前往 ai.google.dev 查看 | 在 Google Colab 中运行 | 在 Vertex AI 中打开 | 在 GitHub 上查看源代码 |
概览
Gemma 是一系列先进的轻量级开放式大语言模型,以 Google DeepMind Gemini 研究成果和技术为基础。本教程演示了如何使用 Google DeepMind 的 gemma
库、JAX(一种高性能数值计算库)、Flax(基于 JAX 的神经网络库)、Chex(一个用于编写可靠 JAX 和 JAX 翻译优化和 JAX 代码优化的实用程序库)、Optax虽然此笔记本中并未直接使用 Flax,但使用了 Flax 来创建 Gemma。
gemma
库是使用 JAX、Flax、Orbax(一个基于 JAX 的库,用于检查点等训练实用程序的库)和 SentencePiece(一个标记生成器/去令牌生成器 库)编写的。
设置
1. 为 Gemma 设置 Kaggle 访问权限
要完成本教程,您首先需要按照 Gemma 设置中的设置说明进行操作,了解如何执行以下操作:
- 在 kaggle.com 上访问 Gemma。
- 选择具有足够资源的 Colab 运行时来运行 Gemma 模型。
- 生成并配置 Kaggle 用户名和 API 密钥。
完成 Gemma 设置后,请继续执行下一部分,您将为 Colab 环境设置环境变量。
2. 设置环境变量
为 KAGGLE_USERNAME
和 KAGGLE_KEY
设置环境变量。当看到“是否授予访问权限?”的提示时,则同意提供私密访问。
import os
from google.colab import userdata # `userdata` is a Colab API.
os.environ["KAGGLE_USERNAME"] = userdata.get('KAGGLE_USERNAME')
os.environ["KAGGLE_KEY"] = userdata.get('KAGGLE_KEY')
3. 安装 gemma
库
目前免费的 Colab 硬件加速功能不足以运行此笔记本。如果您使用的是 Colab 随用随付或 Colab Pro,请点击修改 >笔记本设置 >选择 A100 GPU >点击保存即可启用硬件加速。
接下来,您需要从 github.com/google-deepmind/gemma
安装 Google DeepMind gemma
库。如果您收到有关“pip 的依赖项解析器”的错误,通常可以忽略它。
pip install -q git+https://github.com/google-deepmind/gemma.git
4. 导入库
此笔记本使用 Flax(用于神经网络)、核心 JAX、SentencePiece(用于标记化)、Chex(用于编写可靠 JAX 代码的实用程序库)和 TensorFlow 数据集。
import os
import enum
import re
import string
import chex
import jax
import jax.numpy as jnp
import optax
import tensorflow as tf
import tensorflow_datasets as tfds
from gemma import params as params_lib
from gemma import sampler as sampler_lib
from gemma import transformer as transformer_lib
import sentencepiece as spm
加载 Gemma 模型
使用 kagglehub.model_download
加载 Gemma 模型,它采用三个参数:
handle
:Kaggle 的模型句柄path
:(可选字符串)本地路径force_download
:(可选布尔值)强制重新下载模型
GEMMA_VARIANT = '2b-it' # @param ['2b', '2b-it'] {type:"string"}
import kagglehub
GEMMA_PATH = kagglehub.model_download(f'google/gemma/flax/{GEMMA_VARIANT}')
Downloading from https://www.kaggle.com/api/v1/models/google/gemma/flax/2b-it/2/download... 100%|██████████| 3.67G/3.67G [00:26<00:00, 147MB/s] Extracting model files...
print('GEMMA_PATH:', GEMMA_PATH)
GEMMA_PATH: /root/.cache/kagglehub/models/google/gemma/flax/2b-it/2
检查模型权重和标记生成器的位置,然后设置路径变量。标记生成器目录位于下载模型的主目录中,而模型权重则位于子目录中。例如:
tokenizer.model
文件将位于/LOCAL/PATH/TO/gemma/flax/2b-it/2
中。- 模型检查点将位于
/LOCAL/PATH/TO/gemma/flax/2b-it/2/2b-it
中。
CKPT_PATH = os.path.join(GEMMA_PATH, GEMMA_VARIANT)
TOKENIZER_PATH = os.path.join(GEMMA_PATH, 'tokenizer.model')
print('CKPT_PATH:', CKPT_PATH)
print('TOKENIZER_PATH:', TOKENIZER_PATH)
CKPT_PATH: /root/.cache/kagglehub/models/google/gemma/flax/2b-it/2/2b-it TOKENIZER_PATH: /root/.cache/kagglehub/models/google/gemma/flax/2b-it/2/tokenizer.model
加载并准备 MTNT 数据集和 Gemma 标记生成器
您将使用 TensorFlow Datasets 中提供的 MTNT(包含噪声的文本的机器翻译)数据集。
下载 MTNT 数据集中英语到法语的数据集部分,然后对两个示例进行采样。数据集中的每个样本都包含两个条目:src
:原始英语句子;和 dst
:对应的法语翻译。
ds = tfds.load("mtnt/en-fr", split="train")
ds = ds.take(2)
ds = ds.as_numpy_iterator()
for idx, example in enumerate(ds):
print(f'Example {idx}:')
for key, val in example.items():
print(f'{key}: {val}')
print()
Downloading and preparing dataset 35.08 MiB (download: 35.08 MiB, generated: 11.33 MiB, total: 46.41 MiB) to /root/tensorflow_datasets/mtnt/en-fr/1.0.0... Dl Completed...: 0 url [00:00, ? url/s] Dl Size...: 0 MiB [00:00, ? MiB/s] Extraction completed...: 0 file [00:00, ? file/s] Generating splits...: 0%| | 0/3 [00:00<?, ? splits/s] Generating train examples...: 0%| | 0/35692 [00:00<?, ? examples/s] Shuffling /root/tensorflow_datasets/mtnt/en-fr/1.0.0.incomplete6YJMND/mtnt-train.tfrecord*...: 0%| … Generating test examples...: 0%| | 0/1020 [00:00<?, ? examples/s] Shuffling /root/tensorflow_datasets/mtnt/en-fr/1.0.0.incomplete6YJMND/mtnt-test.tfrecord*...: 0%| |… Generating valid examples...: 0%| | 0/811 [00:00<?, ? examples/s] Shuffling /root/tensorflow_datasets/mtnt/en-fr/1.0.0.incomplete6YJMND/mtnt-valid.tfrecord*...: 0%| … Dataset mtnt downloaded and prepared to /root/tensorflow_datasets/mtnt/en-fr/1.0.0. Subsequent calls will reuse this data. Example 0: dst: b'Le groupe de " toutes les \xc3\xa9toiles potentielles de la conf\xc3\xa9rence de l\'Est mais qui ne s\'en sortent pas dans le groupe de l\'Ouest ".' src: b'The group of \xe2\x80\x9ceastern conference potential all stars but not making it in the West\xe2\x80\x9d group.' Example 1: dst: b"Kameron est-elle un peu aigrie de son manque de temps \xc3\xa0 l'\xc3\xa9cran ?" src: b'Is Kameron a Little Salty About Her Lack of Air Time?'
加载使用 sentencepiece.SentencePieceProcessor
构造的 Gemma 标记生成器:
vocab = spm.SentencePieceProcessor()
vocab.Load(TOKENIZER_PATH)
True
为英语到法语翻译任务自定义 SentencePieceProcessor
。由于您要微调 Gemma 模型的英语部分,因此需要进行一些调整,例如:
输入前缀:为每个输入添加一个公共前缀可指示转换任务。例如,您可以使用带有
Translate this into French: [INPUT_SENTENCE]
等前缀的提示。翻译开始后缀:在每个提示的末尾添加后缀可指示 Gemma 模型准确开始翻译过程。换行应该就可以了。
语言模型令牌:Gemma 模型要求“序列开头”词元,因此可以添加一个“序列的结尾”使用每个训练示例结尾的词元就足够了。
围绕
SentencePieceProcessor
构建自定义封装容器,如下所示:
class GemmaTokenizer:
def __init__(self,
spm_processor: spm.SentencePieceProcessor):
self._spm_processor = spm_processor
@property
def pad_id(self) -> int:
"""Fast access to the pad ID."""
return self._spm_processor.pad_id()
def tokenize(self,
example: str | bytes,
prefix: str = '',
suffix: str = '',
add_eos: bool = True) -> jax.Array:
"""
The tokenization function.
Args:
example: Input string to tokenize.
prefix: Prefix to add to the input string.
suffix: Suffix to add to the input string.
add_eos: If True, add an "end of sentence" token at the end of the output
sequence.
Returns:
Tokens corresponding to the input string.
"""
int_list = [self._spm_processor.bos_id()]
int_list.extend(self._spm_processor.EncodeAsIds(prefix + example + suffix))
if add_eos:
int_list.append(self._spm_processor.eos_id())
return jnp.array(int_list, dtype=jnp.int32)
def tokenize_tf_op(self,
str_tensor: tf.Tensor,
prefix: str = '',
suffix: str = '',
add_eos: bool = True) -> tf.Tensor:
"""A TensorFlow operator for the tokenize function."""
encoded = tf.numpy_function(
self.tokenize,
[str_tensor, prefix, suffix, add_eos],
tf.int32)
encoded.set_shape([None])
return encoded
def to_string(self, tokens: jax.Array) -> str:
"""Convert an array of tokens to a string."""
return self._spm_processor.EncodeIds(tokens.tolist())
您可以尝试将新的自定义 GemmaTokenizer
实例化,然后将其应用于 MTNT 数据集的一个小样本:
tokenizer = GemmaTokenizer(vocab)
def tokenize_source(tokenizer, example: tf.Tensor):
return tokenizer.tokenize_tf_op(example,
prefix='Translate this into French:\n',
suffix='\n',
add_eos=False)
def tokenize_destination(tokenizer, example: tf.Tensor):
return tokenizer.tokenize_tf_op(example,
add_eos=True)
ds = tfds.load("mtnt/en-fr",split="train")
ds = ds.take(2)
ds = ds.map(lambda x: {'src': tokenize_source(tokenizer, x['src']),
'dst': tokenize_destination(tokenizer, x['dst'])})
ds = ds.as_numpy_iterator()
for idx, example in enumerate(ds):
print(f'Example {idx}:')
for key, val in example.items():
print(f'{key}: {val}')
print()
Example 0: src: [ 2 49688 736 1280 6987 235292 108 651 2778 576 1080 104745 11982 5736 832 8995 901 780 3547 665 575 573 4589 235369 2778 235265 108] dst: [ 2 2025 29653 581 664 16298 1437 55563 41435 7840 581 683 111452 581 533 235303 9776 4108 2459 679 485 235303 479 6728 579 1806 2499 709 29653 581 533 235303 101323 16054 1] Example 1: src: [ 2 49688 736 1280 6987 235292 108 2437 87150 477 476 11709 230461 8045 3636 40268 576 4252 4897 235336 108] dst: [ 2 213606 477 1455 235290 3510 748 8268 191017 2809 581 2032 69972 581 11495 1305 533 235303 65978 1654 1]
为整个 MTNT 数据集构建数据加载器:
@chex.dataclass(frozen=True)
class TrainingInput:
# Input tokens provided to the model.
input_tokens: jax.Array
# A mask that determines which tokens contribute to the target loss
# calculation.
target_mask: jax.Array
class DatasetSplit(enum.Enum):
TRAIN = 'train'
VALIDATION = 'valid'
class MTNTDatasetBuilder:
"""The dataset builder for the MTNT dataset."""
N_ITEMS = {DatasetSplit.TRAIN: 35_692,
DatasetSplit.VALIDATION: 811}
BUFFER_SIZE_SHUFFLE = 10_000
TRANSLATION_PREFIX = 'Translate this into French:\n'
TRANSLATION_SUFFIX = '\n'
def __init__(self,
tokenizer : GemmaTokenizer,
max_seq_len: int):
"""Constructor.
Args:
tokenizer: Gemma tokenizer to use.
max_seq_len: size of each sequence in a given batch.
"""
self._tokenizer = tokenizer
self._base_data = {
DatasetSplit.TRAIN: tfds.load("mtnt/en-fr",split="train"),
DatasetSplit.VALIDATION: tfds.load("mtnt/en-fr",split="valid"),
}
self._max_seq_len = max_seq_len
def _tokenize_source(self, example: tf.Tensor):
"""Tokenization function for the source."""
return self._tokenizer.tokenize_tf_op(example,
prefix=self.TRANSLATION_PREFIX,
suffix=self.TRANSLATION_SUFFIX,
add_eos=False)
def _tokenize_destination(self, example: tf.Tensor):
"""Tokenization function for the French translation."""
return self._tokenizer.tokenize_tf_op(example,
add_eos=True)
def _pad_up_to_max_len(self,
input_tensor: tf.Tensor,
pad_value: int | bool,
) -> tf.Tensor:
"""Pad the given tensor up to sequence length of a batch."""
seq_len = tf.shape(input_tensor)[0]
to_pad = tf.maximum(self._max_seq_len - seq_len, 0)
return tf.pad(input_tensor,
[[0, to_pad]],
mode='CONSTANT',
constant_values=pad_value,
)
def _to_training_input(self,
src_tokens: jax.Array,
dst_tokens: jax.Array,
) -> TrainingInput:
"""Build a training input from a tuple of source and destination tokens."""
# The input sequence fed to the model is simply the concatenation of the
# source and the destination.
tokens = tf.concat([src_tokens, dst_tokens], axis=0)
# To prevent the model from updating based on the source (input)
# tokens, add a target mask to each input.
q_mask = tf.zeros_like(src_tokens, dtype=tf.bool)
a_mask = tf.ones_like(dst_tokens, dtype=tf.bool)
mask = tf.concat([q_mask, a_mask], axis=0)
# If the output tokens sequence is smaller than the target sequence size,
# then pad it with pad tokens.
tokens = self._pad_up_to_max_len(tokens, self._tokenizer.pad_id)
# Don't want to perform the backward pass on the pad tokens.
mask = self._pad_up_to_max_len(mask, False)
return TrainingInput(input_tokens=tokens, target_mask=mask)
def get_train_dataset(self, batch_size: int, num_epochs: int):
"""Build the training dataset."""
# Tokenize each sample.
ds = self._base_data[DatasetSplit.TRAIN].map(lambda x : (self._tokenize_source(x['src']),
self._tokenize_destination(x['dst'])))
# Convert the samples to training inputs.
ds = ds.map(lambda x, y: self._to_training_input(x, y))
# Remove the samples that are too long.
ds = ds.filter(lambda x: tf.shape(x.input_tokens)[0] <= self._max_seq_len)
# Shuffle the dataset.
ds = ds.shuffle(buffer_size=self.BUFFER_SIZE_SHUFFLE)
# Repeat if necessary.
ds = ds.repeat(num_epochs)
# Build batches.
ds = ds.batch(batch_size, drop_remainder=True)
return ds
def get_validation_dataset(self, batch_size: int):
"""Build the validation dataset."""
# Same steps as in `get_train_dataset`, but without shuffling and no repetition.
ds = self._base_data[DatasetSplit.VALIDATION].map(lambda x : (self._tokenize_source(x['src']),
self._tokenize_destination(x['dst'])))
ds = ds.map(lambda x, y: self._to_training_input(x, y))
ds = ds.filter(lambda x: tf.shape(x.input_tokens)[0] <= self._max_seq_len)
ds = ds.batch(batch_size, drop_remainder=True)
return ds
通过再次实例化自定义 GemmaTokenizer
,然后将其应用于 MTNT 数据集并对两个示例进行采样来试用 MTNTDatasetBuilder
:
tokenizer = GemmaTokenizer(vocab)
dataset_builder = MTNTDatasetBuilder(tokenizer, max_seq_len=20)
ds = dataset_builder.get_train_dataset(3, 1)
ds = ds.take(2)
ds = ds.as_numpy_iterator()
for idx, example in enumerate(ds):
print(f'Example {idx}:')
for key, val in example.items():
print(f'{key}: {val}')
print()
WARNING:tensorflow:Mapping types may not work well with tf.nest. Prefer using MutableMapping for <class '__main__.TrainingInput'> WARNING:tensorflow:Mapping types may not work well with tf.nest. Prefer using MutableMapping for <class '__main__.TrainingInput'> WARNING:tensorflow:Mapping types may not work well with tf.nest. Prefer using MutableMapping for <class '__main__.TrainingInput'> Example 0: input_tokens: [[ 2 49688 736 1280 6987 235292 108 10924 665 12302 235341 108 2 4397 63011 1437 38696 1241 1 0] [ 2 49688 736 1280 6987 235292 108 13835 1517 235265 108 2 69875 540 19713 235265 1 0 0 0] [ 2 49688 736 1280 6987 235292 108 6956 1586 235297 235265 108 2 78368 1586 235297 235265 1 0 0]] target_mask: [[False False False False False False False False False False False False True True True True True True True False] [False False False False False False False False False False False True True True True True True False False False] [False False False False False False False False False False False False True True True True True True False False]] Example 1: input_tokens: [[ 2 49688 736 1280 6987 235292 108 18874 235341 108 2 115905 6425 1241 1 0 0 0 0 0] [ 2 49688 736 1280 6987 235292 108 7574 3356 235341 108 2 7997 20707 1241 1 0 0 0 0] [ 2 49688 736 1280 6987 235292 108 8703 665 235265 108 2 235338 235303 90006 20133 235265 1 0 0]] target_mask: [[False False False False False False False False False False True True True True True False False False False False] [False False False False False False False False False False False True True True True True False False False False] [False False False False False False False False False False False True True True True True True True False False]]
配置模型
在开始微调 Gemma 模型之前,需要对其进行配置。
首先,使用 gemma.params.load_and_format_params
方法加载 Gemma 模型检查点并设置其格式:
params = params_lib.load_and_format_params(CKPT_PATH)
如需从 Gemma 模型检查点自动加载正确配置,请使用 gemma.transformer.TransformerConfig
。cache_size
参数是 Gemma Transformer
缓存中的时间步数。然后,使用 gemma.transformer.Transformer
(继承自 flax.linen.Module
)将 Gemma 模型实例化为 model_2b
。
config_2b = transformer_lib.TransformerConfig.from_params(
params,
cache_size=30
)
model_2b = transformer_lib.Transformer(config=config_2b)
微调模型
在此部分中,您将完成以下各项:
- 使用
gemma.transformer.Transformer
类创建前向传播和损失函数。 - 为词元构建位置和注意力掩码向量
- 使用 Flax 构建训练步函数。
- 构建不含向后传递的验证步骤。
- 创建训练循环。
- 微调 Gemma 模型。
使用 gemma.transformer.Transformer
类定义前向传播和损失函数。Gemma Transformer
继承自 flax.linen.Module
,并提供两种基本方法:
init
:初始化模型的参数。apply
:使用一组给定的参数执行模型的__call__
函数。由于您使用的是预训练的 Gemma 权重,因此无需使用
init
函数。
def forward_and_loss_fn(params,
*,
model: transformer_lib.Transformer,
input_tokens: jax.Array, # Shape [B, L]
input_mask: jax.Array, # Shape [B, L]
positions: jax.Array, # Shape [B, L]
attention_mask: jax.Array, # [B, L, L]
) -> jax.Array:
"""The forward pass and the loss function.
Args:
params: Model's input parameters.
model: The Gemma transformer model to call.
input_tokens: Input tokens sequence, shape [B, L].
input_mask: Tokens to ignore when computing the loss, shape [B, L].
positions: Relative position of each token, shape [B, L].
attention_mask: Input attention mask, shape [B, L].
Returns:
The softmax cross-entropy loss for the next-token prediction task.
"""
# The forward pass on the input data.
# No attention cache is needed here.
logits, _ = model.apply(
params,
input_tokens,
positions,
None, # Attention cache is None.
attention_mask,
)
# Exclude the last step as it does not appear in the targets.
logits = logits[0, :-1]
# Similarly, the first token cannot be predicted.
target_tokens = input_tokens[0, 1:]
target_mask = input_mask[0, 1:]
# Convert the target labels to one-hot encoded vectors.
one_hot = jax.nn.one_hot(target_tokens, logits.shape[-1])
# Don't update on unwanted tokens.
one_hot = one_hot * target_mask.astype(one_hot.dtype)[...,None]
# Define the normalization factor.
norm_factor = 1 / (jnp.sum(target_mask) + 1e-8)
# Return the negative log likelihood (NLL) loss.
return -jnp.sum(jax.nn.log_softmax(logits) * one_hot) * norm_factor
gemma.transformer.Transformer
类要求每个输入旁边都有一个 attention_mask
和一个 positions
向量。您可以通过创建使用 Transformer.build_positions_from_mask
和 Transformer.make_causal_attn_mask
的自定义函数来生成这些内容:
def get_attention_mask_and_positions(example: jax.Array,
pad_id : int,
)-> tuple[jax.Array, jax.Array]:
"""Builds the position and attention mask vectors from the given tokens."""
pad_mask = example != pad_id
current_token_position = transformer_lib.build_positions_from_mask(pad_mask)
attention_mask = transformer_lib.make_causal_attn_mask(pad_mask)
return current_token_position, attention_mask
构建执行反向传递并相应地更新模型的参数的 train_step
函数,其中:
jax.value_and_grad
用于评估正向传递和反向传递期间的损失函数和梯度。optax.apply_updates
用于更新参数。
def train_step(model: transformer_lib.Transformer,
params,
optimizer: optax.GradientTransformation,
opt_state: optax.OptState,
pad_id: int,
example: TrainingInput):
"""Train step.
Args:
model: The Gemma transformer model.
params: The model's input parameters.
optimizer: The Optax optimizer to use.
opt_state: The input optimizer's state.
pad_id: ID of the pad token.
example: Input batch.
Returns:
The training loss, the updated parameters, and the updated optimizer state.
"""
# Build the position and attention mask vectors.
positions, attention_mask = get_attention_mask_and_positions(example.input_tokens, pad_id)
# The forward and backward passes.
train_loss, grads = jax.value_and_grad(forward_and_loss_fn)(params,
model=model,
input_tokens=example.input_tokens,
input_mask=example.target_mask,
positions=positions,
attention_mask=attention_mask)
# Update the parameters.
updates, opt_state = optimizer.update(grads, opt_state)
params = optax.apply_updates(params, updates)
return train_loss, params, opt_state
在不使用反向传递的情况下构建 validation_step
函数:
def validation_step(model: transformer_lib.Transformer,
params,
pad_id: int,
example: TrainingInput,
):
positions, attention_mask = get_attention_mask_and_positions(example.input_tokens, pad_id)
val_loss = forward_and_loss_fn(params,
model=model,
input_tokens=example.input_tokens,
input_mask=example.target_mask,
positions=positions,
attention_mask=attention_mask)
return val_loss
使用 optax.sgd
为 SGD 优化器定义训练循环:
@chex.dataclass(frozen=True)
class TrainingConfig:
learning_rate: float
num_epochs: int
eval_every_n: int
batch_size: int
max_steps: int | None = None
def train_loop(
model: transformer_lib.Transformer,
params,
dataset_builder: MTNTDatasetBuilder,
training_cfg: TrainingConfig):
# Apply `jax.jit` on the training step, making the whole loop much more efficient.
compiled_train_step = jax.jit(train_step, static_argnames=['model', 'optimizer'])
# Apply `jax.jit` on the validation step.
compiled_validation_step = jax.jit(validation_step, static_argnames=['model'])
# To save memory, use the SGD optimizer instead of the usual Adam optimizer.
# Note that for this specific example, SGD is more than enough.
optimizer = optax.sgd(training_cfg.learning_rate)
opt_state = optimizer.init(params)
# Build the training dataset.
train_ds = dataset_builder.get_train_dataset(batch_size=training_cfg.batch_size,
num_epochs=training_cfg.num_epochs)
train_ds = train_ds.as_numpy_iterator()
# Build the validation dataset, with a limited number of samples for this demo.
validation_ds = dataset_builder.get_validation_dataset(batch_size=training_cfg.batch_size)
validation_ds = validation_ds.take(50)
n_steps = 0
avg_loss=0
# A first round of the validation loss.
n_steps_eval = 0
eval_loss = 0
val_iterator = validation_ds.as_numpy_iterator()
for val_example in val_iterator:
eval_loss += compiled_validation_step(model,
params,
dataset_builder._tokenizer.pad_id,
val_example)
n_steps_eval += 1
print(f"Start, validation loss: {eval_loss/n_steps_eval}")
for train_example in train_ds:
train_loss, params, opt_state = compiled_train_step(model=model,
params=params,
optimizer=optimizer,
opt_state=opt_state,
pad_id=dataset_builder._tokenizer.pad_id,
example=train_example)
n_steps += 1
avg_loss += train_loss
if n_steps % training_cfg.eval_every_n == 0:
eval_loss = 0
n_steps_eval = 0
val_iterator = validation_ds.as_numpy_iterator()
for val_example in val_iterator:
eval_loss += compiled_validation_step(model,
params,
dataset_builder._tokenizer.pad_id,
val_example)
n_steps_eval +=1
avg_loss /= training_cfg.eval_every_n
eval_loss /= n_steps_eval
print(f"STEP {n_steps} training loss: {avg_loss} - eval loss: {eval_loss}")
avg_loss=0
if training_cfg.max_steps is not None and n_steps > training_cfg.max_steps:
break
return params
使用一定数量的步骤 (SEQ_SIZE
) 开始微调 Gemma 模型,以确保其适合内存:
SEQ_SIZE = 25
tokenizer = GemmaTokenizer(vocab)
dataset_builder= MTNTDatasetBuilder(tokenizer, SEQ_SIZE)
training_cfg = TrainingConfig(learning_rate=1e-4,
num_epochs=1,
eval_every_n=20,
batch_size=1,
max_steps=100)
params = train_loop(model=model_2b,
params={'params': params['transformer']},
dataset_builder=dataset_builder,
training_cfg=training_cfg)
Start, validation loss: 10.647212982177734 STEP 20 training loss: 3.3015992641448975 - eval loss: 2.686880111694336 STEP 40 training loss: 5.375057220458984 - eval loss: 2.6751961708068848 STEP 60 training loss: 2.6599338054656982 - eval loss: 2.663877010345459 STEP 80 training loss: 4.822389125823975 - eval loss: 2.3333375453948975 STEP 100 training loss: 2.0131142139434814 - eval loss: 2.360811948776245
训练损失和验证损失都应随着步数的增加而下降。
使用 gemma.sampler.Sampler
创建 sampler
。它使用 Gemma 模型检查点和标记生成器。
sampler = sampler_lib.Sampler(
transformer=model_2b,
vocab=vocab,
params=params['params'],
)
使用 sampler
检查模型是否可以执行翻译。gemma.sampler.Sampler
中的 total_generation_steps
参数是生成响应时执行的步骤数。为了确保输入内容与训练格式匹配,请使用前缀 Translate this into French:\n
并在末尾添加一个换行符。这会指示模型开始翻译。
sampler(
["Translate this into French:\nHello, my name is Morgane.\n"],
total_generation_steps=100,
).text
["C'est Bonjour, mon nom est Morgane.C'est Bonjour, mon nom est Morgane."]
了解详情
- 您可以在 GitHub 上详细了解 Google DeepMind 的
gemma
库,该库包含您在本教程中使用的模块的文档字符串,例如gemma.params
。gemma.transformer
和gemma.sampler
。 - 以下库有自己的文档网站:core JAX、Flax、Chex、Optax 和 Orbax。
- 如需查看
sentencepiece
标记生成器/detokenizer 文档,请查看 Google 的sentencepiece
GitHub 代码库。 - 如需查看
kagglehub
文档,请参阅 Kaggle 的kagglehub
GitHub 代码库中的README.md
。 - 了解如何将 Gemma 模型与 Google Cloud Vertex AI 搭配使用。
- 如果您使用的是 Google Cloud TPU(v3-8 及更高版本),请务必也更新到最新的
jax[tpu]
软件包 (!pip install -U jax[tpu] -f https://storage.googleapis.com/jax-releases/libtpu_releases.html
),重启运行时,并检查jax
和jaxlib
版本是否匹配 (!pip list | grep jax
)。这可以防止因jaxlib
和jax
版本不匹配而出现的RuntimeError
。如需详细了解 JAX 安装说明,请参阅 JAX 文档。