LiteRT Custom Op Dispatcher API

نظرة عامة

CustomOpDispatcher هي بديل لواجهة برمجة التطبيقات لتحديد عمليات وحدة المعالجة المركزية المخصّصة وبرامج تحليل العمليات المخصّصة في LiteRT. وتوفّر واجهة أكثر سلاسة لدمج العمليات المخصّصة في نماذج LiteRT.

لماذا يجب استخدام CustomOpDispatcher؟

النهج التقليدي (متوقّف نهائيًا)

في السابق، كان على المطوّرين:

  • إنشاء بنى TfLiteRegistration يدويًا
  • تنفيذ دوال ردّ اتصال خاصة بـ TFLite (init وprepare وinvoke وfree)
  • التعامل مباشرةً مع بنى TFLite ذات المستوى المنخفض (TfLiteContext وTfLiteNode وTfLiteTensor)
  • استخدام MutableOpResolver::AddCustom() مباشرةً

طريقة جديدة لاستخدام CustomOpDispatcher

يوفّر CustomOpDispatcher ما يلي:

  • طبقة تجريدية نظيفة فوق الأجزاء الداخلية من TFLite
  • التكامل مع النموذج المجمَّع في LiteRT

Flow

┌─────────────────┐
  User Custom Op  (Your implementation)
└────────┬────────┘
         
         
┌─────────────────────────┐
   LiteRtCustomOpKernel   (C API interface)
└────────┬────────────────┘
         
         
┌─────────────────────────┐
   CustomOpDispatcher     (Bridge layer)
└────────┬────────────────┘
         
         
┌─────────────────────────┐
  TfLiteRegistration      (TFLite runtime)
└─────────────────────────┘

المكوّنات والملفات الرئيسية

التنفيذ الأساسي

عناوين واجهة برمجة التطبيقات

نظام الخيارات

  • core/options.h: بنية الخيارات الأساسية مع CustomOpOption
  • c/litert_options.h: واجهة برمجة تطبيقات C لإدارة خيارات التجميع

أمثلة على الاختبارات

مرجع واجهة برمجة تطبيقات

واجهة Core Kernel (واجهة برمجة التطبيقات C)

typedef struct {
  LiteRtStatus (*Init)(void* user_data, const void* init_data,
                       size_t init_data_size);
  LiteRtStatus (*GetOutputLayouts)(void* user_data, size_t num_inputs,
                                   const LiteRtLayout* input_layouts,
                                   size_t num_outputs,
                                   LiteRtLayout* output_layouts);
  LiteRtStatus (*Run)(void* user_data, size_t num_inputs,
                      const LiteRtTensorBuffer* inputs, size_t num_outputs,
                      LiteRtTensorBuffer* outputs);
  LiteRtStatus (*Destroy)(void* user_data);
} LiteRtCustomOpKernel;

فئة أساسية مجرّدة في C++‎

class CustomOpKernel {
public:
  virtual const std::string& OpName() const = 0;
  virtual int OpVersion() const = 0;
  virtual Expected<void> Init(const void* init_data, size_t init_data_size) = 0;
  virtual Expected<void> GetOutputLayouts(
      const std::vector<Layout>& input_layouts,
      std::vector<Layout>& output_layouts) = 0;
  virtual Expected<void> Run(const std::vector<TensorBuffer>& inputs,
                             std::vector<TensorBuffer>& outputs) = 0;
  virtual Expected<void> Destroy() = 0;
};

دليل الاستخدام

الخطوة 1: تحديد العملية المخصّصة

تنفيذ C++‎

#include "litert/cc/litert_custom_op_kernel.h"

class MyCustomOpKernel : public litert::CustomOpKernel {
public:
  const std::string& OpName() const override {
    return op_name_;
  }

  int OpVersion() const override {
    return 1;
  }

  Expected<void> Init(const void* init_data, size_t init_data_size) override {
    // Initialize any persistent state
    return {};
  }

  Expected<void> GetOutputLayouts(
      const std::vector<Layout>& input_layouts,
      std::vector<Layout>& output_layouts) override {
    // Define output tensor shapes based on inputs
    output_layouts[0] = input_layouts[0];
    return {};
  }

  Expected<void> Run(const std::vector<TensorBuffer>& inputs,
                     std::vector<TensorBuffer>& outputs) override {
    // Lock input buffers for reading
    LITERT_ASSIGN_OR_RETURN(auto input_lock,
        TensorBufferScopedLock::Create<float>(
            inputs[0], TensorBuffer::LockMode::kRead));

    // Lock output buffer for writing
    LITERT_ASSIGN_OR_RETURN(auto output_lock,
        TensorBufferScopedLock::Create<float>(
            outputs[0], TensorBuffer::LockMode::kWrite));

    const float* input_data = input_lock.second;
    float* output_data = output_lock.second;

    // Perform computation
    // ... your custom operation logic ...

    return {};
  }

  Expected<void> Destroy() override {
    // Clean up resources
    return {};
  }

private:
  const std::string op_name_ = "MyCustomOp";
};

تنفيذ C

#include "litert/c/litert_custom_op_kernel.h"

LiteRtStatus MyOp_Init(void* user_data, const void* init_data,
                       size_t init_data_size) {
  // Initialize state
  return kLiteRtStatusOk;
}

LiteRtStatus MyOp_GetOutputLayouts(void* user_data, size_t num_inputs,
                                   const LiteRtLayout* input_layouts,
                                   size_t num_outputs,
                                   LiteRtLayout* output_layouts) {
  // Set output shape to match first input
  output_layouts[0] = input_layouts[0];
  return kLiteRtStatusOk;
}

LiteRtStatus MyOp_Run(void* user_data, size_t num_inputs,
                     const LiteRtTensorBuffer* inputs, size_t num_outputs,
                     LiteRtTensorBuffer* outputs) {
  // Lock buffers
  void* input_addr;
  LITERT_RETURN_IF_ERROR(LiteRtLockTensorBuffer(
      inputs[0], &input_addr, kLiteRtTensorBufferLockModeRead));

  void* output_addr;
  LITERT_RETURN_IF_ERROR(LiteRtLockTensorBuffer(
      outputs[0], &output_addr, kLiteRtTensorBufferLockModeWrite));

  // Perform computation
  float* in = (float*)input_addr;
  float* out = (float*)output_addr;
  // ... your custom operation logic ...

  // Unlock buffers
  LITERT_RETURN_IF_ERROR(LiteRtUnlockTensorBuffer(inputs[0]));
  LITERT_RETURN_IF_ERROR(LiteRtUnlockTensorBuffer(outputs[0]));

  return kLiteRtStatusOk;
}

LiteRtStatus MyOp_Destroy(void* user_data) {
  // Clean up
  return kLiteRtStatusOk;
}

الخطوة 2: تسجيل العملية المخصّصة

تسجيل C++‎

#include "litert/cc/litert_environment.h"
#include "litert/cc/litert_compiled_model.h"
#include "litert/cc/litert_options.h"

// Create environment
LITERT_ASSERT_OK_AND_ASSIGN(Environment env, Environment::Create({}));

// Load model
Model model = /* load your model */;

// Create options and register custom op
LITERT_ASSERT_OK_AND_ASSIGN(Options options, Options::Create());
options.SetHardwareAccelerators(kLiteRtHwAcceleratorCpu);

// Register custom op kernel
MyCustomOpKernel my_custom_op;
ASSERT_TRUE(options.AddCustomOpKernel(my_custom_op));

// Create compiled model with custom op
LITERT_ASSERT_OK_AND_ASSIGN(CompiledModel compiled_model,
                            CompiledModel::Create(env, model, options));

C Registration

#include "litert/c/litert_environment.h"
#include "litert/c/litert_compiled_model.h"
#include "litert/c/litert_options.h"

// Create options
LiteRtOptions options;
LiteRtCreateOptions(&options);
LiteRtSetOptionsHardwareAccelerators(options, kLiteRtHwAcceleratorCpu);

// Define kernel
LiteRtCustomOpKernel kernel = {
    .Init = MyOp_Init,
    .GetOutputLayouts = MyOp_GetOutputLayouts,
    .Run = MyOp_Run,
    .Destroy = MyOp_Destroy,
};

// Register custom op
LiteRtAddCustomOpKernelOption(options, "MyCustomOp", 1, &kernel, NULL);

// Create environment
LiteRtEnvironment env;
LiteRtCreateEnvironment(0, NULL, &env);

// Create compiled model
LiteRtCompiledModel compiled_model;
LiteRtCreateCompiledModel(env, model, options, &compiled_model);

الخطوة 3: تنفيذ النموذج

تنفيذ C++‎

// Create buffers
LITERT_ASSERT_OK_AND_ASSIGN(auto input_buffers,
                            compiled_model.CreateInputBuffers());
LITERT_ASSERT_OK_AND_ASSIGN(auto output_buffers,
                            compiled_model.CreateOutputBuffers());

// Fill input data
input_buffers[0].Write<float>(your_input_data);

// Run inference
compiled_model.Run(input_buffers, output_buffers);

// Read output
LITERT_ASSERT_OK_AND_ASSIGN(auto lock,
    TensorBufferScopedLock::Create<const float>(
        output_buffers[0], TensorBuffer::LockMode::kRead));
const float* results = lock.second;

تنفيذ C

// Create buffers (see test files for complete buffer creation)
LiteRtTensorBuffer input_buffers[num_inputs];
LiteRtTensorBuffer output_buffers[num_outputs];
// ... buffer creation code ...

// Write input data
void* input_addr;
LiteRtLockTensorBuffer(input_buffers[0], &input_addr,
                      kLiteRtTensorBufferLockModeWrite);
memcpy(input_addr, your_data, data_size);
LiteRtUnlockTensorBuffer(input_buffers[0]);

// Run inference
LiteRtRunCompiledModel(compiled_model, 0, num_inputs, input_buffers,
                       num_outputs, output_buffers);

// Read output
void* output_addr;
LiteRtLockTensorBuffer(output_buffers[0], &output_addr,
                      kLiteRtTensorBufferLockModeRead);
// Process output_addr
LiteRtUnlockTensorBuffer(output_buffers[0]);