--:-- --:--:-- --:--:-- 51563

建立經過調整的模型

如要建立經過調整的模型,您必須在 training_data 欄位中將資料集傳遞至模型。

在這個範例中,您將調整模型,以便產生序列中的下一個數字。舉例來說,如果輸入內容是 1,模型應輸出 2。如果輸入值為 one hundred,輸出值應為 one hundred one


curl -X POST ${base_url}/v1beta3/tunedModels \
    -H 'Content-Type: application/json' \
    -H "Authorization: Bearer ${access_token}" \
    -H "x-goog-user-project: ${project_id}" \
    -d '
      {
        "display_name": "number generator model",
        "base_model": "models/text-bison-001",
        "tuning_task": {
          "hyperparameters": {
            "batch_size": 2,
            "learning_rate": 0.001,
            "epoch_count":3,
          },
          "training_data": {
            "examples": {
              "examples": [
                {
                    "text_input": "1",
                    "output": "2",
                },{
                    "text_input": "3",
                    "output": "4",
                },{
                    "text_input": "-3",
                    "output": "-2",
                },{
                    "text_input": "twenty two",
                    "output": "twenty three",
                },{
                    "text_input": "two hundred",
                    "output": "two hundred one",
                },{
                    "text_input": "ninety nine",
                    "output": "one hundred",
                },{
                    "text_input": "8",
                    "output": "9",
                },{
                    "text_input": "-98",
                    "output": "-97",
                },{
                    "text_input": "1,000",
                    "output": "1,001",
                },{
                    "text_input": "10,100,000",
                    "output": "10,100,001",
                },{
                    "text_input": "thirteen",
                    "output": "fourteen",
                },{
                    "text_input": "eighty",
                    "output": "eighty one",
                },{
                    "text_input": "one",
                    "output": "two",
                },{
                    "text_input": "three",
                    "output": "four",
                },{
                    "text_input": "seven",
                    "output": "eight",
                }
              ]
            }
          }
        }
      }' | tee tunemodel.json
{
  "name": "tunedModels/number-generator-model-q2d0uism5ivd/operations/xvyx09sjxlmh",
  "metadata": {
    "@type": "type.googleapis.com/google.ai.generativelanguage.v1beta3.CreateTunedModelMetadata",
    "totalSteps": 23,
    "tunedModel": "tunedModels/number-generator-model-q2d0uism5ivd"
  }
}
% Total    % Received % Xferd  Average Speed   Time    Time     Time  Current
                                 Dload  Upload   Total   Spent    Left  Speed
100  2277    0   297  100  1980    146    975  0:00:02  0:00:02 --:--:--  1121

取得經過調整的模型狀態

模型的狀態在訓練期間會設為 CREATING,完成訓練後會變更為 ACTIVE

以下是一些 Python 程式碼,可從 JSON 回應中剖析產生的模型名稱。如果您是在終端機中執行這項操作,可以嘗試使用 bash JSON 剖析器來剖析回應。

import json

first_page = json.load(open('tunemodel.json'))
os.environ['modelname'] = first_page['metadata']['tunedModel']

print(os.environ['modelname'])
tunedModels/number-generator-model-q2d0uism5ivd

使用模型名稱執行另一個 GET 要求,取得包含狀態欄位的模型中繼資料。


curl -X GET ${base_url}/v1beta3/${modelname} \
    -H 'Content-Type: application/json' \
    -H "Authorization: Bearer ${access_token}" \
    -H "x-goog-user-project: ${project_id}" \ | grep state
"state": "CREATING",
% Total    % Received % Xferd  Average Speed   Time    Time     Time  Current
                                 Dload  Upload   Total   Spent    Left  Speed
100   494    0   494    0     0    760      0 --:--:-- --:--:-- --:--:--   760
curl: (3) URL using bad/illegal format or missing URL

執行推論

調整工作完成後,即可用文字服務生成文字。


curl -X POST ${base_url}/v1beta3/${modelname}:generateText \
    -H 'Content-Type: application/json' \
    -H "Authorization: Bearer ${access_token}" \
    -H "x-goog-user-project: ${project_id}" \
    -d '{
        "prompt": {
              "text": "4"
              },
        "temperature": 1.0,
        "candidate_count": 2}' | grep output
"output": "3 2 1",
      "output": "3 2",
% Total    % Received % Xferd  Average Speed   Time    Time     Time  Current
                                 Dload  Upload   Total   Spent    Left  Speed
100  1569    0  1447  100   122    183     15  0:00:08  0:00:07  0:00:01   310

模型的輸出內容可能正確,也可能不正確。如果經過調整的模型無法達到您要求的標準,您可以嘗試新增更多高品質的範例、調整超參數,或在範例中加入前言。您甚至可以根據先前建立的模型建立另一個經過調整的模型。

如要進一步瞭解如何改善效能,請參閱調整指南

使用 Python 要求呼叫 REST API

您可以使用任何可傳送 HTTP 要求的程式庫呼叫 REST API。接下來的範例會使用 Python 要求程式庫,並示範一些進階功能。

設定變數

access_token = !gcloud auth application-default print-access-token
access_token = '\n'.join(access_token)

project = 'project-id'
base_url = "https://generativelanguage.googleapis.com"

匯入 requests 程式庫。

import requests
import json

列出調整後的模型

列出目前可用的經過調整的模型,驗證驗證設定。

headers={
  'Authorization': 'Bearer ' + access_token,
  'Content-Type': 'application/json',
  'x-goog-user-project': project
}

result = requests.get(
  url=f'{base_url}/v1beta3/tunedModels',
  headers = headers,
)
result.json()
{'tunedModels': [{'name': 'tunedModels/testnumbergenerator-fvitocr834l6',
   'baseModel': 'models/text-bison-001',
   'displayName': 'test_number_generator',
   'description': '{"description":"generates the  next number in the sequence given the input text","exampleInput":"input: 1","exampleOutput":"output: 2","datasourceUrl":"https://drive.google.com/open?id=11Pdm6GNom4vlBMUHwO6yFjGQT3t1yi44WVShXMFnkVA&authuser=0&resourcekey=0-2d17tccbdBoThXMkNDvtag","showedTuningComplete":false}',
   'state': 'ACTIVE',
   'createTime': '2023-09-18T11:06:39.092786Z',
   'updateTime': '2023-09-18T11:07:24.198359Z',
   'tuningTask': {'startTime': '2023-09-18T11:06:39.461814784Z',
    'completeTime': '2023-09-18T11:07:24.198359Z',
    'snapshots': [{'step': 1,
      'meanLoss': 16.613504,
      'computeTime': '2023-09-18T11:06:44.532937624Z'},
     {'step': 2,
      'epoch': 1,
      'meanLoss': 20.299532,
      'computeTime': '2023-09-18T11:06:47.825134421Z'},
     {'step': 3,
      'epoch': 1,
      'meanLoss': 8.169708,
      'computeTime': '2023-09-18T11:06:50.580344344Z'},
     {'step': 4,
      'epoch': 2,
      'meanLoss': 3.7588992,
      'computeTime': '2023-09-18T11:06:53.219133748Z'},
     {'step': 5,
      'epoch': 3,
      'meanLoss': 2.0643115,
      'computeTime': '2023-09-18T11:06:55.828458606Z'},
     {'step': 6,
      'epoch': 3,
      'meanLoss': 1.9765375,
      'computeTime': '2023-09-18T11:06:58.426053772Z'},
     {'step': 7,
      'epoch': 4,
      'meanLoss': 0.9276156,
      'computeTime': '2023-09-18T11:07:01.231832398Z'},
     {'step': 8,
      'epoch': 5,
      'meanLoss': 1.8424839,
      'computeTime': '2023-09-18T11:07:03.822710074Z'},
     {'step': 9,
      'epoch': 5,
      'meanLoss': 1.1747926,
      'computeTime': '2023-09-18T11:07:06.441685551Z'},
     {'step': 10,
      'epoch': 6,
      'meanLoss': 0.3079359,
      'computeTime': '2023-09-18T11:07:08.793491157Z'},
     {'step': 11,
      'epoch': 7,
      'meanLoss': 0.543368,
      'computeTime': '2023-09-18T11:07:11.393264892Z'},
     {'step': 12,
      'epoch': 7,
      'meanLoss': 0.35068464,
      'computeTime': '2023-09-18T11:07:13.808021238Z'},
     {'step': 13,
      'epoch': 8,
      'meanLoss': 0.026032856,
      'computeTime': '2023-09-18T11:07:16.295972078Z'},
     {'step': 14,
      'epoch': 8,
      'meanLoss': 0.108341046,
      'computeTime': '2023-09-18T11:07:18.941247488Z'},
     {'step': 15,
      'epoch': 9,
      'meanLoss': 0.016470395,
      'computeTime': '2023-09-18T11:07:21.607654306Z'},
     {'step': 16,
      'epoch': 10,
      'meanLoss': 0.063049875,
      'computeTime': '2023-09-18T11:07:24.077271307Z'}],
    'hyperparameters': {'epochCount': 10,
     'batchSize': 16,
     'learningRate': 0.02} },
   'temperature': 0.7,
   'topP': 0.95,
   'topK': 40},
  {'name': 'tunedModels/my-display-name-81-9wpmc1m920vq',
   'baseModel': 'models/text-bison-tuning-test',
   'displayName': 'my display name 81',
   'state': 'ACTIVE',
   'createTime': '2023-09-18T22:02:08.690991Z',
   'updateTime': '2023-09-18T22:02:28.806318Z',
   'tuningTask': {'startTime': '2023-09-18T22:02:09.161100369Z',
    'completeTime': '2023-09-18T22:02:28.806318Z',
    'snapshots': [{'step': 1,
      'meanLoss': 7.2774773,
      'computeTime': '2023-09-18T22:02:12.453056368Z'},
     {'step': 2,
      'meanLoss': 6.1902447,
      'computeTime': '2023-09-18T22:02:13.789508217Z'},
     {'step': 3,
      'meanLoss': 5.5545835,
      'computeTime': '2023-09-18T22:02:15.136220505Z'},
     {'step': 4,
      'epoch': 1,
      'meanLoss': 7.9237704,
      'computeTime': '2023-09-18T22:02:16.474358517Z'},
     {'step': 5,
      'epoch': 1,
      'meanLoss': 7.6770706,
      'computeTime': '2023-09-18T22:02:17.758261108Z'},
     {'step': 6,
      'epoch': 1,
      'meanLoss': 7.378622,
      'computeTime': '2023-09-18T22:02:19.114072224Z'},
     {'step': 7,
      'epoch': 1,
      'meanLoss': 4.485537,
      'computeTime': '2023-09-18T22:02:20.927434115Z'},
     {'step': 8,
      'epoch': 2,
      'meanLoss': 6.815181,
      'computeTime': '2023-09-18T22:02:22.267906011Z'},
     {'step': 9,
      'epoch': 2,
      'meanLoss': 6.411363,
      'computeTime': '2023-09-18T22:02:24.078114085Z'},
     {'step': 10,
      'epoch': 2,
      'meanLoss': 8.585093,
      'computeTime': '2023-09-18T22:02:25.441598938Z'},
     {'step': 11,
      'epoch': 2,
      'meanLoss': 4.901249,
      'computeTime': '2023-09-18T22:02:27.108985392Z'},
     {'step': 12,
      'epoch': 3,
      'meanLoss': 7.073003,
      'computeTime': '2023-09-18T22:02:28.441662034Z'}],
    'hyperparameters': {'epochCount': 3,
     'batchSize': 4,
     'learningRate': 0.001} },
   'temperature': 0.7,
   'topP': 0.95,
   'topK': 40},
  {'name': 'tunedModels/number-generator-model-kctlevca1g3q',
   'baseModel': 'models/text-bison-tuning-test',
   'displayName': 'number generator model',
   'state': 'ACTIVE',
   'createTime': '2023-09-18T23:43:21.461545Z',
   'updateTime': '2023-09-18T23:43:49.205493Z',
   'tuningTask': {'startTime': '2023-09-18T23:43:21.542403958Z',
    'completeTime': '2023-09-18T23:43:49.205493Z',
    'snapshots': [{'step': 1,
      'meanLoss': 7.342065,
      'computeTime': '2023-09-18T23:43:23.356271969Z'},
     {'step': 2,
      'meanLoss': 7.255807,
      'computeTime': '2023-09-18T23:43:24.620248223Z'},
     {'step': 3,
      'meanLoss': 5.4591417,
      'computeTime': '2023-09-18T23:43:25.854505395Z'},
     {'step': 4,
      'meanLoss': 6.968665,
      'computeTime': '2023-09-18T23:43:27.138260198Z'},
     {'step': 5,
      'meanLoss': 4.578809,
      'computeTime': '2023-09-18T23:43:28.404943274Z'},
     {'step': 6,
      'meanLoss': 6.4862137,
      'computeTime': '2023-09-18T23:43:29.631624883Z'},
     {'step': 7,
      'meanLoss': 9.781939,
      'computeTime': '2023-09-18T23:43:30.801341449Z'},
     {'step': 8,
      'epoch': 1,
      'meanLoss': 5.990006,
      'computeTime': '2023-09-18T23:43:31.854703315Z'},
     {'step': 9,
      'epoch': 1,
      'meanLoss': 8.846312,
      'computeTime': '2023-09-18T23:43:33.075785103Z'},
     {'step': 10,
      'epoch': 1,
      'meanLoss': 6.1585655,
      'computeTime': '2023-09-18T23:43:34.310432174Z'},
     {'step': 11,
      'epoch': 1,
      'meanLoss': 4.7877502,
      'computeTime': '2023-09-18T23:43:35.381582526Z'},
     {'step': 12,
      'epoch': 1,
      'meanLoss': 9.660514,
      'computeTime': '2023-09-18T23:43:36.445446408Z'},
     {'step': 13,
      'epoch': 1,
      'meanLoss': 5.6482882,
      'computeTime': '2023-09-18T23:43:37.603237821Z'},
     {'step': 14,
      'epoch': 1,
      'meanLoss': 3.162092,
      'computeTime': '2023-09-18T23:43:38.671463397Z'},
     {'step': 15,
      'epoch': 2,
      'meanLoss': 6.322996,
      'computeTime': '2023-09-18T23:43:39.769742201Z'},
     {'step': 16,
      'epoch': 2,
      'meanLoss': 6.781,
      'computeTime': '2023-09-18T23:43:40.985967994Z'},
     {'step': 17,
      'epoch': 2,
      'meanLoss': 5.136773,
      'computeTime': '2023-09-18T23:43:42.235469710Z'},
     {'step': 18,
      'epoch': 2,
      'meanLoss': 7.2091155,
      'computeTime': '2023-09-18T23:43:43.415178581Z'},
     {'step': 19,
      'epoch': 2,
      'meanLoss': 7.7508755,
      'computeTime': '2023-09-18T23:43:44.775221774Z'},
     {'step': 20,
      'epoch': 2,
      'meanLoss': 8.144815,
      'computeTime': '2023-09-18T23:43:45.788824334Z'},
     {'step': 21,
      'epoch': 2,
      'meanLoss': 5.485137,
      'computeTime': '2023-09-18T23:43:46.812663998Z'},
     {'step': 22,
      'epoch': 2,
      'meanLoss': 3.709197,
      'computeTime': '2023-09-18T23:43:47.971764087Z'},
     {'step': 23,
      'epoch': 3,
      'meanLoss': 6.0069466,
      'computeTime': '2023-09-18T23:43:49.004191079Z'}],
    'hyperparameters': {'epochCount': 3,
     'batchSize': 2,
     'learningRate': 0.001} },
   'temperature': 0.7,
   'topP': 0.95,
   'topK': 40},
  {'name': 'tunedModels/my-display-name-81-r9wcuda14lyy',
   'baseModel': 'models/text-bison-tuning-test',
   'displayName': 'my display name 81',
   'state': 'ACTIVE',
   'createTime': '2023-09-18T23:52:06.980185Z',
   'updateTime': '2023-09-18T23:52:26.679601Z',
   'tuningTask': {'startTime': '2023-09-18T23:52:07.616953503Z',
    'completeTime': '2023-09-18T23:52:26.679601Z',
    'snapshots': [{'step': 1,
      'meanLoss': 7.2774773,
      'computeTime': '2023-09-18T23:52:10.278936662Z'},
     {'step': 2,
      'meanLoss': 6.2793097,
      'computeTime': '2023-09-18T23:52:11.630844790Z'},
     {'step': 3,
      'meanLoss': 5.540499,
      'computeTime': '2023-09-18T23:52:13.027840389Z'},
     {'step': 4,
      'epoch': 1,
      'meanLoss': 7.977523,
      'computeTime': '2023-09-18T23:52:14.368199020Z'},
     {'step': 5,
      'epoch': 1,
      'meanLoss': 7.6197805,
      'computeTime': '2023-09-18T23:52:15.872428752Z'},
     {'step': 6,
      'epoch': 1,
      'meanLoss': 7.3851357,
      'computeTime': '2023-09-18T23:52:17.213094182Z'},
     {'step': 7,
      'epoch': 1,
      'meanLoss': 4.5342345,
      'computeTime': '2023-09-18T23:52:19.090698421Z'},
     {'step': 8,
      'epoch': 2,
      'meanLoss': 6.8603754,
      'computeTime': '2023-09-18T23:52:20.494844731Z'},
     {'step': 9,
      'epoch': 2,
      'meanLoss': 6.418575,
      'computeTime': '2023-09-18T23:52:21.815997555Z'},
     {'step': 10,
      'epoch': 2,
      'meanLoss': 8.659064,
      'computeTime': '2023-09-18T23:52:23.524287192Z'},
     {'step': 11,
      'epoch': 2,
      'meanLoss': 4.856765,
      'computeTime': '2023-09-18T23:52:24.864661291Z'},
     {'step': 12,
      'epoch': 3,
      'meanLoss': 7.1078596,
      'computeTime': '2023-09-18T23:52:26.225055381Z'}],
    'hyperparameters': {'epochCount': 3,
     'batchSize': 4,
     'learningRate': 0.001} },
   'temperature': 0.7,
   'topP': 0.95,
   'topK': 40},
  {'name': 'tunedModels/number-generator-model-w1eabln5adwp',
   'baseModel': 'models/text-bison-tuning-test',
   'displayName': 'number generator model',
   'state': 'ACTIVE',
   'createTime': '2023-09-19T19:29:08.622497Z',
   'updateTime': '2023-09-19T19:29:46.063853Z',
   'tuningTask': {'startTime': '2023-09-19T19:29:08.806930486Z',
    'completeTime': '2023-09-19T19:29:46.063853Z',
    'snapshots': [{'step': 1,
      'meanLoss': 7.342065,
      'computeTime': '2023-09-19T19:29:13.023811994Z'},
     {'step': 2,
      'meanLoss': 7.1960244,
      'computeTime': '2023-09-19T19:29:14.844046282Z'},
     {'step': 3,
      'meanLoss': 5.480289,
      'computeTime': '2023-09-19T19:29:16.596884354Z'},
     {'step': 4,
      'meanLoss': 6.851822,
      'computeTime': '2023-09-19T19:29:17.741735378Z'},
     {'step': 5,
      'meanLoss': 4.5535283,
      'computeTime': '2023-09-19T19:29:18.914760812Z'},
     {'step': 6,
      'meanLoss': 6.449012,
      'computeTime': '2023-09-19T19:29:20.053316042Z'},
     {'step': 7,
      'meanLoss': 9.842458,
      'computeTime': '2023-09-19T19:29:21.371286675Z'},
     {'step': 8,
      'epoch': 1,
      'meanLoss': 5.9831877,
      'computeTime': '2023-09-19T19:29:22.915277044Z'},
     {'step': 9,
      'epoch': 1,
      'meanLoss': 8.936815,
      'computeTime': '2023-09-19T19:29:24.666461680Z'},
     {'step': 10,
      'epoch': 1,
      'meanLoss': 6.14651,
      'computeTime': '2023-09-19T19:29:26.793310451Z'},
     {'step': 11,
      'epoch': 1,
      'meanLoss': 4.853589,
      'computeTime': '2023-09-19T19:29:28.328297535Z'},
     {'step': 12,
      'epoch': 1,
      'meanLoss': 9.6831045,
      'computeTime': '2023-09-19T19:29:29.501236840Z'},
     {'step': 13,
      'epoch': 1,
      'meanLoss': 5.706586,
      'computeTime': '2023-09-19T19:29:30.612807978Z'},
     {'step': 14,
      'epoch': 1,
      'meanLoss': 3.276942,
      'computeTime': '2023-09-19T19:29:31.928747103Z'},
     {'step': 15,
      'epoch': 2,
      'meanLoss': 6.1736736,
      'computeTime': '2023-09-19T19:29:33.588699180Z'},
     {'step': 16,
      'epoch': 2,
      'meanLoss': 6.857398,
      'computeTime': '2023-09-19T19:29:35.239083809Z'},
     {'step': 17,
      'epoch': 2,
      'meanLoss': 5.098094,
      'computeTime': '2023-09-19T19:29:37.000705047Z'},
     {'step': 18,
      'epoch': 2,
      'meanLoss': 7.27724,
      'computeTime': '2023-09-19T19:29:38.532313231Z'},
     {'step': 19,
      'epoch': 2,
      'meanLoss': 7.6310735,
      'computeTime': '2023-09-19T19:29:39.696034301Z'},
     {'step': 20,
      'epoch': 2,
      'meanLoss': 8.152623,
      'computeTime': '2023-09-19T19:29:40.803342042Z'},
     {'step': 21,
      'epoch': 2,
      'meanLoss': 5.451577,
      'computeTime': '2023-09-19T19:29:42.445788199Z'},
     {'step': 22,
      'epoch': 2,
      'meanLoss': 3.7990716,
      'computeTime': '2023-09-19T19:29:43.866737307Z'},
     {'step': 23,
      'epoch': 3,
      'meanLoss': 6.120624,
      'computeTime': '2023-09-19T19:29:45.599248553Z'}],
    'hyperparameters': {'epochCount': 3,
     'batchSize': 2,
     'learningRate': 0.001} },
   'temperature': 0.7,
   'topP': 0.95,
   'topK': 40}]}

建立經過調整的模型

與 Curl 範例相同,您可以透過 training_data 欄位傳入資料集。

operation = requests.post(
    url = f'{base_url}/v1beta3/tunedModels',
    headers=headers,
    json= {
        "display_name": "number generator",
        "base_model": "models/text-bison-001",
        "tuning_task": {
          "hyperparameters": {
            "batch_size": 4,
            "learning_rate": 0.001,
            "epoch_count":3,
          },
          "training_data": {
            "examples": {
              "examples": [
                {
                    'text_input': '1',
                    'output': '2',
                },{
                    'text_input': '3',
                    'output': '4',
                },{
                    'text_input': '-3',
                    'output': '-2',
                },{
                    'text_input': 'twenty two',
                    'output': 'twenty three',
                },{
                    'text_input': 'two hundred',
                    'output': 'two hundred one',
                },{
                    'text_input': 'ninety nine',
                    'output': 'one hundred',
                },{
                    'text_input': '8',
                    'output': '9',
                },{
                    'text_input': '-98',
                    'output': '-97',
                },{
                    'text_input': '1,000',
                    'output': '1,001',
                },{
                    'text_input': '10,100,000',
                    'output': '10,100,001',
                },{
                    'text_input': 'thirteen',
                    'output': 'fourteen',
                },{
                    'text_input': 'eighty',
                    'output': 'eighty one',
                },{
                    'text_input': 'one',
                    'output': 'two',
                },{
                    'text_input': 'three',
                    'output': 'four',
                },{
                    'text_input': 'seven',
                    'output': 'eight',
                }
              ]
            }
          }
        }
      }
)
operation
<Response [200]>
operation.json()
{'name': 'tunedModels/number-generator-ncqqnysl74dt/operations/qqlbwzfyzn0k',
 'metadata': {'@type': 'type.googleapis.com/google.ai.generativelanguage.v1beta3.CreateTunedModelMetadata',
  'totalSteps': 12,
  'tunedModel': 'tunedModels/number-generator-ncqqnysl74dt'} }

設定變數,並使用經過調整的模型名稱,以便在後續呼叫中使用。

name=operation.json()["metadata"]["tunedModel"]
name
'tunedModels/number-generator-ncqqnysl74dt'

取得經過調整的模型狀態

您可以查看狀態欄位,瞭解調整作業的進度。CREATING 表示調整工作仍在進行中,ACTIVE 則表示訓練已完成,且調整後的模型可供使用。

tuned_model = requests.get(
    url = f'{base_url}/v1beta3/{name}',
    headers=headers,
)
tuned_model.json()
{'name': 'tunedModels/number-generator-ncqqnysl74dt',
 'baseModel': 'models/text-bison-001',
 'displayName': 'number generator',
 'state': 'CREATING',
 'createTime': '2023-09-19T19:56:25.999303Z',
 'updateTime': '2023-09-19T19:56:25.999303Z',
 'tuningTask': {'startTime': '2023-09-19T19:56:26.297862545Z',
  'hyperparameters': {'epochCount': 3, 'batchSize': 4, 'learningRate': 0.001} },
 'temperature': 0.7,
 'topP': 0.95,
 'topK': 40}

以下程式碼每 5 秒檢查狀態欄位,直到不再處於 CREATING 狀態為止。

import time
import pprint

op_json = operation.json()
response = op_json.get('response')
error = op_json.get('error')

while response is None and error is None:
    time.sleep(31)

    operation = requests.get(
        url = f'{base_url}/v1/{op_json["name"]}',
        headers=headers,
    )

    op_json = operation.json()
    response = op_json.get('response')
    error = op_json.get('error')

    percent = op_json['metadata'].get('completedPercent')
    if percent is not None:
      print(f"{percent:.2f}% - {op_json['metadata']['snapshots'][-1]}")
      print()

if error is not None:
    raise Exception(error)
21.28% - {'step': 40, 'epoch': 10, 'meanLoss': 2.4871845, 'computeTime': '2023-09-20T00:23:55.255785843Z'}

21.28% - {'step': 40, 'epoch': 10, 'meanLoss': 2.4871845, 'computeTime': '2023-09-20T00:23:55.255785843Z'}

43.09% - {'step': 81, 'epoch': 21, 'meanLoss': 0.032220088, 'computeTime': '2023-09-20T00:24:56.302837803Z'}

43.09% - {'step': 81, 'epoch': 21, 'meanLoss': 0.032220088, 'computeTime': '2023-09-20T00:24:56.302837803Z'}

63.83% - {'step': 120, 'epoch': 32, 'meanLoss': 0.0030430648, 'computeTime': '2023-09-20T00:25:57.228615435Z'}

63.83% - {'step': 120, 'epoch': 32, 'meanLoss': 0.0030430648, 'computeTime': '2023-09-20T00:25:57.228615435Z'}

85.11% - {'step': 160, 'epoch': 42, 'meanLoss': -1.1145603e-06, 'computeTime': '2023-09-20T00:26:57.819011896Z'}

100.00% - {'step': 188, 'epoch': 50, 'meanLoss': 0.00040101097, 'computeTime': '2023-09-20T00:27:40.024132813Z'}

執行推論

微調作業完成後,您可以使用該模型產生文字,方法與使用基本文字模型相同。

import time

m = requests.post(
    url = f'{base_url}/v1beta3/{name}:generateText',
    headers=headers,
    json= {
         "prompt": {
              "text": "9"
              },
    })
import pprint
print(m.json()['candidates'][0]['output'])
9

模型輸出內容不一定正確。如果經過調整的模型無法達到您要求的標準,您可以嘗試新增更多高品質的範例、調整超參數,或在範例中加入前言。

後續步驟