Ejecuta modelos de JAX, Keras, PyTorch y TensorFlow de manera eficiente en Android, iOS, la Web y dispositivos integrados, optimizados para la IA generativa y el AA tradicional.
Acorta los ciclos de desarrollo con la visualización
Visualiza la transformación de tu modelo a través de la conversión y la cuantificación. Superpone los resultados de las comparativas para depurar los hotspots.
Crea canalizaciones personalizadas para atributos de AA complejos
Crea tu propia tarea encadenando de forma eficiente varios modelos de AA junto con la lógica de procesamiento previo y posterior. Ejecuta canalizaciones aceleradas (GPU y NPU) sin bloquear la CPU.
Las herramientas y los frameworks que potencian las apps de Google
Explora la pila de IA de borde completa, con productos en todos los niveles, desde APIs de poco código hasta bibliotecas de aceleración específicas para el hardware.
MediaPipe Tasks
Compila funciones de IA rápidamente en apps web y para dispositivos móviles con APIs de poco código para tareas comunes que abarcan IA generativa, visión artificial, texto y audio.
IA generativa
Integra modelos de lenguaje y de imágenes generativos directamente en tus apps con APIs listas para usar.
Vision
Explora una amplia variedad de tareas de visión que abarcan la segmentación, la clasificación, la detección, el reconocimiento y los puntos de referencia corporales.
Texto y audio
Clasifica el texto y el audio en muchas categorías, como el idioma, el sentimiento y tus propias categorías personalizadas.
Es un framework de bajo nivel que se usa para compilar canalizaciones de AA aceleradas de alto rendimiento, que a menudo incluyen varios modelos de AA combinados con procesamiento previo y posterior.
Implementa modelos de IA creados en cualquier framework en dispositivos móviles, web y microcontroladores con una aceleración específica del hardware optimizada.
Multiframework
Convierte modelos de JAX, Keras, PyTorch y TensorFlow para que se ejecuten en el perímetro.
Multiplataforma
Ejecuta el mismo modelo exacto en Android, iOS, la Web y microcontroladores con SDKs nativos.
Ligero y rápido
El entorno de ejecución eficiente de LiteRT ocupa solo unos pocos megabytes y permite la aceleración de modelos en CPU, GPU y NPU.
Explora, depura y compara tus modelos de forma visual. Superpone comparativas y datos numéricos de rendimiento para identificar los hotspots problemáticos.
[[["Fácil de comprender","easyToUnderstand","thumb-up"],["Resolvió mi problema","solvedMyProblem","thumb-up"],["Otro","otherUp","thumb-up"]],[["Falta la información que necesito","missingTheInformationINeed","thumb-down"],["Muy complicado o demasiados pasos","tooComplicatedTooManySteps","thumb-down"],["Desactualizado","outOfDate","thumb-down"],["Problema de traducción","translationIssue","thumb-down"],["Problema con las muestras o los códigos","samplesCodeIssue","thumb-down"],["Otro","otherDown","thumb-down"]],[],[],[],null,["# Google AI Edge\n\n### Deploy AI across mobile, web, and embedded applications\n\n - \n\n #### On device\n\n Reduce latency. Work offline. Keep your data local \\& private.\n- \n - \n\n #### Cross-platform\n\n Run the same model across Android, iOS, web, and embedded.\n- \n - \n\n #### Multi-framework\n\n Compatible with JAX, Keras, PyTorch, and TensorFlow models.\n- \n - \n\n #### Full AI edge stack\n\n Flexible frameworks, turnkey solutions, hardware accelerators\n\nReady-made solutions and flexible frameworks\n--------------------------------------------\n\n### Low-code APIs for common AI tasks\n\nCross-platform APIs to tackle common generative AI, vision, text, and audio tasks.\n[Get started with MediaPipe tasks](https://ai.google.dev/edge/mediapipe/solutions/guide) \n\n### Deploy custom models cross-platform\n\nPerformantly run JAX, Keras, PyTorch, and TensorFlow models on Android, iOS, web, and embedded devices, optimized for traditional ML and generative AI.\n[Get started with LiteRT](https://ai.google.dev/edge/litert) \n\n### Shorten development cycles with visualization\n\nVisualize your model's transformation through conversion and quantization. Debug hotspots by\noverlaying benchmarks results.\n[Get started with Model Explorer](https://ai.google.dev/edge/model-explorer) \n\n### Build custom pipelines for complex ML features\n\nBuild your own task by performantly chaining multiple ML models along with pre and post processing\nlogic. Run accelerated (GPU \\& NPU) pipelines without blocking on the CPU.\n[Get started with MediaPipe Framework](https://ai.google.dev/edge/mediapipe/framework) \n\nThe tools and frameworks that power Google's apps\n-------------------------------------------------\n\nExplore the full AI edge stack, with products at every level --- from low-code APIs down to hardware specific acceleration libraries. \n\nMediaPipe Tasks\n---------------\n\nQuickly build AI features into mobile and web apps using low-code APIs for common tasks spanning generative AI, computer vision, text, and audio. \nGenerative AI\n\nIntegrate generative language and image models directly into your apps with ready-to-use APIs. \nVision\n\nExplore a large range of vision tasks spanning segmentation, classification, detection, recognition, and body landmarks. \nText \\& audio\n\nClassify text and audio across many categories including language, sentiment, and your own custom categories. \nGet started \n[### Tasks documentation\nFind all of our ready-made low-code MediaPipe Tasks with documentation and code samples.](https://ai.google.dev/edge/mediapipe/solutions/guide) \n[### Generative AI tasks\nRun LLMs and diffusion models on the edge with our MediaPipe generative AI tasks.](https://ai.google.dev/edge/mediapipe/solutions/genai/llm_inference) \n[### Try demos\nExplore our library of MediaPipe Tasks and try them yourself.](https://goo.gle/mediapipe-studio) \n[### Model maker documentation\nCustomize the models in our MediaPipe Tasks with your own data.](https://ai.google.dev/edge/mediapipe/solutions/model_maker) \n\nMediaPipe Framework\n-------------------\n\nA low level framework used to build high performance accelerated ML pipelines, often including multiple ML models combined with pre and post processing. \n[Get started](https://ai.google.dev/edge/mediapipe/framework) \n\nLiteRT\n------\n\nDeploy AI models authored in any framework across mobile, web, and microcontrollers with optimized hardware specific acceleration. \nMulti-framework\n\nConvert models from JAX, Keras, PyTorch, and TensorFlow to run on the edge. \nCross-platform\n\nRun the same exact model on Android, iOS, web, and microcontrollers with native SDKs. \nLightweight \\& fast\n\nLiteRT's efficient runtime takes up only a few megabytes and enables model acceleration across CPU, GPU, and NPUs. \nGet started \n[### Pick a model\nPick a new model, retrain an existing one, or bring your own.](https://ai.google.dev/edge/litert/models/trained) \n[### Convert\nConvert your JAX, Keras, PyTorch, or Tensorflow model into an optimized LiteRT model.](https://ai.google.dev/edge/litert/models/convert_to_flatbuffer) \n[### Deploy\nRun a LiteRT model on Android, iOS, web, and microcontrollers.](https://ai.google.dev/edge/litert#integrate-model) \n[### Quantize\nCompress your model to reduce latency, size, and peak memory.](https://ai.google.dev/edge/litert/models/model_optimization) \n\nModel Explorer\n--------------\n\nVisually explore, debug, and compare your models. Overlay performance benchmarks and numerics to pinpoint troublesome hotspots. \n[Get started](https://ai.google.dev/edge/model-explorer) \n\nGemini Nano in Android \\& Chrome\n--------------------------------\n\nBuild generative AI experiences using Google's most powerful, on-device model \n[Learn more about Android AICore](https://developer.android.com/ai/aicore) [Learn more about Chrome Built-In AI](https://developer.chrome.com/docs/ai) \n\nRecent videos and blog posts\n----------------------------\n\n[### A walkthrough for Android's on-device GenAI solutions\n1 October 2024](https://www.youtube.com/watch?v=EpKghZYqVW4) \n[### How to bring your AI Model to Android devices\n2 October 2024](https://android-developers.googleblog.com/2024/10/bring-your-ai-model-to-android-devices.html) \n[### Gemini Nano is now available on Android via experimental access\n1 October 2024](https://android-developers.googleblog.com/2024/10/gemini-nano-experimental-access-available-on-android.html) \n[### TensorFlow Lite is now LiteRT\n4 September 2024](https://developers.googleblog.com/en/tensorflow-lite-is-now-litert)"]]