The Task Library's NLClassifier
API classifies input text into different
categories, and is a versatile and configurable API that can handle most text
classification models.
Key features of the NLClassifier API
Takes a single string as input, performs classification with the string and outputs
Optional Regex Tokenization available for input text.
Configurable to adapt different classification models.
Supported NLClassifier models
The following models are guaranteed to be compatible with the NLClassifier
API.
The movie review sentiment classification model.
Models with
average_word_vec
spec created by TensorFlow Lite Model Maker for text Classification.Custom models that meet the model compatibility requirements.
Run inference in Java
See the Text Classification reference
app
for an example of how to use NLClassifier
in an Android app.
Step 1: Import Gradle dependency and other settings
Copy the .tflite
model file to the assets directory of the Android module
where the model will be run. Specify that the file should not be compressed, and
add the TensorFlow Lite library to the module’s build.gradle
file:
android {
// Other settings
// Specify tflite file should not be compressed for the app apk
aaptOptions {
noCompress "tflite"
}
}
dependencies {
// Other dependencies
// Import the Task Vision Library dependency
implementation 'org.tensorflow:tensorflow-lite-task-text:0.4.4'
// Import the GPU delegate plugin Library for GPU inference
implementation 'org.tensorflow:tensorflow-lite-gpu-delegate-plugin:0.4.4'
}
Step 2: Run inference using the API
// Initialization, use NLClassifierOptions to configure input and output tensors
NLClassifierOptions options =
NLClassifierOptions.builder()
.setBaseOptions(BaseOptions.builder().useGpu().build())
.setInputTensorName(INPUT_TENSOR_NAME)
.setOutputScoreTensorName(OUTPUT_SCORE_TENSOR_NAME)
.build();
NLClassifier classifier =
NLClassifier.createFromFileAndOptions(context, modelFile, options);
// Run inference
List<Category> results = classifier.classify(input);
See the source
code
for more options to configure NLClassifier
.
Run inference in Swift
Step 1: Import CocoaPods
Add the TensorFlowLiteTaskText pod in Podfile
target 'MySwiftAppWithTaskAPI' do
use_frameworks!
pod 'TensorFlowLiteTaskText', '~> 0.4.4'
end
Step 2: Run inference using the API
// Initialization
var modelOptions:TFLNLClassifierOptions = TFLNLClassifierOptions()
modelOptions.inputTensorName = inputTensorName
modelOptions.outputScoreTensorName = outputScoreTensorName
let nlClassifier = TFLNLClassifier.nlClassifier(
modelPath: modelPath,
options: modelOptions)
// Run inference
let categories = nlClassifier.classify(text: input)
See the source code for more details.
Run inference in C++
// Initialization
NLClassifierOptions options;
options.mutable_base_options()->mutable_model_file()->set_file_name(model_path);
std::unique_ptr<NLClassifier> classifier = NLClassifier::CreateFromOptions(options).value();
// Run inference with your input, `input_text`.
std::vector<core::Category> categories = classifier->Classify(input_text);
See the source code for more details.
Run inference in Python
Step 1: Install the pip package
pip install tflite-support
Step 2: Using the model
# Imports
from tflite_support.task import text
# Initialization
classifier = text.NLClassifier.create_from_file(model_path)
# Run inference
text_classification_result = classifier.classify(text)
See the source
code
for more options to configure NLClassifier
.
Example results
Here is an example of the classification results of the movie review model.
Input: "What a waste of my time."
Output:
category[0]: 'Negative' : '0.81313'
category[1]: 'Positive' : '0.18687'
Try out the simple CLI demo tool for NLClassifier with your own model and test data.
Model compatibility requirements
Depending on the use case, the NLClassifier
API can load a TFLite model with
or without TFLite Model Metadata. See examples
of creating metadata for natural language classifiers using the TensorFlow Lite
Metadata Writer
API.
The compatible models should meet the following requirements:
Input tensor: (kTfLiteString/kTfLiteInt32)
- Input of the model should be either a kTfLiteString tensor raw input string or a kTfLiteInt32 tensor for regex tokenized indices of raw input string.
- If input type is kTfLiteString, no Metadata is required for the model.
- If input type is kTfLiteInt32, a
RegexTokenizer
needs to be set up in the input tensor's Metadata.
Output score tensor: (kTfLiteUInt8/kTfLiteInt8/kTfLiteInt16/kTfLiteFloat32/kTfLiteFloat64)
Mandatory output tensor for the score of each category classified.
If type is one of the Int types, dequantize it to double/float to corresponding platforms
Can have an optional associated file in the output tensor's corresponding Metadata for category labels, the file should be a plain text file with one label per line, and the number of labels should match the number of categories as the model outputs. See the example label file.
Output label tensor: (kTfLiteString/kTfLiteInt32)
Optional output tensor for the label for each category, should be of the same length as the output score tensor. If this tensor is not present, the API uses score indices as classnames.
Will be ignored if the associated label file is present in output score tensor's Metadata.