Ajuste de Gemma con JAX y Flax

Ver en ai.google.dev Ejecutar en Google Colab Abrir en Vertex AI Ver código fuente en GitHub

Descripción general

Gemma es una familia de modelos grandes de lenguaje, ligeros y de vanguardia, basados en la investigación y tecnología de Google DeepMind Gemini. En este instructivo, se muestra cómo ajustar el modelo Gemma 2B Instruct para una tarea de traducción inglés-francés con la biblioteca gemma de Google DeepMind, JAX (una biblioteca de computación numérica de alto rendimiento), Flax (la biblioteca de redes neuronales basada en JAX), Chex (una biblioteca de utilidades para escribir código JAX confiable para escribir código JAX de Google y la biblioteca de procesamiento confiable de JAX, Optax por la optimización de gradientes de JAX y la traducción basada en JAX Aunque Flax no se usa directamente en este cuaderno, se usó para crear Gemma.

La biblioteca gemma se escribió con JAX, Flax, Orbax (una biblioteca basada en JAX para utilidades de entrenamiento, como el control) y SentencePiece (una biblioteca tokenizador/detokenizer).

Instalar

1. Configurar el acceso a Kaggle para Gemma

Para completar este instructivo, primero debes seguir las instrucciones de configuración en la configuración de Gemma, que te muestran cómo hacer lo siguiente:

  • Obtén acceso a Gemma en kaggle.com.
  • Selecciona un entorno de ejecución de Colab con recursos suficientes para ejecutar el modelo de Gemma.
  • Genera y configura un nombre de usuario y una clave de API Kaggle.

Después de completar la configuración de Gemma, continúa con la siguiente sección, en la que establecerás variables de entorno para tu entorno de Colab.

2. Configura las variables de entorno

Configura las variables de entorno para KAGGLE_USERNAME y KAGGLE_KEY. Cuando aparezca el mensaje "¿Quieres otorgar acceso?", acepta proporcionar acceso al secreto.

import os
from google.colab import userdata # `userdata` is a Colab API.

os.environ["KAGGLE_USERNAME"] = userdata.get('KAGGLE_USERNAME')
os.environ["KAGGLE_KEY"] = userdata.get('KAGGLE_KEY')

3. Cómo instalar la biblioteca gemma

En este momento, la aceleración de hardware gratuita de Colab es insuficiente para ejecutar este notebook. Si usas Colab Pay As You Go o Colab Pro, haz clic en Editar > Configuración del notebook > Selecciona GPU A100 > Guardar para habilitar la aceleración de hardware.

A continuación, debes instalar la biblioteca gemma de Google DeepMind desde github.com/google-deepmind/gemma. Si recibes un error sobre el "agente de resolución de dependencia de pip", generalmente puedes ignorarlo.

pip install -q git+https://github.com/google-deepmind/gemma.git

4. Importa las bibliotecas

En este notebook, se usan Flax (para redes neuronales), JAX principales, SentencePiece (para la asignación de token), Chex (una biblioteca de utilidades para escribir código JAX confiable) y conjuntos de datos de TensorFlow.

import os
import enum
import re
import string

import chex
import jax
import jax.numpy as jnp
import optax

import tensorflow as tf
import tensorflow_datasets as tfds

from gemma import params as params_lib
from gemma import sampler as sampler_lib
from gemma import transformer as transformer_lib
import sentencepiece as spm

Carga el modelo de Gemma

Carga el modelo de Gemma con kagglehub.model_download, que toma tres argumentos:

  • handle: El controlador del modelo de Kaggle
  • path: Es la ruta local (cadena opcional).
  • force_download: Fuerza a volver a descargar el modelo (booleano opcional).
GEMMA_VARIANT = '2b-it' # @param ['2b', '2b-it'] {type:"string"}
import kagglehub

GEMMA_PATH = kagglehub.model_download(f'google/gemma/flax/{GEMMA_VARIANT}')
Downloading from https://www.kaggle.com/api/v1/models/google/gemma/flax/2b-it/2/download...
100%|██████████| 3.67G/3.67G [00:26<00:00, 147MB/s]
Extracting model files...
print('GEMMA_PATH:', GEMMA_PATH)
GEMMA_PATH: /root/.cache/kagglehub/models/google/gemma/flax/2b-it/2

Verifica la ubicación de las ponderaciones del modelo y del tokenizador, y luego configura las variables de la ruta de acceso. El directorio del tokenizador estará en el directorio principal en el que descargaste el modelo, mientras que los pesos del modelo estarán en un subdirectorio. Por ejemplo:

  • El archivo tokenizer.model estará en /LOCAL/PATH/TO/gemma/flax/2b-it/2.
  • El punto de control del modelo estará en /LOCAL/PATH/TO/gemma/flax/2b-it/2/2b-it.
CKPT_PATH = os.path.join(GEMMA_PATH, GEMMA_VARIANT)
TOKENIZER_PATH = os.path.join(GEMMA_PATH, 'tokenizer.model')
print('CKPT_PATH:', CKPT_PATH)
print('TOKENIZER_PATH:', TOKENIZER_PATH)
CKPT_PATH: /root/.cache/kagglehub/models/google/gemma/flax/2b-it/2/2b-it
TOKENIZER_PATH: /root/.cache/kagglehub/models/google/gemma/flax/2b-it/2/tokenizer.model

Carga y prepara el conjunto de datos de MTNT y el tokenizador de Gemma

Usarás el conjunto de datos MTNT (Traducción automática de texto ruidoso), que está disponible en Conjuntos de datos de TensorFlow.

Descarga la parte del conjunto de datos de inglés a francés del conjunto de datos de MTNT y, luego, muestra dos ejemplos. Cada muestra del conjunto de datos contiene dos entradas: src: la oración original en inglés, y dst: la traducción al francés correspondiente.

ds = tfds.load("mtnt/en-fr", split="train")

ds = ds.take(2)
ds = ds.as_numpy_iterator()

for idx, example in enumerate(ds):
  print(f'Example {idx}:')
  for key, val in example.items():
    print(f'{key}: {val}')
  print()
Downloading and preparing dataset 35.08 MiB (download: 35.08 MiB, generated: 11.33 MiB, total: 46.41 MiB) to /root/tensorflow_datasets/mtnt/en-fr/1.0.0...
Dl Completed...: 0 url [00:00, ? url/s]
Dl Size...: 0 MiB [00:00, ? MiB/s]
Extraction completed...: 0 file [00:00, ? file/s]
Generating splits...:   0%|          | 0/3 [00:00<?, ? splits/s]
Generating train examples...:   0%|          | 0/35692 [00:00<?, ? examples/s]
Shuffling /root/tensorflow_datasets/mtnt/en-fr/1.0.0.incomplete6YJMND/mtnt-train.tfrecord*...:   0%|          …
Generating test examples...:   0%|          | 0/1020 [00:00<?, ? examples/s]
Shuffling /root/tensorflow_datasets/mtnt/en-fr/1.0.0.incomplete6YJMND/mtnt-test.tfrecord*...:   0%|          |…
Generating valid examples...:   0%|          | 0/811 [00:00<?, ? examples/s]
Shuffling /root/tensorflow_datasets/mtnt/en-fr/1.0.0.incomplete6YJMND/mtnt-valid.tfrecord*...:   0%|          …
Dataset mtnt downloaded and prepared to /root/tensorflow_datasets/mtnt/en-fr/1.0.0. Subsequent calls will reuse this data.
Example 0:
dst: b'Le groupe de " toutes les \xc3\xa9toiles potentielles de la conf\xc3\xa9rence de l\'Est mais qui ne s\'en sortent pas dans le groupe de l\'Ouest ".'
src: b'The group of \xe2\x80\x9ceastern conference potential all stars but not making it in the West\xe2\x80\x9d group.'

Example 1:
dst: b"Kameron est-elle un peu aigrie de son manque de temps \xc3\xa0 l'\xc3\xa9cran ?"
src: b'Is Kameron a Little Salty About Her Lack of Air Time?'

Carga el tokenizador de Gemma, construido con sentencepiece.SentencePieceProcessor:

vocab = spm.SentencePieceProcessor()
vocab.Load(TOKENIZER_PATH)
True

Personaliza el SentencePieceProcessor de la tarea de traducción del inglés al francés. Dado que ajustarás la parte en inglés del modelo de Gemma, debes realizar algunos ajustes, como los siguientes:

  • El prefijo de entrada: Agregar un prefijo común a cada entrada indica la tarea de traducción. Por ejemplo, puedes usar una instrucción con un prefijo como Translate this into French: [INPUT_SENTENCE].

  • El sufijo del inicio de la traducción: Agregar un sufijo al final de cada instrucción le indica al modelo Gemma exactamente cuándo comenzar el proceso de traducción. Una línea nueva debería hacer el trabajo.

  • Tokens de modelos de lenguaje: Los modelos de Gemma esperan un token de “comienzo de la secuencia” al principio de cada secuencia, por lo que agregar un token de “fin de secuencia” al final de cada ejemplo de entrenamiento debería ser suficiente.

    Compila un wrapper personalizado alrededor de SentencePieceProcessor de la siguiente manera:

class GemmaTokenizer:

  def __init__(self,
               spm_processor: spm.SentencePieceProcessor):
    self._spm_processor = spm_processor

  @property
  def pad_id(self) -> int:
    """Fast access to the pad ID."""
    return self._spm_processor.pad_id()

  def tokenize(self,
               example: str | bytes,
               prefix: str = '',
               suffix: str = '',
               add_eos: bool = True) -> jax.Array:
    """
    The tokenization function.

    Args:
      example: Input string to tokenize.
      prefix:  Prefix to add to the input string.
      suffix:  Suffix to add to the input string.
      add_eos: If True, add an "end of sentence" token at the end of the output
               sequence.
    Returns:
      Tokens corresponding to the input string.
    """
    int_list = [self._spm_processor.bos_id()]
    int_list.extend(self._spm_processor.EncodeAsIds(prefix + example + suffix))
    if add_eos:
      int_list.append(self._spm_processor.eos_id())

    return jnp.array(int_list, dtype=jnp.int32)

  def tokenize_tf_op(self,
                     str_tensor: tf.Tensor,
                     prefix: str = '',
                     suffix: str = '',
                     add_eos: bool = True) -> tf.Tensor:
    """A TensorFlow operator for the tokenize function."""
    encoded = tf.numpy_function(
        self.tokenize,
        [str_tensor, prefix, suffix, add_eos],
        tf.int32)
    encoded.set_shape([None])
    return encoded

  def to_string(self, tokens: jax.Array) -> str:
    """Convert an array of tokens to a string."""
    return self._spm_processor.EncodeIds(tokens.tolist())

Para probarlo, crea una instancia de tu nuevo GemmaTokenizer personalizado y, luego, aplícalo en una muestra pequeña del conjunto de datos de MTNT:

tokenizer = GemmaTokenizer(vocab)

def tokenize_source(tokenizer, example: tf.Tensor):
  return tokenizer.tokenize_tf_op(example,
                                  prefix='Translate this into French:\n',
                                  suffix='\n',
                                  add_eos=False)
def tokenize_destination(tokenizer, example: tf.Tensor):
  return tokenizer.tokenize_tf_op(example,
                                  add_eos=True)

ds = tfds.load("mtnt/en-fr",split="train")
ds = ds.take(2)
ds = ds.map(lambda x: {'src': tokenize_source(tokenizer, x['src']),
                       'dst': tokenize_destination(tokenizer, x['dst'])})
ds = ds.as_numpy_iterator()

for idx, example in enumerate(ds):
  print(f'Example {idx}:')
  for key, val in example.items():
    print(f'{key}: {val}')
  print()
Example 0:
src: [     2  49688    736   1280   6987 235292    108    651   2778    576
   1080 104745  11982   5736    832   8995    901    780   3547    665
    575    573   4589 235369   2778 235265    108]
dst: [     2   2025  29653    581    664  16298   1437  55563  41435   7840
    581    683 111452    581    533 235303   9776   4108   2459    679
    485 235303    479   6728    579   1806   2499    709  29653    581
    533 235303 101323  16054      1]

Example 1:
src: [     2  49688    736   1280   6987 235292    108   2437  87150    477
    476  11709 230461   8045   3636  40268    576   4252   4897 235336
    108]
dst: [     2 213606    477   1455 235290   3510    748   8268 191017   2809
    581   2032  69972    581  11495   1305    533 235303  65978   1654
      1]

Compila un cargador de datos para todo el conjunto de datos de MTNT:

@chex.dataclass(frozen=True)
class TrainingInput:
  # Input tokens provided to the model.
  input_tokens: jax.Array

  # A mask that determines which tokens contribute to the target loss
  # calculation.
  target_mask: jax.Array

class DatasetSplit(enum.Enum):
  TRAIN = 'train'
  VALIDATION = 'valid'

class MTNTDatasetBuilder:
  """The dataset builder for the MTNT dataset."""

  N_ITEMS = {DatasetSplit.TRAIN: 35_692,
             DatasetSplit.VALIDATION: 811}

  BUFFER_SIZE_SHUFFLE = 10_000
  TRANSLATION_PREFIX = 'Translate this into French:\n'
  TRANSLATION_SUFFIX = '\n'

  def __init__(self,
               tokenizer : GemmaTokenizer,
               max_seq_len: int):
    """Constructor.

    Args:
      tokenizer: Gemma tokenizer to use.
      max_seq_len: size of each sequence in a given batch.
    """
    self._tokenizer = tokenizer
    self._base_data = {
        DatasetSplit.TRAIN: tfds.load("mtnt/en-fr",split="train"),
        DatasetSplit.VALIDATION: tfds.load("mtnt/en-fr",split="valid"),
    }
    self._max_seq_len = max_seq_len

  def _tokenize_source(self, example: tf.Tensor):
    """Tokenization function for the source."""
    return self._tokenizer.tokenize_tf_op(example,
                                          prefix=self.TRANSLATION_PREFIX,
                                          suffix=self.TRANSLATION_SUFFIX,
                                          add_eos=False)

  def _tokenize_destination(self, example: tf.Tensor):
    """Tokenization function for the French translation."""
    return self._tokenizer.tokenize_tf_op(example,
                                          add_eos=True)

  def _pad_up_to_max_len(self,
                         input_tensor: tf.Tensor,
                         pad_value: int | bool,
                         ) -> tf.Tensor:
    """Pad the given tensor up to sequence length of a batch."""
    seq_len = tf.shape(input_tensor)[0]
    to_pad = tf.maximum(self._max_seq_len - seq_len, 0)
    return tf.pad(input_tensor,
                  [[0, to_pad]],
                  mode='CONSTANT',
                  constant_values=pad_value,
                  )

  def _to_training_input(self,
                         src_tokens: jax.Array,
                         dst_tokens: jax.Array,
                         ) -> TrainingInput:
    """Build a training input from a tuple of source and destination tokens."""

    # The input sequence fed to the model is simply the concatenation of the
    # source and the destination.
    tokens = tf.concat([src_tokens, dst_tokens], axis=0)

    # To prevent the model from updating based on the source (input)
    # tokens, add a target mask to each input.
    q_mask = tf.zeros_like(src_tokens, dtype=tf.bool)
    a_mask = tf.ones_like(dst_tokens, dtype=tf.bool)
    mask = tf.concat([q_mask, a_mask], axis=0)

    # If the output tokens sequence is smaller than the target sequence size,
    # then pad it with pad tokens.
    tokens = self._pad_up_to_max_len(tokens, self._tokenizer.pad_id)

    # Don't want to perform the backward pass on the pad tokens.
    mask = self._pad_up_to_max_len(mask, False)

    return TrainingInput(input_tokens=tokens, target_mask=mask)


  def get_train_dataset(self, batch_size: int, num_epochs: int):
    """Build the training dataset."""

    # Tokenize each sample.
    ds = self._base_data[DatasetSplit.TRAIN].map(lambda x : (self._tokenize_source(x['src']),
                                                             self._tokenize_destination(x['dst'])))

    # Convert the samples to training inputs.
    ds = ds.map(lambda x, y: self._to_training_input(x, y))

    # Remove the samples that are too long.
    ds = ds.filter(lambda x: tf.shape(x.input_tokens)[0] <= self._max_seq_len)

    # Shuffle the dataset.
    ds = ds.shuffle(buffer_size=self.BUFFER_SIZE_SHUFFLE)

    # Repeat if necessary.
    ds = ds.repeat(num_epochs)

    # Build batches.
    ds = ds.batch(batch_size, drop_remainder=True)
    return ds

  def get_validation_dataset(self, batch_size: int):
    """Build the validation dataset."""

    # Same steps as in `get_train_dataset`, but without shuffling and no repetition.
    ds = self._base_data[DatasetSplit.VALIDATION].map(lambda x : (self._tokenize_source(x['src']),
                                                                  self._tokenize_destination(x['dst'])))
    ds = ds.map(lambda x, y: self._to_training_input(x, y))
    ds = ds.filter(lambda x: tf.shape(x.input_tokens)[0] <= self._max_seq_len)
    ds = ds.batch(batch_size, drop_remainder=True)
    return ds

Para probar MTNTDatasetBuilder, vuelve a crear una instancia del GemmaTokenizer personalizado, aplícalo en el conjunto de datos de MTNT y muestreas dos ejemplos:

tokenizer = GemmaTokenizer(vocab)

dataset_builder = MTNTDatasetBuilder(tokenizer, max_seq_len=20)
ds = dataset_builder.get_train_dataset(3, 1)
ds = ds.take(2)
ds = ds.as_numpy_iterator()

for idx, example in enumerate(ds):
  print(f'Example {idx}:')
  for key, val in example.items():
    print(f'{key}: {val}')
  print()
WARNING:tensorflow:Mapping types may not work well with tf.nest. Prefer using MutableMapping for <class '__main__.TrainingInput'>
WARNING:tensorflow:Mapping types may not work well with tf.nest. Prefer using MutableMapping for <class '__main__.TrainingInput'>
WARNING:tensorflow:Mapping types may not work well with tf.nest. Prefer using MutableMapping for <class '__main__.TrainingInput'>
Example 0:
input_tokens: [[     2  49688    736   1280   6987 235292    108  10924    665  12302
  235341    108      2   4397  63011   1437  38696   1241      1      0]
 [     2  49688    736   1280   6987 235292    108  13835   1517 235265
     108      2  69875    540  19713 235265      1      0      0      0]
 [     2  49688    736   1280   6987 235292    108   6956   1586 235297
  235265    108      2  78368   1586 235297 235265      1      0      0]]
target_mask: [[False False False False False False False False False False False False
   True  True  True  True  True  True  True False]
 [False False False False False False False False False False False  True
   True  True  True  True  True False False False]
 [False False False False False False False False False False False False
   True  True  True  True  True  True False False]]

Example 1:
input_tokens: [[     2  49688    736   1280   6987 235292    108  18874 235341    108
       2 115905   6425   1241      1      0      0      0      0      0]
 [     2  49688    736   1280   6987 235292    108   7574   3356 235341
     108      2   7997  20707   1241      1      0      0      0      0]
 [     2  49688    736   1280   6987 235292    108   8703    665 235265
     108      2 235338 235303  90006  20133 235265      1      0      0]]
target_mask: [[False False False False False False False False False False  True  True
   True  True  True False False False False False]
 [False False False False False False False False False False False  True
   True  True  True  True False False False False]
 [False False False False False False False False False False False  True
   True  True  True  True  True  True False False]]

Configura el modelo

Antes de comenzar a ajustar el modelo de Gemma, debes configurarlo.

Primero, carga y formatea el punto de control del modelo Gemma con el método gemma.params.load_and_format_params:

params = params_lib.load_and_format_params(CKPT_PATH)

Para cargar automáticamente la configuración correcta desde el punto de control del modelo de Gemma, usa gemma.transformer.TransformerConfig. El argumento cache_size es la cantidad de pasos de tiempo en la caché Transformer de Gemma. Luego, crea una instancia del modelo de Gemma como model_2b con gemma.transformer.Transformer (que se hereda de flax.linen.Module).

config_2b = transformer_lib.TransformerConfig.from_params(
    params,
    cache_size=30
)

model_2b = transformer_lib.Transformer(config=config_2b)

Ajusta el modelo

En esta sección, deberás hacer lo siguiente:

  • Usa la clase gemma.transformer.Transformer para crear la función de avance y pérdida.
  • Compila los vectores de máscara de posición y atención para los tokens
  • Compila una función de paso de entrenamiento con Flax.
  • Compila el paso de validación sin el pase hacia atrás.
  • Crea el bucle de entrenamiento.
  • Ajustar el modelo de Gemma

Define el pase hacia delante y la función de pérdida con la clase gemma.transformer.Transformer. El elemento Transformer de Gemma se hereda de flax.linen.Module y ofrece dos métodos esenciales:

  • init: Inicializa los parámetros del modelo.
  • apply: Ejecuta la función __call__ del modelo con un conjunto determinado de parámetros.

    Dado que estás trabajando con pesos de Gemma previamente entrenados, no necesitas usar la función init.

def forward_and_loss_fn(params,
                        *,
                        model: transformer_lib.Transformer,
                        input_tokens: jax.Array,            # Shape [B, L]
                        input_mask: jax.Array,              # Shape [B, L]
                        positions: jax.Array,               # Shape [B, L]
                        attention_mask: jax.Array,          # [B, L, L]
                        ) -> jax.Array:
  """The forward pass and the loss function.

  Args:
    params: Model's input parameters.
    model: The Gemma transformer model to call.
    input_tokens: Input tokens sequence, shape [B, L].
    input_mask: Tokens to ignore when computing the loss, shape [B, L].
    positions: Relative position of each token, shape [B, L].
    attention_mask: Input attention mask, shape [B, L].

  Returns:
    The softmax cross-entropy loss for the next-token prediction task.
  """

  # The forward pass on the input data.
  # No attention cache is needed here.
  logits, _ = model.apply(
        params,
        input_tokens,
        positions,
        None,              # Attention cache is None.
        attention_mask,
    )

  # Exclude the last step as it does not appear in the targets.
  logits = logits[0, :-1]

  # Similarly, the first token cannot be predicted.
  target_tokens = input_tokens[0, 1:]
  target_mask = input_mask[0, 1:]

  # Convert the target labels to one-hot encoded vectors.
  one_hot = jax.nn.one_hot(target_tokens, logits.shape[-1])

  # Don't update on unwanted tokens.
  one_hot = one_hot * target_mask.astype(one_hot.dtype)[...,None]

  # Define the normalization factor.
  norm_factor = 1 / (jnp.sum(target_mask) + 1e-8)

  # Return the negative log likelihood (NLL) loss.
  return -jnp.sum(jax.nn.log_softmax(logits) * one_hot) * norm_factor

La clase gemma.transformer.Transformer requiere un vector attention_mask y un positions junto a cada entrada. Para generarlos, crea una función personalizada que use Transformer.build_positions_from_mask y Transformer.make_causal_attn_mask:

def get_attention_mask_and_positions(example: jax.Array,
                                     pad_id : int,
                                     )-> tuple[jax.Array, jax.Array]:
  """Builds the position and attention mask vectors from the given tokens."""
  pad_mask = example != pad_id
  current_token_position = transformer_lib.build_positions_from_mask(pad_mask)
  attention_mask = transformer_lib.make_causal_attn_mask(pad_mask)
  return current_token_position, attention_mask

Compila la función train_step que realiza el pase hacia atrás y actualiza los parámetros del modelo según corresponda, donde:

  • jax.value_and_grad sirve para evaluar la función de pérdida y los gradientes durante los pases hacia adelante y hacia atrás.
  • optax.apply_updates es para actualizar los parámetros.
def train_step(model: transformer_lib.Transformer,
               params,
               optimizer: optax.GradientTransformation,
               opt_state: optax.OptState,
               pad_id: int,
               example: TrainingInput):
  """Train step.

  Args:
    model: The Gemma transformer model.
    params: The model's input parameters.
    optimizer: The Optax optimizer to use.
    opt_state: The input optimizer's state.
    pad_id: ID of the pad token.
    example: Input batch.

  Returns:
    The training loss, the updated parameters, and the updated optimizer state.
  """

  # Build the position and attention mask vectors.
  positions, attention_mask = get_attention_mask_and_positions(example.input_tokens, pad_id)

  # The forward and backward passes.
  train_loss, grads = jax.value_and_grad(forward_and_loss_fn)(params,
                                                             model=model,
                                                             input_tokens=example.input_tokens,
                                                             input_mask=example.target_mask,
                                                             positions=positions,
                                                             attention_mask=attention_mask)
  # Update the parameters.
  updates, opt_state = optimizer.update(grads, opt_state)
  params = optax.apply_updates(params, updates)

  return train_loss, params, opt_state

Compila la función validation_step sin el pase hacia atrás:

def validation_step(model: transformer_lib.Transformer,
                    params,
                    pad_id: int,
                    example: TrainingInput,
                    ):
  positions, attention_mask = get_attention_mask_and_positions(example.input_tokens, pad_id)
  val_loss = forward_and_loss_fn(params,
                                 model=model,
                                 input_tokens=example.input_tokens,
                                 input_mask=example.target_mask,
                                 positions=positions,
                                 attention_mask=attention_mask)
  return val_loss

Define el bucle de entrenamiento con optax.sgd para el optimizador de SGD:

@chex.dataclass(frozen=True)
class TrainingConfig:
  learning_rate: float
  num_epochs: int
  eval_every_n: int
  batch_size: int
  max_steps: int | None = None

def train_loop(
    model: transformer_lib.Transformer,
    params,
    dataset_builder: MTNTDatasetBuilder,
    training_cfg: TrainingConfig):

  # Apply `jax.jit` on the training step, making the whole loop much more efficient.
  compiled_train_step = jax.jit(train_step, static_argnames=['model', 'optimizer'])

  # Apply `jax.jit` on the validation step.
  compiled_validation_step = jax.jit(validation_step, static_argnames=['model'])

  # To save memory, use the SGD optimizer instead of the usual Adam optimizer.
  # Note that for this specific example, SGD is more than enough.
  optimizer = optax.sgd(training_cfg.learning_rate)
  opt_state = optimizer.init(params)

  # Build the training dataset.
  train_ds = dataset_builder.get_train_dataset(batch_size=training_cfg.batch_size,
                                               num_epochs=training_cfg.num_epochs)
  train_ds = train_ds.as_numpy_iterator()

  # Build the validation dataset, with a limited number of samples for this demo.
  validation_ds = dataset_builder.get_validation_dataset(batch_size=training_cfg.batch_size)
  validation_ds = validation_ds.take(50)

  n_steps = 0
  avg_loss=0

  # A first round of the validation loss.
  n_steps_eval = 0
  eval_loss = 0
  val_iterator = validation_ds.as_numpy_iterator()
  for val_example in val_iterator:
    eval_loss += compiled_validation_step(model,
                                          params,
                                          dataset_builder._tokenizer.pad_id,
                                          val_example)
    n_steps_eval += 1
  print(f"Start, validation loss: {eval_loss/n_steps_eval}")

  for train_example in train_ds:
    train_loss, params, opt_state = compiled_train_step(model=model,
                                                        params=params,
                                                        optimizer=optimizer,
                                                        opt_state=opt_state,
                                                        pad_id=dataset_builder._tokenizer.pad_id,
                                                        example=train_example)
    n_steps += 1
    avg_loss += train_loss
    if n_steps % training_cfg.eval_every_n == 0:
      eval_loss = 0

      n_steps_eval = 0
      val_iterator = validation_ds.as_numpy_iterator()
      for val_example in val_iterator:
        eval_loss += compiled_validation_step(model,
                                              params,
                                              dataset_builder._tokenizer.pad_id,
                                              val_example)
        n_steps_eval +=1
      avg_loss /= training_cfg.eval_every_n
      eval_loss /= n_steps_eval
      print(f"STEP {n_steps} training loss: {avg_loss} - eval loss: {eval_loss}")
      avg_loss=0
    if training_cfg.max_steps is not None and n_steps > training_cfg.max_steps:
      break
  return params

Comienza a ajustar el modelo de Gemma en una cantidad limitada de pasos (SEQ_SIZE) para asegurarte de que se ajuste a la memoria:

SEQ_SIZE = 25
tokenizer = GemmaTokenizer(vocab)
dataset_builder= MTNTDatasetBuilder(tokenizer, SEQ_SIZE)
training_cfg = TrainingConfig(learning_rate=1e-4,
                              num_epochs=1,
                              eval_every_n=20,
                              batch_size=1,
                              max_steps=100)

params = train_loop(model=model_2b,
                    params={'params': params['transformer']},
                    dataset_builder=dataset_builder,
                    training_cfg=training_cfg)
Start, validation loss: 10.647212982177734
STEP 20 training loss: 3.3015992641448975 - eval loss: 2.686880111694336
STEP 40 training loss: 5.375057220458984 - eval loss: 2.6751961708068848
STEP 60 training loss: 2.6599338054656982 - eval loss: 2.663877010345459
STEP 80 training loss: 4.822389125823975 - eval loss: 2.3333375453948975
STEP 100 training loss: 2.0131142139434814 - eval loss: 2.360811948776245

Tanto la pérdida de entrenamiento como la pérdida de validación deberían haberse reducido con cada recuento de pasos.

Crea un sampler con gemma.sampler.Sampler. Usa el punto de control del modelo Gemma y el tokenizador.

sampler = sampler_lib.Sampler(
    transformer=model_2b,
    vocab=vocab,
    params=params['params'],
)

Usa sampler para verificar si tu modelo puede realizar la traducción. El argumento total_generation_steps en gemma.sampler.Sampler es la cantidad de pasos realizados cuando se genera una respuesta. Para asegurarte de que la entrada coincida con el formato de entrenamiento, usa el prefijo Translate this into French:\n con un carácter de línea nueva al final. Esto le indica al modelo que debe comenzar la traducción.

sampler(
    ["Translate this into French:\nHello, my name is Morgane.\n"],
    total_generation_steps=100,
    ).text
["C'est Bonjour, mon nom est Morgane.C'est Bonjour, mon nom est Morgane."]

Más información