Afficher sur ai.google.dev | Essayer un notebook Colab | Afficher le notebook sur GitHub | Télécharger le notebook |
Dans ce notebook, vous allez apprendre à utiliser le service de réglage de l'API PaLM à l'aide de commandes curl ou de l'API de requête Python pour appeler l'API REST PaLM. Vous allez maintenant apprendre à ajuster le modèle de texte derrière le service de génération de texte de l'API PaLM.
Configuration
Authentifier
L'API PaLM vous permet d'ajuster des modèles sur vos propres données. Étant donné qu'il s'agit de vos données et de vos modèles réglés, cela nécessite des contrôles d'accès plus stricts que ceux fournis par les clés API.
Avant de pouvoir exécuter ce tutoriel, vous devez configurer OAuth pour votre projet.
Si vous souhaitez exécuter ce notebook dans Colab, commencez par importer votre fichier client_secret*.json
à l'aide de l'option "Fichier > Importer".
cp client_secret*.json client_secret.json
ls
client_secret.json
Cette commande gcloud transforme le fichier client_secret.json
en identifiants pouvant être utilisés pour s'authentifier auprès du service.
import os
if 'COLAB_RELEASE_TAG' in os.environ:
# Use `--no-browser` in colab
!gcloud auth application-default login --no-browser --client-id-file client_secret.json --scopes='https://www.googleapis.com/auth/cloud-platform,https://www.googleapis.com/auth/generative-language.tuning'
else:
!gcloud auth application-default login --client-id-file client_secret.json --scopes='https://www.googleapis.com/auth/cloud-platform,https://www.googleapis.com/auth/generative-language.tuning'
Appeler l'API REST avec CURL
Cette section fournit des exemples d'instructions curl pour appeler l'API REST. Vous apprendrez à créer un travail de réglage, à vérifier son état et, une fois terminé, à effectuer un appel d'inférence.
Définir des variables
Définissez des variables pour les valeurs récurrentes à utiliser pour le reste des appels d'API REST. Le code utilise la bibliothèque Python os
pour définir des variables d'environnement accessibles dans toutes les cellules de code.
Cette option est spécifique à l'environnement de notebook Colab. Le code de la cellule de code suivante équivaut à exécuter les commandes suivantes dans un terminal bash.
export access_token=$(gcloud auth application-default print-access-token)
export project_id=my-project-id
export base_url=https://generativelanguage.googleapis.com
import os
access_token = !gcloud auth application-default print-access-token
access_token = '\n'.join(access_token)
os.environ['access_token'] = access_token
os.environ['project_id'] = "project-id"
os.environ['base_url'] = "https://generativelanguage.googleapis.com"
Répertorier les modèles réglés
Vérifiez votre configuration d'authentification en répertoriant les modèles réglés actuellement disponibles.
curl -X GET ${base_url}/v1beta3/tunedModels \
-H 'Content-Type: application/json' \
-H "Authorization: Bearer ${access_token}" \
-H "x-goog-user-project: ${project_id}" | grep name
"name": "tunedModels/testnumbergenerator-fvitocr834l6", "name": "tunedModels/my-display-name-81-9wpmc1m920vq", "displayName": "my display name 81", "name": "tunedModels/number-generator-model-kctlevca1g3q", "name": "tunedModels/my-display-name-81-r9wcuda14lyy", "displayName": "my display name 81", "name": "tunedModels/number-generator-model-w1eabln5adwp", % Total % Received % Xferd Average Speed Time Time Time Current Dload Upload Total Spent Left Speed 100 17583 0 17583 0 0 51600 0 --:--:-- --:--:-- --:--:-- 51563
Créer un modèle réglé
Pour créer un modèle affiné, vous devez transmettre votre ensemble de données au modèle dans le champ training_data
.
Dans cet exemple, vous allez optimiser un modèle pour générer le nombre suivant de la séquence. Par exemple, si l'entrée est 1
, le modèle doit générer 2
. Si l'entrée est one hundred
, le résultat doit être one hundred one
.
curl -X POST ${base_url}/v1beta3/tunedModels \
-H 'Content-Type: application/json' \
-H "Authorization: Bearer ${access_token}" \
-H "x-goog-user-project: ${project_id}" \
-d '
{
"display_name": "number generator model",
"base_model": "models/text-bison-001",
"tuning_task": {
"hyperparameters": {
"batch_size": 2,
"learning_rate": 0.001,
"epoch_count":3,
},
"training_data": {
"examples": {
"examples": [
{
"text_input": "1",
"output": "2",
},{
"text_input": "3",
"output": "4",
},{
"text_input": "-3",
"output": "-2",
},{
"text_input": "twenty two",
"output": "twenty three",
},{
"text_input": "two hundred",
"output": "two hundred one",
},{
"text_input": "ninety nine",
"output": "one hundred",
},{
"text_input": "8",
"output": "9",
},{
"text_input": "-98",
"output": "-97",
},{
"text_input": "1,000",
"output": "1,001",
},{
"text_input": "10,100,000",
"output": "10,100,001",
},{
"text_input": "thirteen",
"output": "fourteen",
},{
"text_input": "eighty",
"output": "eighty one",
},{
"text_input": "one",
"output": "two",
},{
"text_input": "three",
"output": "four",
},{
"text_input": "seven",
"output": "eight",
}
]
}
}
}
}' | tee tunemodel.json
{ "name": "tunedModels/number-generator-model-q2d0uism5ivd/operations/xvyx09sjxlmh", "metadata": { "@type": "type.googleapis.com/google.ai.generativelanguage.v1beta3.CreateTunedModelMetadata", "totalSteps": 23, "tunedModel": "tunedModels/number-generator-model-q2d0uism5ivd" } } % Total % Received % Xferd Average Speed Time Time Time Current Dload Upload Total Spent Left Speed 100 2277 0 297 100 1980 146 975 0:00:02 0:00:02 --:--:-- 1121
Obtenir l'état du modèle réglé
L'état du modèle est défini sur CREATING
pendant l'entraînement et passe à ACTIVE
une fois l'entraînement terminé.
Vous trouverez ci-dessous un extrait de code Python permettant d'analyser le nom du modèle généré à partir de la réponse JSON. Si vous exécutez cette commande dans un terminal, vous pouvez essayer d'utiliser un analyseur JSON bash pour analyser la réponse.
import json
first_page = json.load(open('tunemodel.json'))
os.environ['modelname'] = first_page['metadata']['tunedModel']
print(os.environ['modelname'])
tunedModels/number-generator-model-q2d0uism5ivd
Exécutez une autre requête GET
avec le nom du modèle pour obtenir les métadonnées du modèle, qui incluent le champ "state".
curl -X GET ${base_url}/v1beta3/${modelname} \
-H 'Content-Type: application/json' \
-H "Authorization: Bearer ${access_token}" \
-H "x-goog-user-project: ${project_id}" \ | grep state
"state": "CREATING", % Total % Received % Xferd Average Speed Time Time Time Current Dload Upload Total Spent Left Speed 100 494 0 494 0 0 760 0 --:--:-- --:--:-- --:--:-- 760 curl: (3) URL using bad/illegal format or missing URL
Exécuter une inférence
Une fois votre tâche de réglage terminée, vous pouvez l'utiliser pour générer du texte avec le service de texte.
curl -X POST ${base_url}/v1beta3/${modelname}:generateText \
-H 'Content-Type: application/json' \
-H "Authorization: Bearer ${access_token}" \
-H "x-goog-user-project: ${project_id}" \
-d '{
"prompt": {
"text": "4"
},
"temperature": 1.0,
"candidate_count": 2}' | grep output
"output": "3 2 1", "output": "3 2", % Total % Received % Xferd Average Speed Time Time Time Current Dload Upload Total Spent Left Speed 100 1569 0 1447 100 122 183 15 0:00:08 0:00:07 0:00:01 310
Le résultat de votre modèle peut être correct ou non. Si les performances du modèle affiné ne répondent pas aux normes requises, vous pouvez essayer d'ajouter d'autres exemples de haute qualité, d'ajuster les hyperparamètres ou d'ajouter un préambule à vos exemples. Vous pouvez même créer un autre modèle ajusté basé sur le premier que vous avez créé.
Pour en savoir plus sur l'amélioration des performances, consultez le guide de réglage.
Appeler l'API REST avec des requêtes Python
Vous pouvez appeler l'API REST avec n'importe quelle bibliothèque qui vous permet d'envoyer des requêtes HTTP. L'ensemble d'exemples suivant utilise la bibliothèque de requêtes Python et présente certaines des fonctionnalités les plus avancées.
Définir des variables
access_token = !gcloud auth application-default print-access-token
access_token = '\n'.join(access_token)
project = 'project-id'
base_url = "https://generativelanguage.googleapis.com"
Importez la bibliothèque requests
.
import requests
import json
Répertorier les modèles réglés
Vérifiez votre configuration d'authentification en répertoriant les modèles réglés actuellement disponibles.
headers={
'Authorization': 'Bearer ' + access_token,
'Content-Type': 'application/json',
'x-goog-user-project': project
}
result = requests.get(
url=f'{base_url}/v1beta3/tunedModels',
headers = headers,
)
result.json()
{'tunedModels': [{'name': 'tunedModels/testnumbergenerator-fvitocr834l6', 'baseModel': 'models/text-bison-001', 'displayName': 'test_number_generator', 'description': '{"description":"generates the next number in the sequence given the input text","exampleInput":"input: 1","exampleOutput":"output: 2","datasourceUrl":"https://drive.google.com/open?id=11Pdm6GNom4vlBMUHwO6yFjGQT3t1yi44WVShXMFnkVA&authuser=0&resourcekey=0-2d17tccbdBoThXMkNDvtag","showedTuningComplete":false}', 'state': 'ACTIVE', 'createTime': '2023-09-18T11:06:39.092786Z', 'updateTime': '2023-09-18T11:07:24.198359Z', 'tuningTask': {'startTime': '2023-09-18T11:06:39.461814784Z', 'completeTime': '2023-09-18T11:07:24.198359Z', 'snapshots': [{'step': 1, 'meanLoss': 16.613504, 'computeTime': '2023-09-18T11:06:44.532937624Z'}, {'step': 2, 'epoch': 1, 'meanLoss': 20.299532, 'computeTime': '2023-09-18T11:06:47.825134421Z'}, {'step': 3, 'epoch': 1, 'meanLoss': 8.169708, 'computeTime': '2023-09-18T11:06:50.580344344Z'}, {'step': 4, 'epoch': 2, 'meanLoss': 3.7588992, 'computeTime': '2023-09-18T11:06:53.219133748Z'}, {'step': 5, 'epoch': 3, 'meanLoss': 2.0643115, 'computeTime': '2023-09-18T11:06:55.828458606Z'}, {'step': 6, 'epoch': 3, 'meanLoss': 1.9765375, 'computeTime': '2023-09-18T11:06:58.426053772Z'}, {'step': 7, 'epoch': 4, 'meanLoss': 0.9276156, 'computeTime': '2023-09-18T11:07:01.231832398Z'}, {'step': 8, 'epoch': 5, 'meanLoss': 1.8424839, 'computeTime': '2023-09-18T11:07:03.822710074Z'}, {'step': 9, 'epoch': 5, 'meanLoss': 1.1747926, 'computeTime': '2023-09-18T11:07:06.441685551Z'}, {'step': 10, 'epoch': 6, 'meanLoss': 0.3079359, 'computeTime': '2023-09-18T11:07:08.793491157Z'}, {'step': 11, 'epoch': 7, 'meanLoss': 0.543368, 'computeTime': '2023-09-18T11:07:11.393264892Z'}, {'step': 12, 'epoch': 7, 'meanLoss': 0.35068464, 'computeTime': '2023-09-18T11:07:13.808021238Z'}, {'step': 13, 'epoch': 8, 'meanLoss': 0.026032856, 'computeTime': '2023-09-18T11:07:16.295972078Z'}, {'step': 14, 'epoch': 8, 'meanLoss': 0.108341046, 'computeTime': '2023-09-18T11:07:18.941247488Z'}, {'step': 15, 'epoch': 9, 'meanLoss': 0.016470395, 'computeTime': '2023-09-18T11:07:21.607654306Z'}, {'step': 16, 'epoch': 10, 'meanLoss': 0.063049875, 'computeTime': '2023-09-18T11:07:24.077271307Z'}], 'hyperparameters': {'epochCount': 10, 'batchSize': 16, 'learningRate': 0.02} }, 'temperature': 0.7, 'topP': 0.95, 'topK': 40}, {'name': 'tunedModels/my-display-name-81-9wpmc1m920vq', 'baseModel': 'models/text-bison-tuning-test', 'displayName': 'my display name 81', 'state': 'ACTIVE', 'createTime': '2023-09-18T22:02:08.690991Z', 'updateTime': '2023-09-18T22:02:28.806318Z', 'tuningTask': {'startTime': '2023-09-18T22:02:09.161100369Z', 'completeTime': '2023-09-18T22:02:28.806318Z', 'snapshots': [{'step': 1, 'meanLoss': 7.2774773, 'computeTime': '2023-09-18T22:02:12.453056368Z'}, {'step': 2, 'meanLoss': 6.1902447, 'computeTime': '2023-09-18T22:02:13.789508217Z'}, {'step': 3, 'meanLoss': 5.5545835, 'computeTime': '2023-09-18T22:02:15.136220505Z'}, {'step': 4, 'epoch': 1, 'meanLoss': 7.9237704, 'computeTime': '2023-09-18T22:02:16.474358517Z'}, {'step': 5, 'epoch': 1, 'meanLoss': 7.6770706, 'computeTime': '2023-09-18T22:02:17.758261108Z'}, {'step': 6, 'epoch': 1, 'meanLoss': 7.378622, 'computeTime': '2023-09-18T22:02:19.114072224Z'}, {'step': 7, 'epoch': 1, 'meanLoss': 4.485537, 'computeTime': '2023-09-18T22:02:20.927434115Z'}, {'step': 8, 'epoch': 2, 'meanLoss': 6.815181, 'computeTime': '2023-09-18T22:02:22.267906011Z'}, {'step': 9, 'epoch': 2, 'meanLoss': 6.411363, 'computeTime': '2023-09-18T22:02:24.078114085Z'}, {'step': 10, 'epoch': 2, 'meanLoss': 8.585093, 'computeTime': '2023-09-18T22:02:25.441598938Z'}, {'step': 11, 'epoch': 2, 'meanLoss': 4.901249, 'computeTime': '2023-09-18T22:02:27.108985392Z'}, {'step': 12, 'epoch': 3, 'meanLoss': 7.073003, 'computeTime': '2023-09-18T22:02:28.441662034Z'}], 'hyperparameters': {'epochCount': 3, 'batchSize': 4, 'learningRate': 0.001} }, 'temperature': 0.7, 'topP': 0.95, 'topK': 40}, {'name': 'tunedModels/number-generator-model-kctlevca1g3q', 'baseModel': 'models/text-bison-tuning-test', 'displayName': 'number generator model', 'state': 'ACTIVE', 'createTime': '2023-09-18T23:43:21.461545Z', 'updateTime': '2023-09-18T23:43:49.205493Z', 'tuningTask': {'startTime': '2023-09-18T23:43:21.542403958Z', 'completeTime': '2023-09-18T23:43:49.205493Z', 'snapshots': [{'step': 1, 'meanLoss': 7.342065, 'computeTime': '2023-09-18T23:43:23.356271969Z'}, {'step': 2, 'meanLoss': 7.255807, 'computeTime': '2023-09-18T23:43:24.620248223Z'}, {'step': 3, 'meanLoss': 5.4591417, 'computeTime': '2023-09-18T23:43:25.854505395Z'}, {'step': 4, 'meanLoss': 6.968665, 'computeTime': '2023-09-18T23:43:27.138260198Z'}, {'step': 5, 'meanLoss': 4.578809, 'computeTime': '2023-09-18T23:43:28.404943274Z'}, {'step': 6, 'meanLoss': 6.4862137, 'computeTime': '2023-09-18T23:43:29.631624883Z'}, {'step': 7, 'meanLoss': 9.781939, 'computeTime': '2023-09-18T23:43:30.801341449Z'}, {'step': 8, 'epoch': 1, 'meanLoss': 5.990006, 'computeTime': '2023-09-18T23:43:31.854703315Z'}, {'step': 9, 'epoch': 1, 'meanLoss': 8.846312, 'computeTime': '2023-09-18T23:43:33.075785103Z'}, {'step': 10, 'epoch': 1, 'meanLoss': 6.1585655, 'computeTime': '2023-09-18T23:43:34.310432174Z'}, {'step': 11, 'epoch': 1, 'meanLoss': 4.7877502, 'computeTime': '2023-09-18T23:43:35.381582526Z'}, {'step': 12, 'epoch': 1, 'meanLoss': 9.660514, 'computeTime': '2023-09-18T23:43:36.445446408Z'}, {'step': 13, 'epoch': 1, 'meanLoss': 5.6482882, 'computeTime': '2023-09-18T23:43:37.603237821Z'}, {'step': 14, 'epoch': 1, 'meanLoss': 3.162092, 'computeTime': '2023-09-18T23:43:38.671463397Z'}, {'step': 15, 'epoch': 2, 'meanLoss': 6.322996, 'computeTime': '2023-09-18T23:43:39.769742201Z'}, {'step': 16, 'epoch': 2, 'meanLoss': 6.781, 'computeTime': '2023-09-18T23:43:40.985967994Z'}, {'step': 17, 'epoch': 2, 'meanLoss': 5.136773, 'computeTime': '2023-09-18T23:43:42.235469710Z'}, {'step': 18, 'epoch': 2, 'meanLoss': 7.2091155, 'computeTime': '2023-09-18T23:43:43.415178581Z'}, {'step': 19, 'epoch': 2, 'meanLoss': 7.7508755, 'computeTime': '2023-09-18T23:43:44.775221774Z'}, {'step': 20, 'epoch': 2, 'meanLoss': 8.144815, 'computeTime': '2023-09-18T23:43:45.788824334Z'}, {'step': 21, 'epoch': 2, 'meanLoss': 5.485137, 'computeTime': '2023-09-18T23:43:46.812663998Z'}, {'step': 22, 'epoch': 2, 'meanLoss': 3.709197, 'computeTime': '2023-09-18T23:43:47.971764087Z'}, {'step': 23, 'epoch': 3, 'meanLoss': 6.0069466, 'computeTime': '2023-09-18T23:43:49.004191079Z'}], 'hyperparameters': {'epochCount': 3, 'batchSize': 2, 'learningRate': 0.001} }, 'temperature': 0.7, 'topP': 0.95, 'topK': 40}, {'name': 'tunedModels/my-display-name-81-r9wcuda14lyy', 'baseModel': 'models/text-bison-tuning-test', 'displayName': 'my display name 81', 'state': 'ACTIVE', 'createTime': '2023-09-18T23:52:06.980185Z', 'updateTime': '2023-09-18T23:52:26.679601Z', 'tuningTask': {'startTime': '2023-09-18T23:52:07.616953503Z', 'completeTime': '2023-09-18T23:52:26.679601Z', 'snapshots': [{'step': 1, 'meanLoss': 7.2774773, 'computeTime': '2023-09-18T23:52:10.278936662Z'}, {'step': 2, 'meanLoss': 6.2793097, 'computeTime': '2023-09-18T23:52:11.630844790Z'}, {'step': 3, 'meanLoss': 5.540499, 'computeTime': '2023-09-18T23:52:13.027840389Z'}, {'step': 4, 'epoch': 1, 'meanLoss': 7.977523, 'computeTime': '2023-09-18T23:52:14.368199020Z'}, {'step': 5, 'epoch': 1, 'meanLoss': 7.6197805, 'computeTime': '2023-09-18T23:52:15.872428752Z'}, {'step': 6, 'epoch': 1, 'meanLoss': 7.3851357, 'computeTime': '2023-09-18T23:52:17.213094182Z'}, {'step': 7, 'epoch': 1, 'meanLoss': 4.5342345, 'computeTime': '2023-09-18T23:52:19.090698421Z'}, {'step': 8, 'epoch': 2, 'meanLoss': 6.8603754, 'computeTime': '2023-09-18T23:52:20.494844731Z'}, {'step': 9, 'epoch': 2, 'meanLoss': 6.418575, 'computeTime': '2023-09-18T23:52:21.815997555Z'}, {'step': 10, 'epoch': 2, 'meanLoss': 8.659064, 'computeTime': '2023-09-18T23:52:23.524287192Z'}, {'step': 11, 'epoch': 2, 'meanLoss': 4.856765, 'computeTime': '2023-09-18T23:52:24.864661291Z'}, {'step': 12, 'epoch': 3, 'meanLoss': 7.1078596, 'computeTime': '2023-09-18T23:52:26.225055381Z'}], 'hyperparameters': {'epochCount': 3, 'batchSize': 4, 'learningRate': 0.001} }, 'temperature': 0.7, 'topP': 0.95, 'topK': 40}, {'name': 'tunedModels/number-generator-model-w1eabln5adwp', 'baseModel': 'models/text-bison-tuning-test', 'displayName': 'number generator model', 'state': 'ACTIVE', 'createTime': '2023-09-19T19:29:08.622497Z', 'updateTime': '2023-09-19T19:29:46.063853Z', 'tuningTask': {'startTime': '2023-09-19T19:29:08.806930486Z', 'completeTime': '2023-09-19T19:29:46.063853Z', 'snapshots': [{'step': 1, 'meanLoss': 7.342065, 'computeTime': '2023-09-19T19:29:13.023811994Z'}, {'step': 2, 'meanLoss': 7.1960244, 'computeTime': '2023-09-19T19:29:14.844046282Z'}, {'step': 3, 'meanLoss': 5.480289, 'computeTime': '2023-09-19T19:29:16.596884354Z'}, {'step': 4, 'meanLoss': 6.851822, 'computeTime': '2023-09-19T19:29:17.741735378Z'}, {'step': 5, 'meanLoss': 4.5535283, 'computeTime': '2023-09-19T19:29:18.914760812Z'}, {'step': 6, 'meanLoss': 6.449012, 'computeTime': '2023-09-19T19:29:20.053316042Z'}, {'step': 7, 'meanLoss': 9.842458, 'computeTime': '2023-09-19T19:29:21.371286675Z'}, {'step': 8, 'epoch': 1, 'meanLoss': 5.9831877, 'computeTime': '2023-09-19T19:29:22.915277044Z'}, {'step': 9, 'epoch': 1, 'meanLoss': 8.936815, 'computeTime': '2023-09-19T19:29:24.666461680Z'}, {'step': 10, 'epoch': 1, 'meanLoss': 6.14651, 'computeTime': '2023-09-19T19:29:26.793310451Z'}, {'step': 11, 'epoch': 1, 'meanLoss': 4.853589, 'computeTime': '2023-09-19T19:29:28.328297535Z'}, {'step': 12, 'epoch': 1, 'meanLoss': 9.6831045, 'computeTime': '2023-09-19T19:29:29.501236840Z'}, {'step': 13, 'epoch': 1, 'meanLoss': 5.706586, 'computeTime': '2023-09-19T19:29:30.612807978Z'}, {'step': 14, 'epoch': 1, 'meanLoss': 3.276942, 'computeTime': '2023-09-19T19:29:31.928747103Z'}, {'step': 15, 'epoch': 2, 'meanLoss': 6.1736736, 'computeTime': '2023-09-19T19:29:33.588699180Z'}, {'step': 16, 'epoch': 2, 'meanLoss': 6.857398, 'computeTime': '2023-09-19T19:29:35.239083809Z'}, {'step': 17, 'epoch': 2, 'meanLoss': 5.098094, 'computeTime': '2023-09-19T19:29:37.000705047Z'}, {'step': 18, 'epoch': 2, 'meanLoss': 7.27724, 'computeTime': '2023-09-19T19:29:38.532313231Z'}, {'step': 19, 'epoch': 2, 'meanLoss': 7.6310735, 'computeTime': '2023-09-19T19:29:39.696034301Z'}, {'step': 20, 'epoch': 2, 'meanLoss': 8.152623, 'computeTime': '2023-09-19T19:29:40.803342042Z'}, {'step': 21, 'epoch': 2, 'meanLoss': 5.451577, 'computeTime': '2023-09-19T19:29:42.445788199Z'}, {'step': 22, 'epoch': 2, 'meanLoss': 3.7990716, 'computeTime': '2023-09-19T19:29:43.866737307Z'}, {'step': 23, 'epoch': 3, 'meanLoss': 6.120624, 'computeTime': '2023-09-19T19:29:45.599248553Z'}], 'hyperparameters': {'epochCount': 3, 'batchSize': 2, 'learningRate': 0.001} }, 'temperature': 0.7, 'topP': 0.95, 'topK': 40}]}
Créer un modèle réglé
Comme pour l'exemple Curl, vous transmettez l'ensemble de données via le champ training_data
.
operation = requests.post(
url = f'{base_url}/v1beta3/tunedModels',
headers=headers,
json= {
"display_name": "number generator",
"base_model": "models/text-bison-001",
"tuning_task": {
"hyperparameters": {
"batch_size": 4,
"learning_rate": 0.001,
"epoch_count":3,
},
"training_data": {
"examples": {
"examples": [
{
'text_input': '1',
'output': '2',
},{
'text_input': '3',
'output': '4',
},{
'text_input': '-3',
'output': '-2',
},{
'text_input': 'twenty two',
'output': 'twenty three',
},{
'text_input': 'two hundred',
'output': 'two hundred one',
},{
'text_input': 'ninety nine',
'output': 'one hundred',
},{
'text_input': '8',
'output': '9',
},{
'text_input': '-98',
'output': '-97',
},{
'text_input': '1,000',
'output': '1,001',
},{
'text_input': '10,100,000',
'output': '10,100,001',
},{
'text_input': 'thirteen',
'output': 'fourteen',
},{
'text_input': 'eighty',
'output': 'eighty one',
},{
'text_input': 'one',
'output': 'two',
},{
'text_input': 'three',
'output': 'four',
},{
'text_input': 'seven',
'output': 'eight',
}
]
}
}
}
}
)
operation
<Response [200]>
operation.json()
{'name': 'tunedModels/number-generator-ncqqnysl74dt/operations/qqlbwzfyzn0k', 'metadata': {'@type': 'type.googleapis.com/google.ai.generativelanguage.v1beta3.CreateTunedModelMetadata', 'totalSteps': 12, 'tunedModel': 'tunedModels/number-generator-ncqqnysl74dt'} }
Définissez une variable avec le nom du modèle affiné à utiliser pour le reste des appels.
name=operation.json()["metadata"]["tunedModel"]
name
'tunedModels/number-generator-ncqqnysl74dt'
Obtenir l'état du modèle réglé
Vous pouvez vérifier la progression de votre job de réglage en consultant le champ d'état. CREATING
signifie que le travail de réglage est toujours en cours, et ACTIVE
que l'entraînement est terminé et que le modèle ajusté est prêt à l'emploi.
tuned_model = requests.get(
url = f'{base_url}/v1beta3/{name}',
headers=headers,
)
tuned_model.json()
{'name': 'tunedModels/number-generator-ncqqnysl74dt', 'baseModel': 'models/text-bison-001', 'displayName': 'number generator', 'state': 'CREATING', 'createTime': '2023-09-19T19:56:25.999303Z', 'updateTime': '2023-09-19T19:56:25.999303Z', 'tuningTask': {'startTime': '2023-09-19T19:56:26.297862545Z', 'hyperparameters': {'epochCount': 3, 'batchSize': 4, 'learningRate': 0.001} }, 'temperature': 0.7, 'topP': 0.95, 'topK': 40}
Le code ci-dessous vérifie le champ d'état toutes les cinq secondes jusqu'à ce qu'il ne soit plus à l'état CREATING
.
import time
import pprint
op_json = operation.json()
response = op_json.get('response')
error = op_json.get('error')
while response is None and error is None:
time.sleep(31)
operation = requests.get(
url = f'{base_url}/v1/{op_json["name"]}',
headers=headers,
)
op_json = operation.json()
response = op_json.get('response')
error = op_json.get('error')
percent = op_json['metadata'].get('completedPercent')
if percent is not None:
print(f"{percent:.2f}% - {op_json['metadata']['snapshots'][-1]}")
print()
if error is not None:
raise Exception(error)
21.28% - {'step': 40, 'epoch': 10, 'meanLoss': 2.4871845, 'computeTime': '2023-09-20T00:23:55.255785843Z'} 21.28% - {'step': 40, 'epoch': 10, 'meanLoss': 2.4871845, 'computeTime': '2023-09-20T00:23:55.255785843Z'} 43.09% - {'step': 81, 'epoch': 21, 'meanLoss': 0.032220088, 'computeTime': '2023-09-20T00:24:56.302837803Z'} 43.09% - {'step': 81, 'epoch': 21, 'meanLoss': 0.032220088, 'computeTime': '2023-09-20T00:24:56.302837803Z'} 63.83% - {'step': 120, 'epoch': 32, 'meanLoss': 0.0030430648, 'computeTime': '2023-09-20T00:25:57.228615435Z'} 63.83% - {'step': 120, 'epoch': 32, 'meanLoss': 0.0030430648, 'computeTime': '2023-09-20T00:25:57.228615435Z'} 85.11% - {'step': 160, 'epoch': 42, 'meanLoss': -1.1145603e-06, 'computeTime': '2023-09-20T00:26:57.819011896Z'} 100.00% - {'step': 188, 'epoch': 50, 'meanLoss': 0.00040101097, 'computeTime': '2023-09-20T00:27:40.024132813Z'}
Exécuter une inférence
Une fois le job de réglage terminé, vous pouvez l'utiliser pour générer du texte de la même manière que vous utiliseriez le modèle de texte de base.
import time
m = requests.post(
url = f'{base_url}/v1beta3/{name}:generateText',
headers=headers,
json= {
"prompt": {
"text": "9"
},
})
import pprint
print(m.json()['candidates'][0]['output'])
9
Le résultat de votre modèle peut être correct ou non. Si les performances du modèle affiné ne répondent pas aux normes requises, vous pouvez essayer d'ajouter d'autres exemples de haute qualité, d'ajuster les hyperparamètres ou d'ajouter un préambule à vos exemples.
Étapes suivantes
- Consultez le guide de démarrage rapide de l'optimisation avec Python pour commencer à coder avec le service d'optimisation.
- Pour savoir comment optimiser au mieux le modèle en fonction de votre cas d'utilisation, consultez les conseils de réglage.