Como ajustar a Gemma usando o JAX e o Flax

Ver em ai.google.dev Executar no Google Colab Abrir na Vertex AI Veja o código-fonte no GitHub

Visão geral

O Gemma é uma família de modelos de linguagem grandes, leves e de última geração abertos, baseados na pesquisa e tecnologia do Google DeepMind Gemini. Este tutorial demonstra como ajustar o modelo Gemma 2B Instruct para uma tarefa de tradução do inglês-francês usando a biblioteca gemma do Google DeepMind, JAX (uma biblioteca de computação numérica de alto desempenho), Flax (a biblioteca de rede neural baseada em JAX), Chex (uma biblioteca de utilitários para escrever código JAX confiável e otimização JAX10) e Optax (a biblioteca JAX de processamento e gradiente1). Embora o Flax não seja usado diretamente neste notebook, ele foi usado para criar o Gemma.

A biblioteca gemma foi escrita com JAX, Flax, Orbax (uma biblioteca baseada em JAX para utilitários de treinamento, como checkpoint) e SentencePiece (uma biblioteca de tokenizador/detokenizador).

Configuração

1. Configure o acesso do Kaggle para o Gemma

Para concluir este tutorial, primeiro siga as instruções de configuração em Configuração do Gemma, que mostram como fazer o seguinte:

  • Acesse o Gemma em kaggle.com.
  • Selecione um ambiente de execução do Colab com recursos suficientes para executar o modelo Gemma.
  • Gere e configure um nome de usuário e uma chave de API do Kaggle.

Depois de concluir a configuração do Gemma, vá para a próxima seção, em que você definirá variáveis de ambiente para o ambiente do Colab.

2. Defina as variáveis de ambiente

Defina as variáveis de ambiente para KAGGLE_USERNAME e KAGGLE_KEY. Quando a pergunta "Conceder acesso?" for exibida concordam em fornecer acesso a secrets.

import os
from google.colab import userdata # `userdata` is a Colab API.

os.environ["KAGGLE_USERNAME"] = userdata.get('KAGGLE_USERNAME')
os.environ["KAGGLE_KEY"] = userdata.get('KAGGLE_KEY')

3. Instalar a biblioteca gemma

No momento, a aceleração de hardware sem custo financeiro do Colab é insuficiente para executar este notebook. Se você estiver usando o Colab Pay as You Go ou o Colab Pro, clique em Editar > Configurações do notebook > Selecione GPU A100 > Salve para ativar a aceleração de hardware.

Em seguida, você precisa instalar a biblioteca gemma do Google DeepMind no github.com/google-deepmind/gemma. Se você receber um erro sobre "resolvedor de dependências do pip", geralmente ele poderá ser ignorado.

pip install -q git+https://github.com/google-deepmind/gemma.git

4. Importar bibliotecas

Este notebook usa Flax (para redes neurais), JAX básico, SentencePiece (para tokenização), Chex (uma biblioteca de utilitários para escrever código JAX confiável) e conjuntos de dados do TensorFlow.

import os
import enum
import re
import string

import chex
import jax
import jax.numpy as jnp
import optax

import tensorflow as tf
import tensorflow_datasets as tfds

from gemma import params as params_lib
from gemma import sampler as sampler_lib
from gemma import transformer as transformer_lib
import sentencepiece as spm

Carregar o modelo do Gemma

Carregue o modelo do Gemma com kagglehub.model_download, que usa três argumentos:

  • handle: o identificador do modelo do Kaggle
  • path: (string opcional) o caminho local
  • force_download (booleano opcional): força o download do modelo novamente.
.
GEMMA_VARIANT = '2b-it' # @param ['2b', '2b-it'] {type:"string"}
import kagglehub

GEMMA_PATH = kagglehub.model_download(f'google/gemma/flax/{GEMMA_VARIANT}')
Downloading from https://www.kaggle.com/api/v1/models/google/gemma/flax/2b-it/2/download...
100%|██████████| 3.67G/3.67G [00:26<00:00, 147MB/s]
Extracting model files...
print('GEMMA_PATH:', GEMMA_PATH)
GEMMA_PATH: /root/.cache/kagglehub/models/google/gemma/flax/2b-it/2

Verifique o local dos pesos do modelo e do tokenizador e, em seguida, defina as variáveis do caminho. O diretório tokenizador estará no diretório principal em que você fez o download do modelo, enquanto os pesos do modelo estarão em um subdiretório. Exemplo:

  • O arquivo tokenizer.model estará em /LOCAL/PATH/TO/gemma/flax/2b-it/2.
  • O checkpoint do modelo estará em /LOCAL/PATH/TO/gemma/flax/2b-it/2/2b-it.
CKPT_PATH = os.path.join(GEMMA_PATH, GEMMA_VARIANT)
TOKENIZER_PATH = os.path.join(GEMMA_PATH, 'tokenizer.model')
print('CKPT_PATH:', CKPT_PATH)
print('TOKENIZER_PATH:', TOKENIZER_PATH)
CKPT_PATH: /root/.cache/kagglehub/models/google/gemma/flax/2b-it/2/2b-it
TOKENIZER_PATH: /root/.cache/kagglehub/models/google/gemma/flax/2b-it/2/tokenizer.model

Carregar e preparar o conjunto de dados MTNT e o tokenizador do Gemma

Você vai usar o conjunto de dados MTNT (Machine Translation of Noisy Text), disponível nos conjuntos de dados do TensorFlow.

Faça o download da parte do conjunto de dados de inglês para francês do conjunto de dados MTNT e, em seguida, exemplifique dois exemplos. Cada amostra no conjunto de dados contém duas entradas: src: a frase original em inglês; e dst: a tradução correspondente para o francês.

ds = tfds.load("mtnt/en-fr", split="train")

ds = ds.take(2)
ds = ds.as_numpy_iterator()

for idx, example in enumerate(ds):
  print(f'Example {idx}:')
  for key, val in example.items():
    print(f'{key}: {val}')
  print()
Downloading and preparing dataset 35.08 MiB (download: 35.08 MiB, generated: 11.33 MiB, total: 46.41 MiB) to /root/tensorflow_datasets/mtnt/en-fr/1.0.0...
Dl Completed...: 0 url [00:00, ? url/s]
Dl Size...: 0 MiB [00:00, ? MiB/s]
Extraction completed...: 0 file [00:00, ? file/s]
Generating splits...:   0%|          | 0/3 [00:00<?, ? splits/s]
Generating train examples...:   0%|          | 0/35692 [00:00<?, ? examples/s]
Shuffling /root/tensorflow_datasets/mtnt/en-fr/1.0.0.incomplete6YJMND/mtnt-train.tfrecord*...:   0%|          …
Generating test examples...:   0%|          | 0/1020 [00:00<?, ? examples/s]
Shuffling /root/tensorflow_datasets/mtnt/en-fr/1.0.0.incomplete6YJMND/mtnt-test.tfrecord*...:   0%|          |…
Generating valid examples...:   0%|          | 0/811 [00:00<?, ? examples/s]
Shuffling /root/tensorflow_datasets/mtnt/en-fr/1.0.0.incomplete6YJMND/mtnt-valid.tfrecord*...:   0%|          …
Dataset mtnt downloaded and prepared to /root/tensorflow_datasets/mtnt/en-fr/1.0.0. Subsequent calls will reuse this data.
Example 0:
dst: b'Le groupe de " toutes les \xc3\xa9toiles potentielles de la conf\xc3\xa9rence de l\'Est mais qui ne s\'en sortent pas dans le groupe de l\'Ouest ".'
src: b'The group of \xe2\x80\x9ceastern conference potential all stars but not making it in the West\xe2\x80\x9d group.'

Example 1:
dst: b"Kameron est-elle un peu aigrie de son manque de temps \xc3\xa0 l'\xc3\xa9cran ?"
src: b'Is Kameron a Little Salty About Her Lack of Air Time?'

Carregue o tokenizador do Gemma, construído usando sentencepiece.SentencePieceProcessor:

vocab = spm.SentencePieceProcessor()
vocab.Load(TOKENIZER_PATH)
True

Personalize o SentencePieceProcessor da tarefa de tradução do inglês para o francês. Como você vai ajustar a parte em inglês do modelo Gemma, é preciso fazer algumas mudanças, como:

  • Prefixo de entrada: adicionar um prefixo comum a cada entrada sinaliza a tarefa de tradução. Por exemplo, é possível usar um prompt com um prefixo como Translate this into French: [INPUT_SENTENCE].

  • Sufixo do início da tradução: adicionar um sufixo ao final de cada comando instrui o modelo Gemma exatamente quando começar o processo de tradução. Uma nova linha deve fazer o trabalho.

  • Tokens de modelo de linguagem: os modelos Gemma esperam um "início da sequência". no início de cada sequência, portanto, adicionar um "fim da sequência" ao final de cada exemplo de treinamento deve ser suficiente.

    Crie um wrapper personalizado ao redor do SentencePieceProcessor da seguinte maneira:

class GemmaTokenizer:

  def __init__(self,
               spm_processor: spm.SentencePieceProcessor):
    self._spm_processor = spm_processor

  @property
  def pad_id(self) -> int:
    """Fast access to the pad ID."""
    return self._spm_processor.pad_id()

  def tokenize(self,
               example: str | bytes,
               prefix: str = '',
               suffix: str = '',
               add_eos: bool = True) -> jax.Array:
    """
    The tokenization function.

    Args:
      example: Input string to tokenize.
      prefix:  Prefix to add to the input string.
      suffix:  Suffix to add to the input string.
      add_eos: If True, add an "end of sentence" token at the end of the output
               sequence.
    Returns:
      Tokens corresponding to the input string.
    """
    int_list = [self._spm_processor.bos_id()]
    int_list.extend(self._spm_processor.EncodeAsIds(prefix + example + suffix))
    if add_eos:
      int_list.append(self._spm_processor.eos_id())

    return jnp.array(int_list, dtype=jnp.int32)

  def tokenize_tf_op(self,
                     str_tensor: tf.Tensor,
                     prefix: str = '',
                     suffix: str = '',
                     add_eos: bool = True) -> tf.Tensor:
    """A TensorFlow operator for the tokenize function."""
    encoded = tf.numpy_function(
        self.tokenize,
        [str_tensor, prefix, suffix, add_eos],
        tf.int32)
    encoded.set_shape([None])
    return encoded

  def to_string(self, tokens: jax.Array) -> str:
    """Convert an array of tokens to a string."""
    return self._spm_processor.EncodeIds(tokens.tolist())

Faça um teste instanciando seu novo GemmaTokenizer personalizado e, em seguida, aplicando-o a uma pequena amostra do conjunto de dados MTNT:

tokenizer = GemmaTokenizer(vocab)

def tokenize_source(tokenizer, example: tf.Tensor):
  return tokenizer.tokenize_tf_op(example,
                                  prefix='Translate this into French:\n',
                                  suffix='\n',
                                  add_eos=False)
def tokenize_destination(tokenizer, example: tf.Tensor):
  return tokenizer.tokenize_tf_op(example,
                                  add_eos=True)

ds = tfds.load("mtnt/en-fr",split="train")
ds = ds.take(2)
ds = ds.map(lambda x: {'src': tokenize_source(tokenizer, x['src']),
                       'dst': tokenize_destination(tokenizer, x['dst'])})
ds = ds.as_numpy_iterator()

for idx, example in enumerate(ds):
  print(f'Example {idx}:')
  for key, val in example.items():
    print(f'{key}: {val}')
  print()
Example 0:
src: [     2  49688    736   1280   6987 235292    108    651   2778    576
   1080 104745  11982   5736    832   8995    901    780   3547    665
    575    573   4589 235369   2778 235265    108]
dst: [     2   2025  29653    581    664  16298   1437  55563  41435   7840
    581    683 111452    581    533 235303   9776   4108   2459    679
    485 235303    479   6728    579   1806   2499    709  29653    581
    533 235303 101323  16054      1]

Example 1:
src: [     2  49688    736   1280   6987 235292    108   2437  87150    477
    476  11709 230461   8045   3636  40268    576   4252   4897 235336
    108]
dst: [     2 213606    477   1455 235290   3510    748   8268 191017   2809
    581   2032  69972    581  11495   1305    533 235303  65978   1654
      1]

Crie um carregador de dados para todo o conjunto de dados MTNT:

@chex.dataclass(frozen=True)
class TrainingInput:
  # Input tokens provided to the model.
  input_tokens: jax.Array

  # A mask that determines which tokens contribute to the target loss
  # calculation.
  target_mask: jax.Array

class DatasetSplit(enum.Enum):
  TRAIN = 'train'
  VALIDATION = 'valid'

class MTNTDatasetBuilder:
  """The dataset builder for the MTNT dataset."""

  N_ITEMS = {DatasetSplit.TRAIN: 35_692,
             DatasetSplit.VALIDATION: 811}

  BUFFER_SIZE_SHUFFLE = 10_000
  TRANSLATION_PREFIX = 'Translate this into French:\n'
  TRANSLATION_SUFFIX = '\n'

  def __init__(self,
               tokenizer : GemmaTokenizer,
               max_seq_len: int):
    """Constructor.

    Args:
      tokenizer: Gemma tokenizer to use.
      max_seq_len: size of each sequence in a given batch.
    """
    self._tokenizer = tokenizer
    self._base_data = {
        DatasetSplit.TRAIN: tfds.load("mtnt/en-fr",split="train"),
        DatasetSplit.VALIDATION: tfds.load("mtnt/en-fr",split="valid"),
    }
    self._max_seq_len = max_seq_len

  def _tokenize_source(self, example: tf.Tensor):
    """Tokenization function for the source."""
    return self._tokenizer.tokenize_tf_op(example,
                                          prefix=self.TRANSLATION_PREFIX,
                                          suffix=self.TRANSLATION_SUFFIX,
                                          add_eos=False)

  def _tokenize_destination(self, example: tf.Tensor):
    """Tokenization function for the French translation."""
    return self._tokenizer.tokenize_tf_op(example,
                                          add_eos=True)

  def _pad_up_to_max_len(self,
                         input_tensor: tf.Tensor,
                         pad_value: int | bool,
                         ) -> tf.Tensor:
    """Pad the given tensor up to sequence length of a batch."""
    seq_len = tf.shape(input_tensor)[0]
    to_pad = tf.maximum(self._max_seq_len - seq_len, 0)
    return tf.pad(input_tensor,
                  [[0, to_pad]],
                  mode='CONSTANT',
                  constant_values=pad_value,
                  )

  def _to_training_input(self,
                         src_tokens: jax.Array,
                         dst_tokens: jax.Array,
                         ) -> TrainingInput:
    """Build a training input from a tuple of source and destination tokens."""

    # The input sequence fed to the model is simply the concatenation of the
    # source and the destination.
    tokens = tf.concat([src_tokens, dst_tokens], axis=0)

    # To prevent the model from updating based on the source (input)
    # tokens, add a target mask to each input.
    q_mask = tf.zeros_like(src_tokens, dtype=tf.bool)
    a_mask = tf.ones_like(dst_tokens, dtype=tf.bool)
    mask = tf.concat([q_mask, a_mask], axis=0)

    # If the output tokens sequence is smaller than the target sequence size,
    # then pad it with pad tokens.
    tokens = self._pad_up_to_max_len(tokens, self._tokenizer.pad_id)

    # Don't want to perform the backward pass on the pad tokens.
    mask = self._pad_up_to_max_len(mask, False)

    return TrainingInput(input_tokens=tokens, target_mask=mask)


  def get_train_dataset(self, batch_size: int, num_epochs: int):
    """Build the training dataset."""

    # Tokenize each sample.
    ds = self._base_data[DatasetSplit.TRAIN].map(lambda x : (self._tokenize_source(x['src']),
                                                             self._tokenize_destination(x['dst'])))

    # Convert the samples to training inputs.
    ds = ds.map(lambda x, y: self._to_training_input(x, y))

    # Remove the samples that are too long.
    ds = ds.filter(lambda x: tf.shape(x.input_tokens)[0] <= self._max_seq_len)

    # Shuffle the dataset.
    ds = ds.shuffle(buffer_size=self.BUFFER_SIZE_SHUFFLE)

    # Repeat if necessary.
    ds = ds.repeat(num_epochs)

    # Build batches.
    ds = ds.batch(batch_size, drop_remainder=True)
    return ds

  def get_validation_dataset(self, batch_size: int):
    """Build the validation dataset."""

    # Same steps as in `get_train_dataset`, but without shuffling and no repetition.
    ds = self._base_data[DatasetSplit.VALIDATION].map(lambda x : (self._tokenize_source(x['src']),
                                                                  self._tokenize_destination(x['dst'])))
    ds = ds.map(lambda x, y: self._to_training_input(x, y))
    ds = ds.filter(lambda x: tf.shape(x.input_tokens)[0] <= self._max_seq_len)
    ds = ds.batch(batch_size, drop_remainder=True)
    return ds

Teste o MTNTDatasetBuilder instanciando o GemmaTokenizer personalizado novamente, aplicando-o ao conjunto de dados MTNT e fazendo a amostragem de dois exemplos:

tokenizer = GemmaTokenizer(vocab)

dataset_builder = MTNTDatasetBuilder(tokenizer, max_seq_len=20)
ds = dataset_builder.get_train_dataset(3, 1)
ds = ds.take(2)
ds = ds.as_numpy_iterator()

for idx, example in enumerate(ds):
  print(f'Example {idx}:')
  for key, val in example.items():
    print(f'{key}: {val}')
  print()
WARNING:tensorflow:Mapping types may not work well with tf.nest. Prefer using MutableMapping for <class '__main__.TrainingInput'>
WARNING:tensorflow:Mapping types may not work well with tf.nest. Prefer using MutableMapping for <class '__main__.TrainingInput'>
WARNING:tensorflow:Mapping types may not work well with tf.nest. Prefer using MutableMapping for <class '__main__.TrainingInput'>
Example 0:
input_tokens: [[     2  49688    736   1280   6987 235292    108  10924    665  12302
  235341    108      2   4397  63011   1437  38696   1241      1      0]
 [     2  49688    736   1280   6987 235292    108  13835   1517 235265
     108      2  69875    540  19713 235265      1      0      0      0]
 [     2  49688    736   1280   6987 235292    108   6956   1586 235297
  235265    108      2  78368   1586 235297 235265      1      0      0]]
target_mask: [[False False False False False False False False False False False False
   True  True  True  True  True  True  True False]
 [False False False False False False False False False False False  True
   True  True  True  True  True False False False]
 [False False False False False False False False False False False False
   True  True  True  True  True  True False False]]

Example 1:
input_tokens: [[     2  49688    736   1280   6987 235292    108  18874 235341    108
       2 115905   6425   1241      1      0      0      0      0      0]
 [     2  49688    736   1280   6987 235292    108   7574   3356 235341
     108      2   7997  20707   1241      1      0      0      0      0]
 [     2  49688    736   1280   6987 235292    108   8703    665 235265
     108      2 235338 235303  90006  20133 235265      1      0      0]]
target_mask: [[False False False False False False False False False False  True  True
   True  True  True False False False False False]
 [False False False False False False False False False False False  True
   True  True  True  True False False False False]
 [False False False False False False False False False False False  True
   True  True  True  True  True  True False False]]

Configurar o modelo

Antes de começar a ajustar o modelo do Gemma, você precisa configurá-lo.

Primeiro, carregue e formate o checkpoint do modelo Gemma com o método gemma.params.load_and_format_params:

params = params_lib.load_and_format_params(CKPT_PATH)

Para carregar automaticamente a configuração correta do checkpoint do modelo Gemma, use gemma.transformer.TransformerConfig. O argumento cache_size é o número de etapas de tempo no cache Transformer do Gemma. Em seguida, instancie o modelo Gemma como model_2b com gemma.transformer.Transformer (herdado de flax.linen.Module).

config_2b = transformer_lib.TransformerConfig.from_params(
    params,
    cache_size=30
)

model_2b = transformer_lib.Transformer(config=config_2b)

Ajustar o modelo

Nesta seção, você:

  • Use a classe gemma.transformer.Transformer para criar a função de avanço e perda.
  • Criar vetores de máscara de posição e atenção para tokens
  • Criar uma função de etapa de treinamento com o Flax.
  • Criar a etapa de validação sem a passagem inversa.
  • Crie o loop de treinamento.
  • Ajustar o modelo do Gemma.

Defina o passe para frente e a função de perda usando a classe gemma.transformer.Transformer. O Gemma Transformer é herdado de flax.linen.Module e oferece dois métodos essenciais:

  • init: inicializa os parâmetros do modelo.
  • apply: executa a função __call__ do modelo usando um determinado conjunto de parâmetros.

    Como você está trabalhando com pesos Gemma pré-treinados, não é necessário usar a função init.

def forward_and_loss_fn(params,
                        *,
                        model: transformer_lib.Transformer,
                        input_tokens: jax.Array,            # Shape [B, L]
                        input_mask: jax.Array,              # Shape [B, L]
                        positions: jax.Array,               # Shape [B, L]
                        attention_mask: jax.Array,          # [B, L, L]
                        ) -> jax.Array:
  """The forward pass and the loss function.

  Args:
    params: Model's input parameters.
    model: The Gemma transformer model to call.
    input_tokens: Input tokens sequence, shape [B, L].
    input_mask: Tokens to ignore when computing the loss, shape [B, L].
    positions: Relative position of each token, shape [B, L].
    attention_mask: Input attention mask, shape [B, L].

  Returns:
    The softmax cross-entropy loss for the next-token prediction task.
  """

  # The forward pass on the input data.
  # No attention cache is needed here.
  logits, _ = model.apply(
        params,
        input_tokens,
        positions,
        None,              # Attention cache is None.
        attention_mask,
    )

  # Exclude the last step as it does not appear in the targets.
  logits = logits[0, :-1]

  # Similarly, the first token cannot be predicted.
  target_tokens = input_tokens[0, 1:]
  target_mask = input_mask[0, 1:]

  # Convert the target labels to one-hot encoded vectors.
  one_hot = jax.nn.one_hot(target_tokens, logits.shape[-1])

  # Don't update on unwanted tokens.
  one_hot = one_hot * target_mask.astype(one_hot.dtype)[...,None]

  # Define the normalization factor.
  norm_factor = 1 / (jnp.sum(target_mask) + 1e-8)

  # Return the negative log likelihood (NLL) loss.
  return -jnp.sum(jax.nn.log_softmax(logits) * one_hot) * norm_factor

A classe gemma.transformer.Transformer exige um vetor de attention_mask e positions ao lado de cada entrada. Para gerá-los, crie uma função personalizada que use Transformer.build_positions_from_mask e Transformer.make_causal_attn_mask:

def get_attention_mask_and_positions(example: jax.Array,
                                     pad_id : int,
                                     )-> tuple[jax.Array, jax.Array]:
  """Builds the position and attention mask vectors from the given tokens."""
  pad_mask = example != pad_id
  current_token_position = transformer_lib.build_positions_from_mask(pad_mask)
  attention_mask = transformer_lib.make_causal_attn_mask(pad_mask)
  return current_token_position, attention_mask

Crie a função train_step que executa a passagem para trás e atualiza os parâmetros do modelo de acordo, em que:

def train_step(model: transformer_lib.Transformer,
               params,
               optimizer: optax.GradientTransformation,
               opt_state: optax.OptState,
               pad_id: int,
               example: TrainingInput):
  """Train step.

  Args:
    model: The Gemma transformer model.
    params: The model's input parameters.
    optimizer: The Optax optimizer to use.
    opt_state: The input optimizer's state.
    pad_id: ID of the pad token.
    example: Input batch.

  Returns:
    The training loss, the updated parameters, and the updated optimizer state.
  """

  # Build the position and attention mask vectors.
  positions, attention_mask = get_attention_mask_and_positions(example.input_tokens, pad_id)

  # The forward and backward passes.
  train_loss, grads = jax.value_and_grad(forward_and_loss_fn)(params,
                                                             model=model,
                                                             input_tokens=example.input_tokens,
                                                             input_mask=example.target_mask,
                                                             positions=positions,
                                                             attention_mask=attention_mask)
  # Update the parameters.
  updates, opt_state = optimizer.update(grads, opt_state)
  params = optax.apply_updates(params, updates)

  return train_loss, params, opt_state

Crie a função validation_step sem o passe para trás:

def validation_step(model: transformer_lib.Transformer,
                    params,
                    pad_id: int,
                    example: TrainingInput,
                    ):
  positions, attention_mask = get_attention_mask_and_positions(example.input_tokens, pad_id)
  val_loss = forward_and_loss_fn(params,
                                 model=model,
                                 input_tokens=example.input_tokens,
                                 input_mask=example.target_mask,
                                 positions=positions,
                                 attention_mask=attention_mask)
  return val_loss

Defina o loop de treinamento usando optax.sgd para o otimizador de GDE:

@chex.dataclass(frozen=True)
class TrainingConfig:
  learning_rate: float
  num_epochs: int
  eval_every_n: int
  batch_size: int
  max_steps: int | None = None

def train_loop(
    model: transformer_lib.Transformer,
    params,
    dataset_builder: MTNTDatasetBuilder,
    training_cfg: TrainingConfig):

  # Apply `jax.jit` on the training step, making the whole loop much more efficient.
  compiled_train_step = jax.jit(train_step, static_argnames=['model', 'optimizer'])

  # Apply `jax.jit` on the validation step.
  compiled_validation_step = jax.jit(validation_step, static_argnames=['model'])

  # To save memory, use the SGD optimizer instead of the usual Adam optimizer.
  # Note that for this specific example, SGD is more than enough.
  optimizer = optax.sgd(training_cfg.learning_rate)
  opt_state = optimizer.init(params)

  # Build the training dataset.
  train_ds = dataset_builder.get_train_dataset(batch_size=training_cfg.batch_size,
                                               num_epochs=training_cfg.num_epochs)
  train_ds = train_ds.as_numpy_iterator()

  # Build the validation dataset, with a limited number of samples for this demo.
  validation_ds = dataset_builder.get_validation_dataset(batch_size=training_cfg.batch_size)
  validation_ds = validation_ds.take(50)

  n_steps = 0
  avg_loss=0

  # A first round of the validation loss.
  n_steps_eval = 0
  eval_loss = 0
  val_iterator = validation_ds.as_numpy_iterator()
  for val_example in val_iterator:
    eval_loss += compiled_validation_step(model,
                                          params,
                                          dataset_builder._tokenizer.pad_id,
                                          val_example)
    n_steps_eval += 1
  print(f"Start, validation loss: {eval_loss/n_steps_eval}")

  for train_example in train_ds:
    train_loss, params, opt_state = compiled_train_step(model=model,
                                                        params=params,
                                                        optimizer=optimizer,
                                                        opt_state=opt_state,
                                                        pad_id=dataset_builder._tokenizer.pad_id,
                                                        example=train_example)
    n_steps += 1
    avg_loss += train_loss
    if n_steps % training_cfg.eval_every_n == 0:
      eval_loss = 0

      n_steps_eval = 0
      val_iterator = validation_ds.as_numpy_iterator()
      for val_example in val_iterator:
        eval_loss += compiled_validation_step(model,
                                              params,
                                              dataset_builder._tokenizer.pad_id,
                                              val_example)
        n_steps_eval +=1
      avg_loss /= training_cfg.eval_every_n
      eval_loss /= n_steps_eval
      print(f"STEP {n_steps} training loss: {avg_loss} - eval loss: {eval_loss}")
      avg_loss=0
    if training_cfg.max_steps is not None and n_steps > training_cfg.max_steps:
      break
  return params

Comece a ajustar o modelo do Gemma em um número limitado de etapas (SEQ_SIZE) para garantir que ele caiba na memória:

SEQ_SIZE = 25
tokenizer = GemmaTokenizer(vocab)
dataset_builder= MTNTDatasetBuilder(tokenizer, SEQ_SIZE)
training_cfg = TrainingConfig(learning_rate=1e-4,
                              num_epochs=1,
                              eval_every_n=20,
                              batch_size=1,
                              max_steps=100)

params = train_loop(model=model_2b,
                    params={'params': params['transformer']},
                    dataset_builder=dataset_builder,
                    training_cfg=training_cfg)
Start, validation loss: 10.647212982177734
STEP 20 training loss: 3.3015992641448975 - eval loss: 2.686880111694336
STEP 40 training loss: 5.375057220458984 - eval loss: 2.6751961708068848
STEP 60 training loss: 2.6599338054656982 - eval loss: 2.663877010345459
STEP 80 training loss: 4.822389125823975 - eval loss: 2.3333375453948975
STEP 100 training loss: 2.0131142139434814 - eval loss: 2.360811948776245

Tanto a perda de treinamento quanto a de validação devem ter diminuído a cada contagem de passos.

Crie uma sampler com gemma.sampler.Sampler. Ele usa o checkpoint do modelo Gemma e o tokenizador.

sampler = sampler_lib.Sampler(
    transformer=model_2b,
    vocab=vocab,
    params=params['params'],
)

Use o sampler para verificar se o modelo pode realizar a tradução. O argumento total_generation_steps no gemma.sampler.Sampler é o número de etapas realizadas ao gerar uma resposta. Para garantir que a entrada corresponda ao formato de treinamento, use o prefixo Translate this into French:\n com um caractere de nova linha no final. Isso sinaliza ao modelo para iniciar a tradução.

sampler(
    ["Translate this into French:\nHello, my name is Morgane.\n"],
    total_generation_steps=100,
    ).text
["C'est Bonjour, mon nom est Morgane.C'est Bonjour, mon nom est Morgane."]

Saiba mais