以下文档概述了 LiteRT 的 8 位量化方案规范。本指南旨在帮助硬件开发者为使用量化 LiteRT 模型进行推理提供硬件支持。
规范摘要
我们提供的是规范,只有遵循该规范,我们才能保证行为。我们还了解到,不同的硬件可能具有偏好和限制,这可能会导致在实现规范时出现细微偏差,从而导致实现不是位精确的。虽然在大多数情况下,这可能是可以接受的(我们将提供一系列测试,据我们所知,这些测试包括我们从多个模型中收集的每项操作容差),但机器学习(以及最常见的深度学习)的性质使得我们无法提供任何硬性保证。
8 位量化使用以下公式来近似浮点值。
\[real\_value = (int8\_value - zero\_point) \times scale\]
每个轴(即卷积运算中的每个通道)或每个张量的权重由 int8 二进制补码值表示,范围为 [-127, 127],零点等于 0。每个张量的激活/输入由 int8 二进制补码值表示,范围为 [-128, 127],零点范围为 [-128, 127]。
下文介绍了特定操作的其他例外情况。
有符号整数与无符号整数
LiteRT 量化将主要优先考虑 8 位量化的工具和内核。int8这是为了方便将零点等于 0 的对称量化表示出来。此外,许多后端还针对 int8xint8 累积进行了额外的优化。
按轴与按张量
按张量量化是指每个张量将有一个比例和/或零点。按轴量化是指 quantized_dimension 中的每个切片都将有一个缩放比例和/或 zero_point。量化维度用于指定 Tensor 形状中与缩放比例和零点对应的维度。例如,张量 t,其中 dims=[4, 3, 2, 1] 具有量化参数:scale=[1.0, 2.0, 3.0]、zero_point=[1, 2, 3]、quantization_dimension=1,将沿 t 的第二个维度进行量化:
t[:, 0, :, :] will have scale[0]=1.0, zero_point[0]=1
t[:, 1, :, :] will have scale[1]=2.0, zero_point[1]=2
t[:, 2, :, :] will have scale[2]=3.0, zero_point[2]=3
通常,quantized_dimension 是卷积权重的 output_channel,但从理论上讲,它可以是与内核实现中的每个点积相对应的维度,从而在不影响性能的情况下实现更精细的量化。这在很大程度上提高了准确性。
TFLite 针对越来越多的操作提供了按轴支持。截至本文档发布时,Conv2d 和 DepthwiseConv2d 已获得支持。
对称与非对称
激活是不对称的:它们的零点可以位于有符号 int8 范围 [-128, 127] 内的任何位置。许多激活函数本质上是不对称的,而零点是一种相对便宜的方式,可有效获得额外的二进制精度。由于激活仅乘以恒定权重,因此可以对恒定零点值进行大量优化。
权重是对称的:强制零点等于 0。权重值会乘以动态输入和激活值。这意味着,将权重零点与激活值相乘会产生不可避免的运行时成本。通过强制将零点设为 0,我们可以避免此成本。
数学解释:这与 arXiv:1712.05877 中的第 2.3 节类似,不同之处在于我们允许缩放值按轴变化。这可以轻松推广,如下所示:
$A$ 是一个 $m \times n$ 的量化激活矩阵。
$B$ 是一个 $n \times p$ 量化权重矩阵。
假设将长度均为 $n$的 $A$ 的第 $j$ 行 $a_j$与 $B$ 的第 $k$ 列 $b_k$ 相乘。量化后的整数值和零点值分别为 $q_a$、$z_a$ 和 $q_b$、$z_b$。
\[a_j \cdot b_k = \sum_{i=0}^{n} a_{j}^{(i)} b_{k}^{(i)} = \sum_{i=0}^{n} (q_{a}^{(i)} - z_a) (q_{b}^{(i)} - z_b) = \sum_{i=0}^{n} q_{a}^{(i)} q_{b}^{(i)} - \sum_{i=0}^{n} q_{a}^{(i)} z_b - \sum_{i=0}^{n} q_{b}^{(i)} z_a + \sum_{i=0}^{n} z_a z_b\]
\(\sum_{i=0}^{n} q_{a}^{(i)} q_{b}^{(i)}\) 项是不可避免的,因为它是输入值和权重值的点积。
\(\sum_{i=0}^{n} q_{b}^{(i)} z_a\) 和 \(\sum_{i=0}^{n} z_a z_b\) 项由在每次推理调用中保持不变的常量组成,因此可以预先计算。
由于每次推理时激活都会发生变化,因此需要在每次推理时计算 \(\sum_{i=0}^{n} q_{a}^{(i)} z_b\) 项。通过强制使权重保持对称,我们可以消除此项的成本。
int8 量化运算符规范
下面介绍了 int8 tflite 内核的量化要求:
ADD
Input 0:
data_type : int8
range : [-128, 127]
granularity: per-tensor
Input 1:
data_type : int8
range : [-128, 127]
granularity: per-tensor
Output 0:
data_type : int8
range : [-128, 127]
granularity: per-tensor
AVERAGE_POOL_2D
Input 0:
data_type : int8
range : [-128, 127]
granularity: per-tensor
Output 0:
data_type : int8
range : [-128, 127]
granularity: per-tensor
restriction: Input and outputs must all have same scale/zero_point
CONCATENATION
Input ...:
data_type : int8
range : [-128, 127]
granularity: per-tensor
Output 0:
data_type : int8
range : [-128, 127]
granularity: per-tensor
restriction: Input and outputs must all have same scale/zero_point
CONV_2D
Input 0:
data_type : int8
range : [-128, 127]
granularity: per-tensor
Input 1 (Weight):
data_type : int8
range : [-127, 127]
granularity: per-axis (dim = 0)
restriction: zero_point = 0
Input 2 (Bias):
data_type : int32
range : [int32_min, int32_max]
granularity: per-axis
restriction: (scale, zero_point) = (input0_scale * input1_scale[...], 0)
Output 0:
data_type : int8
range : [-128, 127]
granularity: per-tensor
DEPTHWISE_CONV_2D
Input 0:
data_type : int8
range : [-128, 127]
granularity: per-tensor
Input 1 (Weight):
data_type : int8
range : [-127, 127]
granularity: per-axis (dim = 3)
restriction: zero_point = 0
Input 2 (Bias):
data_type : int32
range : [int32_min, int32_max]
granularity: per-axis
restriction: (scale, zero_point) = (input0_scale * input1_scale[...], 0)
Output 0:
data_type : int8
range : [-128, 127]
granularity: per-tensor
FULLY_CONNECTED
Input 0:
data_type : int8
range : [-128, 127]
granularity: per-tensor
Input 1 (Weight):
data_type : int8
range : [-127, 127]
granularity: per-axis (dim = 0)
restriction: zero_point = 0
Input 2 (Bias):
data_type : int32
range : [int32_min, int32_max]
granularity: per-tensor
restriction: (scale, zero_point) = (input0_scale * input1_scale[...], 0)
Output 0:
data_type : int8
range : [-128, 127]
granularity: per-tensor
L2_NORMALIZATION
Input 0:
data_type : int8
range : [-128, 127]
granularity: per-tensor
Output 0:
data_type : int8
range : [-128, 127]
granularity: per-tensor
restriction: (scale, zero_point) = (1.0 / 128.0, 0)
LOGISTIC
Input 0:
data_type : int8
range : [-128, 127]
granularity: per-tensor
Output 0:
data_type : int8
range : [-128, 127]
granularity: per-tensor
restriction: (scale, zero_point) = (1.0 / 256.0, -128)
MAX_POOL_2D
Input 0:
data_type : int8
range : [-128, 127]
granularity: per-tensor
Output 0:
data_type : int8
range : [-128, 127]
granularity: per-tensor
restriction: Input and outputs must all have same scale/zero_point
MUL
Input 0:
data_type : int8
range : [-128, 127]
granularity: per-tensor
Input 1:
data_type : int8
range : [-128, 127]
granularity: per-tensor
Output 0:
data_type : int8
range : [-128, 127]
granularity: per-tensor
RESHAPE
Input 0:
data_type : int8
range : [-128, 127]
granularity: per-tensor
Output 0:
data_type : int8
range : [-128, 127]
granularity: per-tensor
restriction: Input and outputs must all have same scale/zero_point
RESIZE_BILINEAR
Input 0:
data_type : int8
range : [-128, 127]
granularity: per-tensor
Output 0:
data_type : int8
range : [-128, 127]
granularity: per-tensor
restriction: Input and outputs must all have same scale/zero_point
SOFTMAX
Input 0:
data_type : int8
range : [-128, 127]
granularity: per-tensor
Output 0:
data_type : int8
range : [-128, 127]
granularity: per-tensor
restriction: (scale, zero_point) = (1.0 / 256.0, -128)
SPACE_TO_DEPTH
Input 0:
data_type : int8
range : [-128, 127]
granularity: per-tensor
Output 0:
data_type : int8
range : [-128, 127]
granularity: per-tensor
restriction: Input and outputs must all have same scale/zero_point
TANH
Input 0:
data_type : int8
range : [-128, 127]
granularity: per-tensor
Output 0:
data_type : int8
range : [-128, 127]
granularity: per-tensor
restriction: (scale, zero_point) = (1.0 / 128.0, 0)
PAD
Input 0:
data_type : int8
range : [-128, 127]
granularity: per-tensor
Output 0:
data_type : int8
range : [-128, 127]
granularity: per-tensor
restriction: Input and outputs must all have same scale/zero_point
GATHER
Input 0:
data_type : int8
range : [-128, 127]
granularity: per-tensor
Output 0:
data_type : int8
range : [-128, 127]
granularity: per-tensor
restriction: Input and outputs must all have same scale/zero_point
BATCH_TO_SPACE_ND
Input 0:
data_type : int8
range : [-128, 127]
granularity: per-tensor
Output 0:
data_type : int8
range : [-128, 127]
granularity: per-tensor
restriction: Input and outputs must all have same scale/zero_point
SPACE_TO_BATCH_ND
Input 0:
data_type : int8
range : [-128, 127]
granularity: per-tensor
Output 0:
data_type : int8
range : [-128, 127]
granularity: per-tensor
restriction: Input and outputs must all have same scale/zero_point
TRANSPOSE
Input 0:
data_type : int8
range : [-128, 127]
granularity: per-tensor
Output 0:
data_type : int8
range : [-128, 127]
granularity: per-tensor
restriction: Input and outputs must all have same scale/zero_point
MEAN
Input 0:
data_type : int8
range : [-128, 127]
granularity: per-tensor
Output 0:
data_type : int8
range : [-128, 127]
granularity: per-tensor
SUB
Input 0:
data_type : int8
range : [-128, 127]
granularity: per-tensor
Input 1:
data_type : int8
range : [-128, 127]
granularity: per-tensor
Output 0:
data_type : int8
range : [-128, 127]
granularity: per-tensor
SUM
Input 0:
data_type : int8
range : [-128, 127]
granularity: per-tensor
Output 0:
data_type : int8
range : [-128, 127]
granularity: per-tensor
SQUEEZE
Input 0:
data_type : int8
range : [-128, 127]
granularity: per-tensor
Output 0:
data_type : int8
range : [-128, 127]
granularity: per-tensor
restriction: Input and outputs must all have same scale/zero_point
LOG_SOFTMAX
Input 0:
data_type : int8
range : [-128, 127]
granularity: per-tensor
Output 0:
data_type : int8
range : [-128, 127]
granularity: per-tensor
restriction: (scale, zero_point) = (16.0 / 256.0, 127)
MAXIMUM
Input 0:
data_type : int8
range : [-128, 127]
granularity: per-tensor
Output 0:
data_type : int8
range : [-128, 127]
granularity: per-tensor
restriction: Input and outputs must all have same scale/zero_point
ARG_MAX
Input 0:
data_type : int8
range : [-128, 127]
granularity: per-tensor
MINIMUM
Input 0:
data_type : int8
range : [-128, 127]
granularity: per-tensor
Output 0:
data_type : int8
range : [-128, 127]
granularity: per-tensor
restriction: Input and outputs must all have same scale/zero_point
LESS
Input 0:
data_type : int8
range : [-128, 127]
granularity: per-tensor
Input 1:
data_type : int8
range : [-128, 127]
granularity: per-tensor
PADV2
Input 0:
data_type : int8
range : [-128, 127]
granularity: per-tensor
Output 0:
data_type : int8
range : [-128, 127]
granularity: per-tensor
restriction: Input and outputs must all have same scale/zero_point
GREATER
Input 0:
data_type : int8
range : [-128, 127]
granularity: per-tensor
Input 1:
data_type : int8
range : [-128, 127]
granularity: per-tensor
GREATER_EQUAL
Input 0:
data_type : int8
range : [-128, 127]
granularity: per-tensor
Input 1:
data_type : int8
range : [-128, 127]
granularity: per-tensor
LESS_EQUAL
Input 0:
data_type : int8
range : [-128, 127]
granularity: per-tensor
Input 1:
data_type : int8
range : [-128, 127]
granularity: per-tensor
SLICE
Input 0:
data_type : int8
range : [-128, 127]
granularity: per-tensor
Output 0:
data_type : int8
range : [-128, 127]
granularity: per-tensor
restriction: Input and outputs must all have same scale/zero_point
EQUAL
Input 0:
data_type : int8
range : [-128, 127]
granularity: per-tensor
Input 1:
data_type : int8
range : [-128, 127]
granularity: per-tensor
NOT_EQUAL
Input 0:
data_type : int8
range : [-128, 127]
granularity: per-tensor
Input 1:
data_type : int8
range : [-128, 127]
granularity: per-tensor
SHAPE
Input 0:
data_type : int8
range : [-128, 127]
granularity: per-tensor
QUANTIZE (Requantization)
Input 0:
data_type : int8
range : [-128, 127]
granularity: per-tensor
Output 0:
data_type : int8
range : [-128, 127]
granularity: per-tensor