آموزش: با Gemini API شروع کنید


این آموزش نحوه دسترسی به Gemini API برای برنامه Node.js خود را با استفاده از Google AI JavaScript SDK نشان می دهد.

در این آموزش، نحوه انجام کارهای زیر را خواهید آموخت:

علاوه بر این، این آموزش شامل بخش هایی در مورد موارد استفاده پیشرفته (مانند جاسازی ها و شمارش نشانه ها ) و همچنین گزینه هایی برای کنترل تولید محتوا است .

پیش نیازها

در این آموزش فرض می شود که شما با ساخت اپلیکیشن با Node.js آشنایی دارید.

برای تکمیل این آموزش، مطمئن شوید که محیط توسعه شما شرایط زیر را دارد:

  • Node.js v18+
  • npm

پروژه خود را تنظیم کنید

قبل از فراخوانی Gemini API، باید پروژه خود را راه‌اندازی کنید که شامل تنظیم کلید API، نصب بسته SDK و مقداردهی اولیه مدل است.

کلید API خود را تنظیم کنید

برای استفاده از Gemini API، به یک کلید API نیاز دارید. اگر قبلاً یکی ندارید، یک کلید در Google AI Studio ایجاد کنید.

یک کلید API دریافت کنید

کلید API خود را ایمن کنید

اکیداً توصیه می شود که یک کلید API را در سیستم کنترل نسخه خود بررسی نکنید . درعوض، باید از یک فروشگاه مخفی برای کلید API خود استفاده کنید.

تمام قطعه های این آموزش فرض می کنند که شما به کلید API خود به عنوان یک متغیر محیطی دسترسی دارید.

بسته SDK را نصب کنید

برای استفاده از Gemini API در برنامه خود، باید بسته GoogleGenerativeAI را برای Node.js نصب کنید:

npm install @google/generative-ai

مدل مولد را راه اندازی کنید

قبل از اینکه بتوانید هر گونه تماس API را برقرار کنید، باید مدل تولیدی را وارد و مقداردهی اولیه کنید.

const { GoogleGenerativeAI } = require("@google/generative-ai");

// Access your API key as an environment variable (see "Set up your API key" above)
const genAI = new GoogleGenerativeAI(process.env.API_KEY);

// ...

// The Gemini 1.5 models are versatile and work with most use cases
const model = genAI.getGenerativeModel({ model: "gemini-1.5-flash"});

// ...

هنگام تعیین یک مدل به موارد زیر توجه کنید:

  • از مدلی استفاده کنید که مخصوص مورد استفاده شما باشد (به عنوان مثال، gemini-1.5-flash برای ورودی چند وجهی است). در این راهنما، دستورالعمل‌های هر پیاده‌سازی، مدل پیشنهادی را برای هر مورد استفاده فهرست می‌کند.

موارد استفاده رایج را اجرا کنید

اکنون که پروژه شما راه اندازی شده است، می توانید با استفاده از Gemini API برای پیاده سازی موارد استفاده مختلف، کاوش کنید:

در بخش موارد استفاده پیشرفته، می‌توانید اطلاعاتی درباره Gemini API و جاسازی‌ها پیدا کنید.

متن را از ورودی فقط متنی تولید کنید

وقتی ورودی سریع فقط متن را شامل می شود، از مدل Gemini 1.5 با generateContent برای تولید خروجی متن استفاده کنید:

const { GoogleGenerativeAI } = require("@google/generative-ai");

// Access your API key as an environment variable (see "Set up your API key" above)
const genAI = new GoogleGenerativeAI(process.env.API_KEY);

async function run() {
  // The Gemini 1.5 models are versatile and work with both text-only and multimodal prompts
  const model = genAI.getGenerativeModel({ model: "gemini-1.5-flash"});

  const prompt = "Write a story about a magic backpack."

  const result = await model.generateContent(prompt);
  const response = await result.response;
  const text = response.text();
  console.log(text);
}

run();

تولید متن از ورودی متن و تصویر (چند وجهی)

Gemini 1.5 Flash و 1.5 Pro می توانند ورودی چندوجهی را انجام دهند تا بتوانید متن و عکس را وارد کنید. حتماً شرایط مورد نیاز تصویر را برای درخواست‌ها مرور کنید.

هنگامی که ورودی سریع شامل متن و تصویر است، از مدل های Gemini 1.5 با متد generateContent برای تولید خروجی متن استفاده کنید:

const { GoogleGenerativeAI } = require("@google/generative-ai");
const fs = require("fs");

// Access your API key as an environment variable (see "Set up your API key" above)
const genAI = new GoogleGenerativeAI(process.env.API_KEY);

// Converts local file information to a GoogleGenerativeAI.Part object.
function fileToGenerativePart(path, mimeType) {
  return {
    inlineData: {
      data: Buffer.from(fs.readFileSync(path)).toString("base64"),
      mimeType
    },
  };
}

async function run() {
  // The Gemini 1.5 models are versatile and work with both text-only and multimodal prompts
  const model = genAI.getGenerativeModel({ model: "gemini-1.5-flash" });

  const prompt = "What's different between these pictures?";

  const imageParts = [
    fileToGenerativePart("image1.png", "image/png"),
    fileToGenerativePart("image2.jpeg", "image/jpeg"),
  ];

  const result = await model.generateContent([prompt, ...imageParts]);
  const response = await result.response;
  const text = response.text();
  console.log(text);
}

run();

ایجاد مکالمات چند نوبتی (چت)

با استفاده از Gemini، می توانید مکالمات آزاد را در چندین نوبت ایجاد کنید. SDK با مدیریت وضعیت مکالمه، فرآیند را ساده می‌کند، بنابراین برخلاف generateContent ، مجبور نیستید تاریخچه مکالمه را خودتان ذخیره کنید.

برای ایجاد یک مکالمه چند نوبتی (مانند چت)، از مدل Gemini 1.5 یا مدل Gemini 1.0 Pro استفاده کنید و با فراخوانی startChat() چت را مقداردهی اولیه کنید. سپس از sendMessage() برای ارسال یک پیام کاربر جدید استفاده کنید که پیام و پاسخ را نیز به تاریخچه چت اضافه می کند.

دو گزینه ممکن برای role مرتبط با محتوا در یک مکالمه وجود دارد:

  • user : نقشی که دستورات را ارائه می دهد. این مقدار پیش فرض برای تماس های sendMessage است.

  • model : نقشی که پاسخ ها را ارائه می دهد. این نقش هنگام فراخوانی startChat() با history موجود قابل استفاده است.

const { GoogleGenerativeAI } = require("@google/generative-ai");

// Access your API key as an environment variable (see "Set up your API key" above)
const genAI = new GoogleGenerativeAI(process.env.API_KEY);

async function run() {
  // The Gemini 1.5 models are versatile and work with multi-turn conversations (like chat)
  const model = genAI.getGenerativeModel({ model: "gemini-1.5-flash"});

  const chat = model.startChat({
    history: [
      {
        role: "user",
        parts: [{ text: "Hello, I have 2 dogs in my house." }],
      },
      {
        role: "model",
        parts: [{ text: "Great to meet you. What would you like to know?" }],
      },
    ],
    generationConfig: {
      maxOutputTokens: 100,
    },
  });

  const msg = "How many paws are in my house?";

  const result = await chat.sendMessage(msg);
  const response = await result.response;
  const text = response.text();
  console.log(text);
}

run();

برای تعامل سریعتر از پخش جریانی استفاده کنید

به‌طور پیش‌فرض، مدل پس از تکمیل کل فرآیند تولید، پاسخی را برمی‌گرداند. شما می توانید با منتظر ماندن برای کل نتیجه به تعاملات سریع تری برسید و در عوض از استریم برای مدیریت نتایج جزئی استفاده کنید.

مثال زیر نحوه پیاده‌سازی استریم را با متد generateContentStream برای تولید متن از اعلان ورودی متن و تصویر نشان می‌دهد.

//...

const result = await model.generateContentStream([prompt, ...imageParts]);

let text = '';
for await (const chunk of result.stream) {
  const chunkText = chunk.text();
  console.log(chunkText);
  text += chunkText;
}

//...

می‌توانید از رویکرد مشابهی برای موارد استفاده از چت و ورودی متنی استفاده کنید.

// Use streaming with text-only input
const result = await model.generateContentStream(prompt);

برای نحوه نمونه سازی chat به مثال چت بالا مراجعه کنید.

// Use streaming with multi-turn conversations (like chat)
const result = await chat.sendMessageStream(msg);

موارد استفاده پیشرفته را اجرا کنید

موارد استفاده متداول شرح داده شده در بخش قبلی این آموزش به شما کمک می کند تا با استفاده از Gemini API راحت باشید. این بخش برخی از موارد استفاده را که ممکن است پیشرفته‌تر در نظر گرفته شوند، توضیح می‌دهد.

از جاسازی ها استفاده کنید

جاسازی تکنیکی است که برای نمایش اطلاعات به عنوان لیستی از اعداد ممیز شناور در یک آرایه استفاده می شود. با Gemini، می‌توانید متن (کلمات، جملات و بلوک‌های متن) را به شکل برداری نمایش دهید، که مقایسه و تضاد جاسازی‌ها را آسان‌تر می‌کند. برای مثال، دو متنی که موضوع یا احساسات مشابهی دارند باید دارای تعبیه‌های مشابهی باشند که از طریق تکنیک‌های مقایسه ریاضی مانند شباهت کسینوس قابل شناسایی است.

از مدل embedding-001 با روش embedContent (یا روش batchEmbedContent ) برای ایجاد جاسازی استفاده کنید. مثال زیر یک جاسازی برای یک رشته ایجاد می کند:

const { GoogleGenerativeAI } = require("@google/generative-ai");

// Access your API key as an environment variable (see "Set up your API key" above)
const genAI = new GoogleGenerativeAI(process.env.API_KEY);

async function run() {
  // For embeddings, use the embedding-001 model
  const model = genAI.getGenerativeModel({ model: "embedding-001"});

  const text = "The quick brown fox jumps over the lazy dog."

  const result = await model.embedContent(text);
  const embedding = result.embedding;
  console.log(embedding.values);
}

run();

فراخوانی تابع

فراخوانی تابع، دریافت خروجی داده های ساختاریافته از مدل های تولیدی را برای شما آسان تر می کند. سپس می‌توانید از این خروجی‌ها برای فراخوانی APIهای دیگر و برگرداندن داده‌های پاسخ مربوطه به مدل استفاده کنید. به عبارت دیگر، فراخوانی تابع به شما کمک می کند تا مدل های تولیدی را به سیستم های خارجی متصل کنید تا محتوای تولید شده شامل به روزترین و دقیق ترین اطلاعات باشد. در آموزش فراخوانی تابع بیشتر بیاموزید.

توکن ها را بشمار

هنگام استفاده از اعلان های طولانی، ممکن است شمارش نشانه ها قبل از ارسال هر محتوایی به مدل مفید باشد. مثال های زیر نحوه استفاده از countTokens() برای موارد استفاده مختلف نشان می دهد:

// For text-only input
const { totalTokens } = await model.countTokens(prompt);
// For text-and-image input (multimodal)
const { totalTokens } = await model.countTokens([prompt, ...imageParts]);
// For multi-turn conversations (like chat)
const history = await chat.getHistory();
const msgContent = { role: "user", parts: [{ text: msg }] };
const contents = [...history, msgContent];
const { totalTokens } = await model.countTokens({ contents });

گزینه هایی برای کنترل تولید محتوا

شما می توانید تولید محتوا را با پیکربندی پارامترهای مدل و با استفاده از تنظیمات ایمنی کنترل کنید.

توجه داشته باشید که انتقال generationConfig یا safetySettings به یک روش درخواست مدل (مانند generateContent ) به طور کامل شی پیکربندی با همان نام ارسال شده در getGenerativeModel را لغو می کند.

پیکربندی پارامترهای مدل

هر اعلانی که به مدل ارسال می کنید شامل مقادیر پارامتری است که نحوه تولید پاسخ مدل را کنترل می کند. مدل می تواند نتایج متفاوتی را برای مقادیر پارامترهای مختلف ایجاد کند. درباره پارامترهای مدل بیشتر بدانید.

const generationConfig = {
  stopSequences: ["red"],
  maxOutputTokens: 200,
  temperature: 0.9,
  topP: 0.1,
  topK: 16,
};

// The Gemini 1.5 models are versatile and work with most use cases
const model = genAI.getGenerativeModel({ model: "gemini-1.5-flash",  generationConfig });

از تنظیمات ایمنی استفاده کنید

می توانید از تنظیمات ایمنی برای تنظیم احتمال دریافت پاسخ هایی که ممکن است مضر تلقی شوند استفاده کنید. به‌طور پیش‌فرض، تنظیمات ایمنی محتوایی را با احتمال متوسط ​​و/یا زیاد ناامن بودن محتوا در همه ابعاد مسدود می‌کند. درباره تنظیمات ایمنی بیشتر بیاموزید.

در اینجا نحوه تنظیم یک تنظیم ایمنی آورده شده است:

import { HarmBlockThreshold, HarmCategory } from "@google/generative-ai";

// ...

const safetySettings = [
  {
    category: HarmCategory.HARM_CATEGORY_HARASSMENT,
    threshold: HarmBlockThreshold.BLOCK_ONLY_HIGH,
  },
];

// The Gemini 1.5 models are versatile and work with most use cases
const model = genAI.getGenerativeModel({ model: "gemini-1.5-flash", safetySettings });

همچنین می توانید بیش از یک تنظیم ایمنی را تنظیم کنید:

const safetySettings = [
  {
    category: HarmCategory.HARM_CATEGORY_HARASSMENT,
    threshold: HarmBlockThreshold.BLOCK_ONLY_HIGH,
  },
  {
    category: HarmCategory.HARM_CATEGORY_HATE_SPEECH,
    threshold: HarmBlockThreshold.BLOCK_MEDIUM_AND_ABOVE,
  },
];

بعدش چی

  • طراحی سریع فرآیند ایجاد اعلان‌هایی است که پاسخ دلخواه را از مدل‌های زبانی به دست می‌آورد. نوشتن اعلان‌های ساختاریافته بخش ضروری برای اطمینان از پاسخ‌های دقیق و با کیفیت بالا از یک مدل زبان است. درباره بهترین شیوه ها برای نوشتن سریع بیاموزید.

  • Gemini چندین مدل مختلف را برای برآوردن نیازهای موارد استفاده مختلف، مانند انواع ورودی و پیچیدگی، پیاده سازی برای چت یا سایر وظایف زبان گفتگو، و محدودیت های اندازه ارائه می دهد. با مدل های موجود Gemini آشنا شوید.