Afficher sur ai.google.dev | Essayer un notebook Colab | Afficher le notebook sur GitHub |
Dans ce notebook, vous allez apprendre à utiliser l'API PaLM, qui vous donne accès aux derniers grands modèles de langage de Google. Vous allez apprendre à utiliser les fonctionnalités de génération de texte de l'API PaLM.
Configuration
Commencez par télécharger et installer la bibliothèque Python de l'API PaLM.
pip install -q google-generativeai
import pprint
import google.generativeai as palm
Obtenir une clé API
Pour commencer, vous devez créer une clé API.
palm.configure(api_key='YOUR_API_KEY')
Génération de texte
Utilisez la fonction palm.list_models
pour rechercher les modèles disponibles:
models = [m for m in palm.list_models() if 'generateText' in m.supported_generation_methods]
model = models[0].name
print(model)
models/text-bison-001
Utilisez la méthode palm.generate_text
pour générer du texte:
prompt = """
You are an expert at solving word problems.
Solve the following problem:
I have three houses, each with three cats.
each cat owns 4 mittens, and a hat. Each mitten was
knit from 7m of yarn, each hat from 4m.
How much yarn was needed to make all the items?
Think about it step by step, and show your work.
"""
completion = palm.generate_text(
model=model,
prompt=prompt,
temperature=0,
# The maximum length of the response
max_output_tokens=800,
)
print(completion.result)
There are 3 houses * 3 cats / house = 9 cats. So, 9 cats * 4 mittens / cat = 36 mittens were made. Also, 9 cats * 1 hat / cat = 9 hats were made. So, 36 mittens * 7m / mitten = 252m of yarn was used for the mittens. Also, 9 hats * 4m / hat = 36m of yarn was used for the hats. In total, 252m + 36m = 288m of yarn was used. Thus, the answer is 288.
Autres options
La fonction palm.generate_text
comporte quelques autres arguments qu'il convient de mentionner.
Séquences d'arrêt
Utilisez l'argument stop_sequences
pour arrêter la génération prématurément.
Par exemple, les LLM commettent souvent des erreurs arithmétiques. Vous pouvez demander au modèle
"d'utiliser une calculatrice" en ajoutant les équations dans une balise <calc>
.
Faites en sorte que le modèle s'arrête à la balise de fermeture afin de pouvoir modifier la requête:
calc_prompt = f"""
Please solve the following problem.
{prompt}
----------------
Important: Use the calculator for each step.
Don't do the arithmetic in your head.
To use the calculator wrap an equation in <calc> tags like this:
<calc> 3 cats * 2 hats/cat </calc> = 6
----------------
"""
equation=None
while equation is None:
completion = palm.generate_text(
model=model,
prompt=calc_prompt,
stop_sequences=['</calc>'],
# The maximum length of the response
max_output_tokens=800,
)
try:
response, equation = completion.result.split('<calc>', maxsplit=1)
except Exception:
continue
print(response)
Chain-of-thought: There are three houses, and each house has three cats, so there are 3 houses * 3 cats / house = 9 cats. Each cat has 4 mittens, so the cats need 9 cats * 4 mittens / cat = 36 mittens. Each mitten takes 7m of yarn, so 36 mittens * 7m / mitten = 252m of yarn. Each cat has a hat, and each hat takes 4m of yarn, so 9 cats * 4m / cat = 36m of yarn. So, in total, 36m + 252m = 288m of yarn were needed. The answer should be
print(equation)
9 cats * 4 mittens / cat
À partir de là, vous pouvez calculer le résultat et assembler une nouvelle requête à partir de laquelle le modèle pourra continuer. Pour une implémentation complète, consultez l'exemple de calculateur de texte.
Candidats
En règle générale, le texte produit par les LLM présente un certain degré de hasard. Pour en savoir plus, consultez le guide de LLM. Cela signifie que lorsque vous appelez l'API plusieurs fois avec la même entrée, vous pouvez obtenir des réponses différentes. Vous pouvez utiliser cette fonctionnalité pour obtenir d'autres réponses du modèle.
L'argument temperature
contrôle la variance des réponses. L'objet palm.Model
donne la valeur par défaut pour temperature
et d'autres paramètres.
models[0]
Model(name='models/text-bison-001', base_model_id='', version='001', display_name='Text Bison', description='Model targeted for text generation.', input_token_limit=8196, output_token_limit=1024, supported_generation_methods=['generateText'], temperature=0.7, top_p=0.95, top_k=40)
L'argument candidate_count
contrôle le nombre de réponses renvoyées:
completion = palm.generate_text(
model=model,
prompt=prompt,
# The number of candidates to return
candidate_count=8,
# Set the temperature to 1.0 for more variety of responses.
temperature=1.0,
max_output_tokens=800,
)
print(completion.result)
In each house there are 3 cats * 4 mittens / cat = 12 mittens. In total there are 3 houses * 12 mittens / house = 36 mittens. In total there are 36 mittens * 7m / mitten = 252m of yarn for the mittens. In total there are 3 houses * 3 cats / house * 1 hat / cat = 9 hats. In total there are 9 hats * 4m / hat = 36m of yarn for the hats. In total there are 36m yarn for the hats + 252m yarn for the mittens = 288m of yarn. The answer: 288.
Lorsque vous demandez plusieurs propositions, l'attribut Completion.result
ne contient toujours que le premier. L'attribut Completion.candidates
les contient tous:
import pprint
pprint.pprint(completion.candidates)
[{'output': 'In each house there are 3 cats * 4 mittens / cat = 12 mittens. In ' 'total there are 3 houses * 12 mittens / house = 36 mittens. In ' 'total there are 36 mittens * 7m / mitten = 252m of yarn for the ' 'mittens. In total there are 3 houses * 3 cats / house * 1 hat / ' 'cat = 9 hats. In total there are 9 hats * 4m / hat = 36m of yarn ' 'for the hats. In total there are 36m yarn for the hats + 252m ' 'yarn for the mittens = 288m of yarn.\n' 'The answer: 288.', 'safety_ratings': [{'category': <HarmCategory.HARM_CATEGORY_DEROGATORY: 1>, 'probability': <HarmProbability.NEGLIGIBLE: 1>}, {'category': <HarmCategory.HARM_CATEGORY_TOXICITY: 2>, 'probability': <HarmProbability.NEGLIGIBLE: 1>}, {'category': <HarmCategory.HARM_CATEGORY_VIOLENCE: 3>, 'probability': <HarmProbability.NEGLIGIBLE: 1>}, {'category': <HarmCategory.HARM_CATEGORY_SEXUAL: 4>, 'probability': <HarmProbability.NEGLIGIBLE: 1>}, {'category': <HarmCategory.HARM_CATEGORY_MEDICAL: 5>, 'probability': <HarmProbability.NEGLIGIBLE: 1>}, {'category': <HarmCategory.HARM_CATEGORY_DANGEROUS: 6>, 'probability': <HarmProbability.NEGLIGIBLE: 1>}]}, {'output': 'Each house has 3 cats, so each house needs 3 * 4 = 12 mittens. ' "With three houses, that's 3 * 12 = 36 mittens. And each house " 'needs 3 * 1 = 3 hats. So in total, we need 3 hats + 36 mittens = ' '39 items. Each mitten needs 7 meters of yarn, so 39 mittens need ' '39 * 7 = 273 meters of yarn. Each hat needs 4 meters of yarn, and ' "we need 3 hats, so that's 4 * 3 = 12 meters of yarn. So in total, " 'we needed 12 + 273 = 285 meters of yarn.\n' 'Thus, the answer is 285.', 'safety_ratings': [{'category': <HarmCategory.HARM_CATEGORY_DEROGATORY: 1>, 'probability': <HarmProbability.NEGLIGIBLE: 1>}, {'category': <HarmCategory.HARM_CATEGORY_TOXICITY: 2>, 'probability': <HarmProbability.NEGLIGIBLE: 1>}, {'category': <HarmCategory.HARM_CATEGORY_VIOLENCE: 3>, 'probability': <HarmProbability.NEGLIGIBLE: 1>}, {'category': <HarmCategory.HARM_CATEGORY_SEXUAL: 4>, 'probability': <HarmProbability.NEGLIGIBLE: 1>}, {'category': <HarmCategory.HARM_CATEGORY_MEDICAL: 5>, 'probability': <HarmProbability.NEGLIGIBLE: 1>}, {'category': <HarmCategory.HARM_CATEGORY_DANGEROUS: 6>, 'probability': <HarmProbability.NEGLIGIBLE: 1>}]}, {'output': 'There are 3 houses * 3 cats / house = 9 cats. There are 9 cats * ' '4 mittens / cat = 36 mittens. There are 9 cats * 1 hat / cat = 9 ' 'hats. The total amount of yarn for the mittens is 36 mittens * 7m ' '/ mitten = 252m. The total amount of yarn for the hats is 9 hats ' '* 4m / hat = 36m. The total amount of yarn is 252m + 36m = 288m.\n' 'Thus, the answer is 288.', 'safety_ratings': [{'category': <HarmCategory.HARM_CATEGORY_DEROGATORY: 1>, 'probability': <HarmProbability.NEGLIGIBLE: 1>}, {'category': <HarmCategory.HARM_CATEGORY_TOXICITY: 2>, 'probability': <HarmProbability.NEGLIGIBLE: 1>}, {'category': <HarmCategory.HARM_CATEGORY_VIOLENCE: 3>, 'probability': <HarmProbability.NEGLIGIBLE: 1>}, {'category': <HarmCategory.HARM_CATEGORY_SEXUAL: 4>, 'probability': <HarmProbability.NEGLIGIBLE: 1>}, {'category': <HarmCategory.HARM_CATEGORY_MEDICAL: 5>, 'probability': <HarmProbability.NEGLIGIBLE: 1>}, {'category': <HarmCategory.HARM_CATEGORY_DANGEROUS: 6>, 'probability': <HarmProbability.NEGLIGIBLE: 1>}]}, {'output': 'There are 3 houses * 3 cats / house = 9 cats. Each cat has 4 ' 'mittens + 1 hat = 5 items. So the total number of items is 9 cats ' '* 5 items / cat = 45 items. Thus, 45 items * 7m / item = 315m of ' 'yarn was needed.\n' 'Thus, the answer is 315.', 'safety_ratings': [{'category': <HarmCategory.HARM_CATEGORY_DEROGATORY: 1>, 'probability': <HarmProbability.NEGLIGIBLE: 1>}, {'category': <HarmCategory.HARM_CATEGORY_TOXICITY: 2>, 'probability': <HarmProbability.NEGLIGIBLE: 1>}, {'category': <HarmCategory.HARM_CATEGORY_VIOLENCE: 3>, 'probability': <HarmProbability.NEGLIGIBLE: 1>}, {'category': <HarmCategory.HARM_CATEGORY_SEXUAL: 4>, 'probability': <HarmProbability.NEGLIGIBLE: 1>}, {'category': <HarmCategory.HARM_CATEGORY_MEDICAL: 5>, 'probability': <HarmProbability.NEGLIGIBLE: 1>}, {'category': <HarmCategory.HARM_CATEGORY_DANGEROUS: 6>, 'probability': <HarmProbability.NEGLIGIBLE: 1>}]}, {'output': 'Chain-of-thought:\n' 'There are 3 houses * 3 cats / house = 9 cats.\n' 'The cats need 9 cats * 4 mittens / cat = 36 mittens.\n' 'The cats need 9 cats * 1 hat / cat = 9 hats.\n' 'The mittens need 36 mittens * 7m / mitten = 252m of yarn.\n' 'The hats need 9 hats * 4m / hat = 36m of yarn.\n' 'Therefore, the total amount of yarn needed is 252m + 36m = 288m.\n' '\n' 'The answer should be 288', 'safety_ratings': [{'category': <HarmCategory.HARM_CATEGORY_DEROGATORY: 1>, 'probability': <HarmProbability.NEGLIGIBLE: 1>}, {'category': <HarmCategory.HARM_CATEGORY_TOXICITY: 2>, 'probability': <HarmProbability.NEGLIGIBLE: 1>}, {'category': <HarmCategory.HARM_CATEGORY_VIOLENCE: 3>, 'probability': <HarmProbability.NEGLIGIBLE: 1>}, {'category': <HarmCategory.HARM_CATEGORY_SEXUAL: 4>, 'probability': <HarmProbability.NEGLIGIBLE: 1>}, {'category': <HarmCategory.HARM_CATEGORY_MEDICAL: 5>, 'probability': <HarmProbability.NEGLIGIBLE: 1>}, {'category': <HarmCategory.HARM_CATEGORY_DANGEROUS: 6>, 'probability': <HarmProbability.NEGLIGIBLE: 1>}]}, {'output': 'First find the total number of cats: 3 houses * 3 cats / house = ' '9 cats. Then multiply that number by the number of mittens per ' 'cat to find the total number of mittens: 9 cats * 4 mittens / cat ' '= 36 mittens. Then multiply that number by the number of meters ' 'of yarn per mitten to find the total amount of yarn used for ' 'mittens: 36 mittens * 7 meters / mitten = 252 meters. Then do the ' 'same thing for hats: 9 cats * 1 hat / cat = 9 hats. Then multiply ' 'that number by the number of meters of yarn per hat to find the ' 'total amount of yarn used for hats: 9 hats * 4 meters / hat = 36 ' 'meters. Then add the amount of yarn used for mittens and hats to ' 'find the total amount of yarn used: 36 meters + 252 meters = 288 ' 'meters.\n' 'Thus, the answer is 288.', 'safety_ratings': [{'category': <HarmCategory.HARM_CATEGORY_DEROGATORY: 1>, 'probability': <HarmProbability.NEGLIGIBLE: 1>}, {'category': <HarmCategory.HARM_CATEGORY_TOXICITY: 2>, 'probability': <HarmProbability.NEGLIGIBLE: 1>}, {'category': <HarmCategory.HARM_CATEGORY_VIOLENCE: 3>, 'probability': <HarmProbability.NEGLIGIBLE: 1>}, {'category': <HarmCategory.HARM_CATEGORY_SEXUAL: 4>, 'probability': <HarmProbability.NEGLIGIBLE: 1>}, {'category': <HarmCategory.HARM_CATEGORY_MEDICAL: 5>, 'probability': <HarmProbability.NEGLIGIBLE: 1>}, {'category': <HarmCategory.HARM_CATEGORY_DANGEROUS: 6>, 'probability': <HarmProbability.NEGLIGIBLE: 1>}]}, {'output': 'The total number of cats is 3 houses * 3 cats / house = 9 cats. ' 'So, the total number of mittens is 9 cats * 4 mittens / cat = 36 ' 'mittens. The total number of hats is 9 cats * 1 hat / cat = 9 ' 'hats. The total length of yarn needed to make the mittens is 36 ' 'mittens * 7 m / mitten = 252 m. The total length of yarn needed ' 'to make the hats is 9 hats * 4 m / hat = 36 m. So, the total ' 'length of yarn needed is 252 m + 36 m = 288 m.\n' '\n' 'The answer: 288', 'safety_ratings': [{'category': <HarmCategory.HARM_CATEGORY_DEROGATORY: 1>, 'probability': <HarmProbability.NEGLIGIBLE: 1>}, {'category': <HarmCategory.HARM_CATEGORY_TOXICITY: 2>, 'probability': <HarmProbability.NEGLIGIBLE: 1>}, {'category': <HarmCategory.HARM_CATEGORY_VIOLENCE: 3>, 'probability': <HarmProbability.NEGLIGIBLE: 1>}, {'category': <HarmCategory.HARM_CATEGORY_SEXUAL: 4>, 'probability': <HarmProbability.NEGLIGIBLE: 1>}, {'category': <HarmCategory.HARM_CATEGORY_MEDICAL: 5>, 'probability': <HarmProbability.NEGLIGIBLE: 1>}, {'category': <HarmCategory.HARM_CATEGORY_DANGEROUS: 6>, 'probability': <HarmProbability.NEGLIGIBLE: 1>}]}, {'output': 'There are 3 houses with 3 cats each, so 3 * 3 = 9 cats. Each cat ' 'has 4 mittens and a hat, so 9 cats * 4 mittens / cat + 9 cats * 1 ' 'hat / cat = 36 mittens and 9 hats. Each mitten takes 7m of yarn ' 'and each hat takes 4m of yarn, so the total yarn needed is 36 ' 'mittens * 7m / mitten + 9 hats * 4m / hat = 252m + 36m = 288m.\n' 'The answer: 288.', 'safety_ratings': [{'category': <HarmCategory.HARM_CATEGORY_DEROGATORY: 1>, 'probability': <HarmProbability.NEGLIGIBLE: 1>}, {'category': <HarmCategory.HARM_CATEGORY_TOXICITY: 2>, 'probability': <HarmProbability.NEGLIGIBLE: 1>}, {'category': <HarmCategory.HARM_CATEGORY_VIOLENCE: 3>, 'probability': <HarmProbability.NEGLIGIBLE: 1>}, {'category': <HarmCategory.HARM_CATEGORY_SEXUAL: 4>, 'probability': <HarmProbability.NEGLIGIBLE: 1>}, {'category': <HarmCategory.HARM_CATEGORY_MEDICAL: 5>, 'probability': <HarmProbability.NEGLIGIBLE: 1>}, {'category': <HarmCategory.HARM_CATEGORY_DANGEROUS: 6>, 'probability': <HarmProbability.NEGLIGIBLE: 1>}]}]
Donc, comme vous connaissez la réponse à ce problème, il est facile de vérifier le taux de résolution:
import numpy as np
np.mean(['288' in c['output'] for c in completion.candidates])
0.75