Modele systemów uczących się używane z użyciem LiteRT można trenować
za pomocą języka JAX, PyTorch lub TensorFlow, a następnie przekonwertowano na płaski bufor TFLite
.
[[["Łatwo zrozumieć","easyToUnderstand","thumb-up"],["Rozwiązało to mój problem","solvedMyProblem","thumb-up"],["Inne","otherUp","thumb-up"]],[["Brak potrzebnych mi informacji","missingTheInformationINeed","thumb-down"],["Zbyt skomplikowane / zbyt wiele czynności do wykonania","tooComplicatedTooManySteps","thumb-down"],["Nieaktualne treści","outOfDate","thumb-down"],["Problem z tłumaczeniem","translationIssue","thumb-down"],["Problem z przykładami/kodem","samplesCodeIssue","thumb-down"],["Inne","otherDown","thumb-down"]],["Ostatnia aktualizacja: 2025-07-24 UTC."],[],[],null,["# Supporting multiple frameworks with TFLite\n\nThe machine learning (ML) models you use with LiteRT can be trained\nusing JAX, PyTorch or TensorFlow and then converted to a TFLite flatbuffer\nformat.\n\nSee the following pages for more details:\n\n- [Converting from JAX](/edge/litert/models/convert_jax)\n- [Converting from PyTorch](/edge/litert/models/convert_pytorch)\n- [Converting from TensorFlow](/edge/litert/models/convert_tf)\n\nAn overview of the TFLite Converter which is an important component of\nsupporting different frameworks with TFLite is on [Model conversion\noverview](/edge/litert/models/convert)."]]