Ver en ai.google.dev | Ejecutar en Google Colab | Abrir en Vertex AI | Ver el código fuente en GitHub |
Descripción general
Gemma es una familia de modelos grandes de lenguaje abierto, livianos y de última generación, que se basan en la investigación y la tecnología de Google DeepMind Gemini. Este instructivo demuestra cómo ajustar el modelo Gemma 2B Instruct para una tarea de traducción inglés-francés usando la biblioteca gemma
de Google DeepMind, JAX (una biblioteca de computación numérica de alto rendimiento), Flax (la biblioteca de red neuronal basada en JAX), Chex (una biblioteca de utilidades para escribir código JAX confiable), Optax Aunque Flax no se usa directamente en este bloc de notas, se usó para crear Gemma.
La biblioteca gemma
se escribió con JAX, Flax, Orbax (una biblioteca basada en JAX para utilidades de entrenamiento, como puntos de control) y SentencePiece (una biblioteca de tokenizador/detokenizador).
Configuración
1. Configurar acceso a Kaggle para Gemma
Para completar este instructivo, primero debes seguir las instrucciones de configuración en Configuración de Gemma, que te muestran cómo hacer lo siguiente:
- Obtén acceso a Gemma en kaggle.com.
- Selecciona un entorno de ejecución de Colab con recursos suficientes para ejecutar el modelo de Gemma.
- Generar y configurar un nombre de usuario Kaggle y una clave de API.
Después de completar la configuración de Gemma, continúa con la siguiente sección, en la que establecerás variables de entorno para tu entorno de Colab.
2. Configure las variables de entorno
Configura variables de entorno para KAGGLE_USERNAME
y KAGGLE_KEY
. Cuando aparezca el mensaje “¿Quieres otorgar acceso?” mensajes, acepta proporcionar acceso al Secret.
import os
from google.colab import userdata # `userdata` is a Colab API.
os.environ["KAGGLE_USERNAME"] = userdata.get('KAGGLE_USERNAME')
os.environ["KAGGLE_KEY"] = userdata.get('KAGGLE_KEY')
3. Instala la biblioteca gemma
Por el momento, la aceleración de hardware de Colab es insuficiente para ejecutar este notebook. Si usas Colab Pay As You Go o Colab Pro, haz clic en Editar > Configuración del notebook > Selecciona GPU A100 > Guarda para habilitar la aceleración de hardware.
A continuación, debes instalar la biblioteca gemma
de Google DeepMind desde github.com/google-deepmind/gemma
. Si recibes un error sobre el “agente de resolución de dependencias de pip”, por lo general, puedes ignorarlo.
pip install -q git+https://github.com/google-deepmind/gemma.git
4. Importa las bibliotecas
Este notebook usa Flax (para redes neuronales), JAX principal, SentencePiece (para la asignación de token), Chex (una biblioteca de utilidades para escribir código JAX confiable) y TensorFlow Datasets.
import os
import enum
import re
import string
import chex
import jax
import jax.numpy as jnp
import optax
import tensorflow as tf
import tensorflow_datasets as tfds
from gemma import params as params_lib
from gemma import sampler as sampler_lib
from gemma import transformer as transformer_lib
import sentencepiece as spm
Carga el modelo de Gemma
Carga el modelo Gemma con kagglehub.model_download
, que toma tres argumentos:
handle
: el controlador del modelo de Kagglepath
: (Cadena opcional) es la ruta de acceso local.force_download
: (booleano opcional) Obliga a volver a descargar el modelo.
GEMMA_VARIANT = '2b-it' # @param ['2b', '2b-it'] {type:"string"}
import kagglehub
GEMMA_PATH = kagglehub.model_download(f'google/gemma/flax/{GEMMA_VARIANT}')
Downloading from https://www.kaggle.com/api/v1/models/google/gemma/flax/2b-it/2/download... 100%|██████████| 3.67G/3.67G [00:26<00:00, 147MB/s] Extracting model files...
print('GEMMA_PATH:', GEMMA_PATH)
GEMMA_PATH: /root/.cache/kagglehub/models/google/gemma/flax/2b-it/2
Verifica la ubicación de los pesos del modelo y el tokenizador, luego establece las variables de la ruta de acceso. El directorio del tokenizador estará en el directorio principal donde descargaste el modelo, mientras que los pesos del modelo estarán en un subdirectorio. Por ejemplo:
- El archivo
tokenizer.model
estará en/LOCAL/PATH/TO/gemma/flax/2b-it/2
). - El punto de control del modelo estará en
/LOCAL/PATH/TO/gemma/flax/2b-it/2/2b-it
).
CKPT_PATH = os.path.join(GEMMA_PATH, GEMMA_VARIANT)
TOKENIZER_PATH = os.path.join(GEMMA_PATH, 'tokenizer.model')
print('CKPT_PATH:', CKPT_PATH)
print('TOKENIZER_PATH:', TOKENIZER_PATH)
CKPT_PATH: /root/.cache/kagglehub/models/google/gemma/flax/2b-it/2/2b-it TOKENIZER_PATH: /root/.cache/kagglehub/models/google/gemma/flax/2b-it/2/tokenizer.model
Carga y prepara el conjunto de datos MTNT y el tokenizador de Gemma
Usarás el conjunto de datos MTNT (Traducción automática de texto ruidoso), que está disponible en Conjuntos de datos de TensorFlow.
Descarga la porción del conjunto de datos de inglés a francés del conjunto de datos MTNT y, luego, toma muestras de dos ejemplos. Cada muestra del conjunto de datos contiene dos entradas: src
: la oración original en inglés; y dst
: la traducción al francés correspondiente.
ds = tfds.load("mtnt/en-fr", split="train")
ds = ds.take(2)
ds = ds.as_numpy_iterator()
for idx, example in enumerate(ds):
print(f'Example {idx}:')
for key, val in example.items():
print(f'{key}: {val}')
print()
Downloading and preparing dataset 35.08 MiB (download: 35.08 MiB, generated: 11.33 MiB, total: 46.41 MiB) to /root/tensorflow_datasets/mtnt/en-fr/1.0.0... Dl Completed...: 0 url [00:00, ? url/s] Dl Size...: 0 MiB [00:00, ? MiB/s] Extraction completed...: 0 file [00:00, ? file/s] Generating splits...: 0%| | 0/3 [00:00<?, ? splits/s] Generating train examples...: 0%| | 0/35692 [00:00<?, ? examples/s] Shuffling /root/tensorflow_datasets/mtnt/en-fr/1.0.0.incomplete6YJMND/mtnt-train.tfrecord*...: 0%| … Generating test examples...: 0%| | 0/1020 [00:00<?, ? examples/s] Shuffling /root/tensorflow_datasets/mtnt/en-fr/1.0.0.incomplete6YJMND/mtnt-test.tfrecord*...: 0%| |… Generating valid examples...: 0%| | 0/811 [00:00<?, ? examples/s] Shuffling /root/tensorflow_datasets/mtnt/en-fr/1.0.0.incomplete6YJMND/mtnt-valid.tfrecord*...: 0%| … Dataset mtnt downloaded and prepared to /root/tensorflow_datasets/mtnt/en-fr/1.0.0. Subsequent calls will reuse this data. Example 0: dst: b'Le groupe de " toutes les \xc3\xa9toiles potentielles de la conf\xc3\xa9rence de l\'Est mais qui ne s\'en sortent pas dans le groupe de l\'Ouest ".' src: b'The group of \xe2\x80\x9ceastern conference potential all stars but not making it in the West\xe2\x80\x9d group.' Example 1: dst: b"Kameron est-elle un peu aigrie de son manque de temps \xc3\xa0 l'\xc3\xa9cran ?" src: b'Is Kameron a Little Salty About Her Lack of Air Time?'
Carga el tokenizador de Gemma, construido con sentencepiece.SentencePieceProcessor
:
vocab = spm.SentencePieceProcessor()
vocab.Load(TOKENIZER_PATH)
True
Personaliza el SentencePieceProcessor
para la tarea de traducción de inglés a francés. Dado que ajustarás la parte en inglés del modelo Gemma, debes hacer algunos ajustes, como los siguientes:
El prefijo de entrada: Agregar un prefijo común a cada entrada indica la tarea de traducción. Por ejemplo, podrías usar un mensaje con un prefijo como
Translate this into French: [INPUT_SENTENCE]
.El sufijo de inicio de la traducción: Agregar un sufijo al final de cada instrucción le indica al modelo Gemma exactamente cuándo comenzar el proceso de traducción. Una línea nueva debería hacer el trabajo.
Tokens de modelo de lenguaje: Los modelos de Gemma esperan un "principio de la secuencia". token al principio de cada secuencia, por lo que agregar un “fin de la secuencia” el token de acceso al final de cada ejemplo de entrenamiento debería ser suficiente.
Crea un wrapper personalizado alrededor de
SentencePieceProcessor
de la siguiente manera:
class GemmaTokenizer:
def __init__(self,
spm_processor: spm.SentencePieceProcessor):
self._spm_processor = spm_processor
@property
def pad_id(self) -> int:
"""Fast access to the pad ID."""
return self._spm_processor.pad_id()
def tokenize(self,
example: str | bytes,
prefix: str = '',
suffix: str = '',
add_eos: bool = True) -> jax.Array:
"""
The tokenization function.
Args:
example: Input string to tokenize.
prefix: Prefix to add to the input string.
suffix: Suffix to add to the input string.
add_eos: If True, add an "end of sentence" token at the end of the output
sequence.
Returns:
Tokens corresponding to the input string.
"""
int_list = [self._spm_processor.bos_id()]
int_list.extend(self._spm_processor.EncodeAsIds(prefix + example + suffix))
if add_eos:
int_list.append(self._spm_processor.eos_id())
return jnp.array(int_list, dtype=jnp.int32)
def tokenize_tf_op(self,
str_tensor: tf.Tensor,
prefix: str = '',
suffix: str = '',
add_eos: bool = True) -> tf.Tensor:
"""A TensorFlow operator for the tokenize function."""
encoded = tf.numpy_function(
self.tokenize,
[str_tensor, prefix, suffix, add_eos],
tf.int32)
encoded.set_shape([None])
return encoded
def to_string(self, tokens: jax.Array) -> str:
"""Convert an array of tokens to a string."""
return self._spm_processor.EncodeIds(tokens.tolist())
Para probarlo, crea una instancia de tu GemmaTokenizer
personalizado nuevo y, luego, aplícalo en una muestra pequeña del conjunto de datos de MTNT:
tokenizer = GemmaTokenizer(vocab)
def tokenize_source(tokenizer, example: tf.Tensor):
return tokenizer.tokenize_tf_op(example,
prefix='Translate this into French:\n',
suffix='\n',
add_eos=False)
def tokenize_destination(tokenizer, example: tf.Tensor):
return tokenizer.tokenize_tf_op(example,
add_eos=True)
ds = tfds.load("mtnt/en-fr",split="train")
ds = ds.take(2)
ds = ds.map(lambda x: {'src': tokenize_source(tokenizer, x['src']),
'dst': tokenize_destination(tokenizer, x['dst'])})
ds = ds.as_numpy_iterator()
for idx, example in enumerate(ds):
print(f'Example {idx}:')
for key, val in example.items():
print(f'{key}: {val}')
print()
Example 0: src: [ 2 49688 736 1280 6987 235292 108 651 2778 576 1080 104745 11982 5736 832 8995 901 780 3547 665 575 573 4589 235369 2778 235265 108] dst: [ 2 2025 29653 581 664 16298 1437 55563 41435 7840 581 683 111452 581 533 235303 9776 4108 2459 679 485 235303 479 6728 579 1806 2499 709 29653 581 533 235303 101323 16054 1] Example 1: src: [ 2 49688 736 1280 6987 235292 108 2437 87150 477 476 11709 230461 8045 3636 40268 576 4252 4897 235336 108] dst: [ 2 213606 477 1455 235290 3510 748 8268 191017 2809 581 2032 69972 581 11495 1305 533 235303 65978 1654 1]
Compila un cargador de datos para todo el conjunto de datos de MTNT:
@chex.dataclass(frozen=True)
class TrainingInput:
# Input tokens provided to the model.
input_tokens: jax.Array
# A mask that determines which tokens contribute to the target loss
# calculation.
target_mask: jax.Array
class DatasetSplit(enum.Enum):
TRAIN = 'train'
VALIDATION = 'valid'
class MTNTDatasetBuilder:
"""The dataset builder for the MTNT dataset."""
N_ITEMS = {DatasetSplit.TRAIN: 35_692,
DatasetSplit.VALIDATION: 811}
BUFFER_SIZE_SHUFFLE = 10_000
TRANSLATION_PREFIX = 'Translate this into French:\n'
TRANSLATION_SUFFIX = '\n'
def __init__(self,
tokenizer : GemmaTokenizer,
max_seq_len: int):
"""Constructor.
Args:
tokenizer: Gemma tokenizer to use.
max_seq_len: size of each sequence in a given batch.
"""
self._tokenizer = tokenizer
self._base_data = {
DatasetSplit.TRAIN: tfds.load("mtnt/en-fr",split="train"),
DatasetSplit.VALIDATION: tfds.load("mtnt/en-fr",split="valid"),
}
self._max_seq_len = max_seq_len
def _tokenize_source(self, example: tf.Tensor):
"""Tokenization function for the source."""
return self._tokenizer.tokenize_tf_op(example,
prefix=self.TRANSLATION_PREFIX,
suffix=self.TRANSLATION_SUFFIX,
add_eos=False)
def _tokenize_destination(self, example: tf.Tensor):
"""Tokenization function for the French translation."""
return self._tokenizer.tokenize_tf_op(example,
add_eos=True)
def _pad_up_to_max_len(self,
input_tensor: tf.Tensor,
pad_value: int | bool,
) -> tf.Tensor:
"""Pad the given tensor up to sequence length of a batch."""
seq_len = tf.shape(input_tensor)[0]
to_pad = tf.maximum(self._max_seq_len - seq_len, 0)
return tf.pad(input_tensor,
[[0, to_pad]],
mode='CONSTANT',
constant_values=pad_value,
)
def _to_training_input(self,
src_tokens: jax.Array,
dst_tokens: jax.Array,
) -> TrainingInput:
"""Build a training input from a tuple of source and destination tokens."""
# The input sequence fed to the model is simply the concatenation of the
# source and the destination.
tokens = tf.concat([src_tokens, dst_tokens], axis=0)
# To prevent the model from updating based on the source (input)
# tokens, add a target mask to each input.
q_mask = tf.zeros_like(src_tokens, dtype=tf.bool)
a_mask = tf.ones_like(dst_tokens, dtype=tf.bool)
mask = tf.concat([q_mask, a_mask], axis=0)
# If the output tokens sequence is smaller than the target sequence size,
# then pad it with pad tokens.
tokens = self._pad_up_to_max_len(tokens, self._tokenizer.pad_id)
# Don't want to perform the backward pass on the pad tokens.
mask = self._pad_up_to_max_len(mask, False)
return TrainingInput(input_tokens=tokens, target_mask=mask)
def get_train_dataset(self, batch_size: int, num_epochs: int):
"""Build the training dataset."""
# Tokenize each sample.
ds = self._base_data[DatasetSplit.TRAIN].map(lambda x : (self._tokenize_source(x['src']),
self._tokenize_destination(x['dst'])))
# Convert the samples to training inputs.
ds = ds.map(lambda x, y: self._to_training_input(x, y))
# Remove the samples that are too long.
ds = ds.filter(lambda x: tf.shape(x.input_tokens)[0] <= self._max_seq_len)
# Shuffle the dataset.
ds = ds.shuffle(buffer_size=self.BUFFER_SIZE_SHUFFLE)
# Repeat if necessary.
ds = ds.repeat(num_epochs)
# Build batches.
ds = ds.batch(batch_size, drop_remainder=True)
return ds
def get_validation_dataset(self, batch_size: int):
"""Build the validation dataset."""
# Same steps as in `get_train_dataset`, but without shuffling and no repetition.
ds = self._base_data[DatasetSplit.VALIDATION].map(lambda x : (self._tokenize_source(x['src']),
self._tokenize_destination(x['dst'])))
ds = ds.map(lambda x, y: self._to_training_input(x, y))
ds = ds.filter(lambda x: tf.shape(x.input_tokens)[0] <= self._max_seq_len)
ds = ds.batch(batch_size, drop_remainder=True)
return ds
Prueba el MTNTDatasetBuilder
creando una nueva instancia del GemmaTokenizer
personalizado, luego aplicándolo en el conjunto de datos de MTNT y tomando muestras de dos ejemplos:
tokenizer = GemmaTokenizer(vocab)
dataset_builder = MTNTDatasetBuilder(tokenizer, max_seq_len=20)
ds = dataset_builder.get_train_dataset(3, 1)
ds = ds.take(2)
ds = ds.as_numpy_iterator()
for idx, example in enumerate(ds):
print(f'Example {idx}:')
for key, val in example.items():
print(f'{key}: {val}')
print()
WARNING:tensorflow:Mapping types may not work well with tf.nest. Prefer using MutableMapping for <class '__main__.TrainingInput'> WARNING:tensorflow:Mapping types may not work well with tf.nest. Prefer using MutableMapping for <class '__main__.TrainingInput'> WARNING:tensorflow:Mapping types may not work well with tf.nest. Prefer using MutableMapping for <class '__main__.TrainingInput'> Example 0: input_tokens: [[ 2 49688 736 1280 6987 235292 108 10924 665 12302 235341 108 2 4397 63011 1437 38696 1241 1 0] [ 2 49688 736 1280 6987 235292 108 13835 1517 235265 108 2 69875 540 19713 235265 1 0 0 0] [ 2 49688 736 1280 6987 235292 108 6956 1586 235297 235265 108 2 78368 1586 235297 235265 1 0 0]] target_mask: [[False False False False False False False False False False False False True True True True True True True False] [False False False False False False False False False False False True True True True True True False False False] [False False False False False False False False False False False False True True True True True True False False]] Example 1: input_tokens: [[ 2 49688 736 1280 6987 235292 108 18874 235341 108 2 115905 6425 1241 1 0 0 0 0 0] [ 2 49688 736 1280 6987 235292 108 7574 3356 235341 108 2 7997 20707 1241 1 0 0 0 0] [ 2 49688 736 1280 6987 235292 108 8703 665 235265 108 2 235338 235303 90006 20133 235265 1 0 0]] target_mask: [[False False False False False False False False False False True True True True True False False False False False] [False False False False False False False False False False False True True True True True False False False False] [False False False False False False False False False False False True True True True True True True False False]]
Configura el modelo
Antes de comenzar a ajustar el modelo de Gemma, debes configurarlo.
Primero, carga y formatea el punto de control del modelo Gemma con el método gemma.params.load_and_format_params
:
params = params_lib.load_and_format_params(CKPT_PATH)
Para cargar automáticamente la configuración correcta desde el punto de control del modelo Gemma, usa gemma.transformer.TransformerConfig
. El argumento cache_size
es la cantidad de pasos de la caché Transformer
de Gemma. Luego, crea una instancia del modelo Gemma como model_2b
con gemma.transformer.Transformer
(que se hereda de flax.linen.Module
).
config_2b = transformer_lib.TransformerConfig.from_params(
params,
cache_size=30
)
model_2b = transformer_lib.Transformer(config=config_2b)
Ajusta el modelo
En esta sección, deberás hacer lo siguiente:
- Usa la clase
gemma.transformer.Transformer
para crear la función de avance y pérdida. - Crear los vectores de máscara de posición y atención para los tokens
- Compila una función de pasos de entrenamiento con Flax.
- Compila el paso de validación sin el pase hacia atrás.
- Crea el bucle de entrenamiento.
- Ajusta el modelo Gemma.
Define el pase hacia delante y la función de pérdida con la clase gemma.transformer.Transformer
. La Transformer
de Gemma se hereda de flax.linen.Module
y ofrece dos métodos esenciales:
init
: Inicializa los parámetros del modelo.apply
: Ejecuta la función__call__
del modelo con un conjunto determinado de parámetros.Como estás trabajando con pesos de Gemma previamente entrenados, no necesitas usar la función
init
.
def forward_and_loss_fn(params,
*,
model: transformer_lib.Transformer,
input_tokens: jax.Array, # Shape [B, L]
input_mask: jax.Array, # Shape [B, L]
positions: jax.Array, # Shape [B, L]
attention_mask: jax.Array, # [B, L, L]
) -> jax.Array:
"""The forward pass and the loss function.
Args:
params: Model's input parameters.
model: The Gemma transformer model to call.
input_tokens: Input tokens sequence, shape [B, L].
input_mask: Tokens to ignore when computing the loss, shape [B, L].
positions: Relative position of each token, shape [B, L].
attention_mask: Input attention mask, shape [B, L].
Returns:
The softmax cross-entropy loss for the next-token prediction task.
"""
# The forward pass on the input data.
# No attention cache is needed here.
logits, _ = model.apply(
params,
input_tokens,
positions,
None, # Attention cache is None.
attention_mask,
)
# Exclude the last step as it does not appear in the targets.
logits = logits[0, :-1]
# Similarly, the first token cannot be predicted.
target_tokens = input_tokens[0, 1:]
target_mask = input_mask[0, 1:]
# Convert the target labels to one-hot encoded vectors.
one_hot = jax.nn.one_hot(target_tokens, logits.shape[-1])
# Don't update on unwanted tokens.
one_hot = one_hot * target_mask.astype(one_hot.dtype)[...,None]
# Define the normalization factor.
norm_factor = 1 / (jnp.sum(target_mask) + 1e-8)
# Return the negative log likelihood (NLL) loss.
return -jnp.sum(jax.nn.log_softmax(logits) * one_hot) * norm_factor
La clase gemma.transformer.Transformer
requiere un attention_mask
y un vector positions
junto a cada entrada. Para generarlos, crea una función personalizada que use Transformer.build_positions_from_mask
y Transformer.make_causal_attn_mask
:
def get_attention_mask_and_positions(example: jax.Array,
pad_id : int,
)-> tuple[jax.Array, jax.Array]:
"""Builds the position and attention mask vectors from the given tokens."""
pad_mask = example != pad_id
current_token_position = transformer_lib.build_positions_from_mask(pad_mask)
attention_mask = transformer_lib.make_causal_attn_mask(pad_mask)
return current_token_position, attention_mask
Compila la función train_step
que realiza la reversión y actualiza los parámetros del modelo según corresponda, en la que sucede lo siguiente:
jax.value_and_grad
se usa para evaluar la función de pérdida y los gradientes durante los pases hacia delante y hacia atrás.optax.apply_updates
se usa para actualizar los parámetros.
def train_step(model: transformer_lib.Transformer,
params,
optimizer: optax.GradientTransformation,
opt_state: optax.OptState,
pad_id: int,
example: TrainingInput):
"""Train step.
Args:
model: The Gemma transformer model.
params: The model's input parameters.
optimizer: The Optax optimizer to use.
opt_state: The input optimizer's state.
pad_id: ID of the pad token.
example: Input batch.
Returns:
The training loss, the updated parameters, and the updated optimizer state.
"""
# Build the position and attention mask vectors.
positions, attention_mask = get_attention_mask_and_positions(example.input_tokens, pad_id)
# The forward and backward passes.
train_loss, grads = jax.value_and_grad(forward_and_loss_fn)(params,
model=model,
input_tokens=example.input_tokens,
input_mask=example.target_mask,
positions=positions,
attention_mask=attention_mask)
# Update the parameters.
updates, opt_state = optimizer.update(grads, opt_state)
params = optax.apply_updates(params, updates)
return train_loss, params, opt_state
Compila la función validation_step
sin la retropropagación:
def validation_step(model: transformer_lib.Transformer,
params,
pad_id: int,
example: TrainingInput,
):
positions, attention_mask = get_attention_mask_and_positions(example.input_tokens, pad_id)
val_loss = forward_and_loss_fn(params,
model=model,
input_tokens=example.input_tokens,
input_mask=example.target_mask,
positions=positions,
attention_mask=attention_mask)
return val_loss
Define el bucle de entrenamiento con optax.sgd
para el optimizador de SGD:
@chex.dataclass(frozen=True)
class TrainingConfig:
learning_rate: float
num_epochs: int
eval_every_n: int
batch_size: int
max_steps: int | None = None
def train_loop(
model: transformer_lib.Transformer,
params,
dataset_builder: MTNTDatasetBuilder,
training_cfg: TrainingConfig):
# Apply `jax.jit` on the training step, making the whole loop much more efficient.
compiled_train_step = jax.jit(train_step, static_argnames=['model', 'optimizer'])
# Apply `jax.jit` on the validation step.
compiled_validation_step = jax.jit(validation_step, static_argnames=['model'])
# To save memory, use the SGD optimizer instead of the usual Adam optimizer.
# Note that for this specific example, SGD is more than enough.
optimizer = optax.sgd(training_cfg.learning_rate)
opt_state = optimizer.init(params)
# Build the training dataset.
train_ds = dataset_builder.get_train_dataset(batch_size=training_cfg.batch_size,
num_epochs=training_cfg.num_epochs)
train_ds = train_ds.as_numpy_iterator()
# Build the validation dataset, with a limited number of samples for this demo.
validation_ds = dataset_builder.get_validation_dataset(batch_size=training_cfg.batch_size)
validation_ds = validation_ds.take(50)
n_steps = 0
avg_loss=0
# A first round of the validation loss.
n_steps_eval = 0
eval_loss = 0
val_iterator = validation_ds.as_numpy_iterator()
for val_example in val_iterator:
eval_loss += compiled_validation_step(model,
params,
dataset_builder._tokenizer.pad_id,
val_example)
n_steps_eval += 1
print(f"Start, validation loss: {eval_loss/n_steps_eval}")
for train_example in train_ds:
train_loss, params, opt_state = compiled_train_step(model=model,
params=params,
optimizer=optimizer,
opt_state=opt_state,
pad_id=dataset_builder._tokenizer.pad_id,
example=train_example)
n_steps += 1
avg_loss += train_loss
if n_steps % training_cfg.eval_every_n == 0:
eval_loss = 0
n_steps_eval = 0
val_iterator = validation_ds.as_numpy_iterator()
for val_example in val_iterator:
eval_loss += compiled_validation_step(model,
params,
dataset_builder._tokenizer.pad_id,
val_example)
n_steps_eval +=1
avg_loss /= training_cfg.eval_every_n
eval_loss /= n_steps_eval
print(f"STEP {n_steps} training loss: {avg_loss} - eval loss: {eval_loss}")
avg_loss=0
if training_cfg.max_steps is not None and n_steps > training_cfg.max_steps:
break
return params
Comienza a ajustar el modelo Gemma en una cantidad limitada de pasos (SEQ_SIZE
) para asegurarte de que se ajuste a la memoria:
SEQ_SIZE = 25
tokenizer = GemmaTokenizer(vocab)
dataset_builder= MTNTDatasetBuilder(tokenizer, SEQ_SIZE)
training_cfg = TrainingConfig(learning_rate=1e-4,
num_epochs=1,
eval_every_n=20,
batch_size=1,
max_steps=100)
params = train_loop(model=model_2b,
params={'params': params['transformer']},
dataset_builder=dataset_builder,
training_cfg=training_cfg)
Start, validation loss: 10.647212982177734 STEP 20 training loss: 3.3015992641448975 - eval loss: 2.686880111694336 STEP 40 training loss: 5.375057220458984 - eval loss: 2.6751961708068848 STEP 60 training loss: 2.6599338054656982 - eval loss: 2.663877010345459 STEP 80 training loss: 4.822389125823975 - eval loss: 2.3333375453948975 STEP 100 training loss: 2.0131142139434814 - eval loss: 2.360811948776245
Tanto la pérdida de entrenamiento como la de validación deberían haberse reducido con cada recuento de pasos.
Crea un sampler
con gemma.sampler.Sampler
. Usa el punto de control del modelo Gemma y el tokenizador.
sampler = sampler_lib.Sampler(
transformer=model_2b,
vocab=vocab,
params=params['params'],
)
Usa el sampler
para verificar si tu modelo puede realizar la traducción. El argumento total_generation_steps
en gemma.sampler.Sampler
es la cantidad de pasos realizados cuando se genera una respuesta. Para asegurarte de que la entrada coincida con el formato de entrenamiento, usa el prefijo Translate this into French:\n
con un carácter de línea nueva al final. Esto le indica al modelo que comience la traducción.
sampler(
["Translate this into French:\nHello, my name is Morgane.\n"],
total_generation_steps=100,
).text
["C'est Bonjour, mon nom est Morgane.C'est Bonjour, mon nom est Morgane."]
Más información
- Puedes obtener más información sobre la biblioteca
gemma
de Google DeepMind en GitHub, que contiene docstrings de los módulos que usaste en este instructivo, comogemma.params
,gemma.transformer
ygemma.sampler
. - Las siguientes bibliotecas tienen sus propios sitios de documentación: core JAX, Flax, Chex, Optax y Orbax.
- Para ver la documentación del tokenizador/detokenizador
sentencepiece
, consulta el repositorio de GitHubsentencepiece
de Google. - Para ver la documentación de
kagglehub
, consultaREADME.md
en el repositorio de GitHubkagglehub
de Kaggle. - Aprende a usar modelos de Gemma con Vertex AI de Google Cloud.
- Si usas Google Cloud TPU (v3-8 y versiones posteriores), asegúrate de actualizar también al paquete
jax[tpu]
más reciente (!pip install -U jax[tpu] -f https://storage.googleapis.com/jax-releases/libtpu_releases.html
), reiniciar el entorno de ejecución y verificar que las versionesjax
yjaxlib
coincidan (!pip list | grep jax
). Esto puede evitar que se produzca elRuntimeError
debido a que las versiones dejaxlib
yjax
no coinciden. Para conocer más instrucciones de instalación de JAX, consulta los documentos de JAX.