JAX と Flax を使用した Gemma による推論

ai.google.dev で表示 Google Colab で実行 Vertex AI で開く GitHub のソースを表示

概要

Gemma は、Google DeepMind の Gemini の研究とテクノロジーに基づく、軽量で最先端のオープン大規模言語モデルのファミリーです。このチュートリアルでは、JAX(ハイ パフォーマンス数値計算ライブラリ)、Flax(JAX ベースのニューラル ネットワーク ライブラリ)、Orbax(checkpointing などのトレーニング ユーティリティ用の JAX ベースのライブラリ)、tokenizePentrize(トークポインティングなどのトレーニング ユーティリティ用の JAX ベースのライブラリ)、SentencePieceこのノートブックでは Flax は直接使用されていませんが、Gemma の作成には Flax が使用されました。

このノートブックは、無料の T4 GPU を搭載した Google Colab で実行できます([編集] > [ノートブックの設定] > [ハードウェア アクセラレータ] で [T4 GPU] を選択します)。

セットアップ

1. Gemma 用に Kaggle のアクセスを設定する

このチュートリアルを完了するには、まず、Gemma の設定に記載されている設定手順を実施する必要があります。この手順では、以下を行う方法について説明します。

  • kaggle.com で Gemma にアクセスしてください。
  • Gemma モデルを実行するのに十分なリソースがある Colab ランタイムを選択します。
  • Kaggle のユーザー名と API キーを生成して構成します。

Gemma の設定が完了したら、次のセクションに進み、Colab 環境の環境変数を設定します。

2. 環境変数を設定する

KAGGLE_USERNAMEKAGGLE_KEY の環境変数を設定します。[アクセスを許可しますか?] というメッセージが表示されたら、シークレットへのアクセスを提供することに合意します。

import os
from google.colab import userdata # `userdata` is a Colab API.

os.environ["KAGGLE_USERNAME"] = userdata.get('KAGGLE_USERNAME')
os.environ["KAGGLE_KEY"] = userdata.get('KAGGLE_KEY')

3. gemma ライブラリをインストールする

このノートブックでは、無料の Colab GPU の使用に焦点を当てています。ハードウェア アクセラレーションを有効にするには、[編集] >ノートブックの設定 >[T4 GPU] を選択 >保存

次に、github.com/google-deepmind/gemma から Google DeepMind gemma ライブラリをインストールする必要があります。「pip の依存関係リゾルバ」に関するエラーが発生した場合、通常は無視できます。

pip install -q git+https://github.com/google-deepmind/gemma.git

Gemma モデルを読み込んで準備する

  1. kagglehub.model_download を使用して Gemma モデルを読み込みます。これは、次の 3 つの引数を取ります。
  • handle: Kaggle のモデルハンドル
  • path: (省略可)ローカルパス
  • force_download: (省略可のブール値)モデルの再ダウンロードを強制的に行います
で確認できます。
GEMMA_VARIANT = 'gemma2-2b-it' # @param ['gemma2-2b', 'gemma2-2b-it'] {type:"string"}
import kagglehub

GEMMA_PATH = kagglehub.model_download(f'google/gemma-2/flax/{GEMMA_VARIANT}')
Downloading 11 files:   0%|          | 0/11 [00:00<?, ?it/s]
Downloading from https://www.kaggle.com/api/v1/models/google/gemma-2-2b/flax/gemma2-2b-it/1/download/gemma2-2b-it/ocdbt.process_0/manifest.ocdbt...
100%|██████████| 180/180 [00:00<00:00, 101kB/s]
Downloading from https://www.kaggle.com/api/v1/models/google/gemma-2-2b/flax/gemma2-2b-it/1/download/gemma2-2b-it/d/b5a4695f4be0a2f41ec1e25616ebd7e7...
100%|██████████| 2.66k/2.66k [00:00<00:00, 5.36MB/s]
Downloading from https://www.kaggle.com/api/v1/models/google/gemma-2-2b/flax/gemma2-2b-it/1/download/gemma2-2b-it/descriptor/descriptor.pbtxt...
100%|██████████| 45.0/45.0 [00:00<00:00, 90.0kB/s]
Downloading from https://www.kaggle.com/api/v1/models/google/gemma-2-2b/flax/gemma2-2b-it/1/download/gemma2-2b-it/_METADATA...
100%|██████████| 55.3k/55.3k [00:00<00:00, 29.5MB/s]
Downloading from https://www.kaggle.com/api/v1/models/google/gemma-2-2b/flax/gemma2-2b-it/1/download/gemma2-2b-it/_CHECKPOINT_METADATA...
100%|██████████| 92.0/92.0 [00:00<00:00, 234kB/s]
Downloading from https://www.kaggle.com/api/v1/models/google/gemma-2-2b/flax/gemma2-2b-it/1/download/gemma2-2b-it/ocdbt.process_0/d/bf69258061ae5f35eb7a5669fe6877d4...
0%|          | 0.00/2.12G [00:00<?, ?B/s]
Downloading from https://www.kaggle.com/api/v1/models/google/gemma-2-2b/flax/gemma2-2b-it/1/download/gemma2-2b-it/ocdbt.process_0/d/fc20151969d7ca91ea9d8275bda0e219...
100%|██████████| 2.64k/2.64k [00:00<00:00, 5.58MB/s]

  0%|          | 2.00M/2.12G [00:00<01:48, 20.8MB/s]
Downloading from https://www.kaggle.com/api/v1/models/google/gemma-2-2b/flax/gemma2-2b-it/1/download/gemma2-2b-it/ocdbt.process_0/d/834bb4bf1e3854eb09f6208c95c071b2...
0%|          | 0.00/1.70G [00:00<?, ?B/s]
  0%|          | 9.00M/2.12G [00:00<00:46, 48.2MB/s]

  0%|          | 3.00M/1.70G [00:00<01:06, 27.6MB/s]
  1%|          | 14.0M/2.12G [00:00<00:46, 48.6MB/s]

  1%|          | 9.00M/1.70G [00:00<00:40, 44.5MB/s]
Downloading from https://www.kaggle.com/api/v1/models/google/gemma-2-2b/flax/gemma2-2b-it/1/download/gemma2-2b-it/manifest.ocdbt...
100%|██████████| 118/118 [00:00<00:00, 303kB/s]

  1%|          | 21.0M/2.12G [00:00<00:41, 53.7MB/s]
Downloading from https://www.kaggle.com/api/v1/models/google/gemma-2-2b/flax/gemma2-2b-it/1/download/gemma2-2b-it/checkpoint...
0%|          | 0.00/22.5k [00:00<?, ?B/s]
Downloading from https://www.kaggle.com/api/v1/models/google/gemma-2-2b/flax/gemma2-2b-it/1/download/tokenizer.model...
100%|██████████| 22.5k/22.5k [00:00<00:00, 24.7MB/s]


  1%|          | 17.0M/1.70G [00:00<00:36, 49.5MB/s]


  0%|          | 0.00/4.04M [00:00<?, ?B/s]
100%|██████████| 4.04M/4.04M [00:00<00:00, 64.6MB/s]


  1%|▏         | 24.0M/1.70G [00:00<00:34, 52.7MB/s]
  2%|▏         | 40.0M/2.12G [00:00<00:34, 64.6MB/s]

  2%|▏         | 33.0M/1.70G [00:00<00:27, 64.4MB/s]
  2%|▏         | 49.0M/2.12G [00:00<00:34, 64.8MB/s]

  3%|▎         | 47.0M/1.70G [00:00<00:20, 86.9MB/s]
  3%|▎         | 59.0M/2.12G [00:00<00:29, 74.4MB/s]

  3%|▎         | 56.0M/1.70G [00:00<00:24, 73.1MB/s]
  3%|▎         | 67.0M/2.12G [00:01<00:31, 70.1MB/s]

  4%|▎         | 64.0M/1.70G [00:01<00:25, 69.4MB/s]
  3%|▎         | 74.0M/2.12G [00:01<00:32, 67.4MB/s]

  4%|▍         | 73.0M/1.70G [00:01<00:23, 75.7MB/s]
  4%|▍         | 84.0M/2.12G [00:01<00:28, 75.5MB/s]

  5%|▍         | 81.0M/1.70G [00:01<00:22, 77.7MB/s]

  5%|▌         | 95.0M/1.70G [00:01<00:17, 96.5MB/s]
  4%|▍         | 92.0M/2.12G [00:01<00:38, 56.7MB/s]

  6%|▌         | 106M/1.70G [00:01<00:17, 101MB/s]  
  5%|▍         | 102M/2.12G [00:01<00:32, 67.2MB/s] 

  7%|▋         | 117M/1.70G [00:01<00:16, 102MB/s]
  5%|▌         | 110M/2.12G [00:01<00:30, 70.5MB/s]

  7%|▋         | 128M/1.70G [00:01<00:16, 105MB/s]
  5%|▌         | 119M/2.12G [00:01<00:28, 75.6MB/s]

  8%|▊         | 142M/1.70G [00:01<00:14, 117MB/s]
  6%|▌         | 129M/2.12G [00:02<00:30, 70.1MB/s]

  9%|▉         | 154M/1.70G [00:01<00:17, 92.5MB/s]
  6%|▋         | 138M/2.12G [00:02<00:28, 73.9MB/s]

  9%|▉         | 164M/1.70G [00:02<00:18, 87.7MB/s]
  7%|▋         | 146M/2.12G [00:02<00:30, 70.2MB/s]

 10%|▉         | 173M/1.70G [00:02<00:20, 81.7MB/s]
  7%|▋         | 153M/2.12G [00:02<00:33, 63.0MB/s]

 10%|█         | 182M/1.70G [00:02<00:19, 82.8MB/s]
  8%|▊         | 164M/2.12G [00:02<00:27, 75.3MB/s]

 11%|█         | 195M/1.70G [00:02<00:17, 90.8MB/s]
  8%|▊         | 174M/2.12G [00:02<00:25, 82.0MB/s]

 12%|█▏        | 207M/1.70G [00:02<00:16, 99.0MB/s]
  9%|▊         | 186M/2.12G [00:02<00:22, 92.9MB/s]

 13%|█▎        | 218M/1.70G [00:02<00:16, 99.7MB/s]
  9%|▉         | 196M/2.12G [00:02<00:22, 92.4MB/s]

 13%|█▎        | 229M/1.70G [00:02<00:15, 103MB/s] 
 10%|▉         | 206M/2.12G [00:02<00:22, 92.1MB/s]

 14%|█▎        | 239M/1.70G [00:02<00:15, 99.4MB/s]
 10%|▉         | 215M/2.12G [00:03<00:22, 91.3MB/s]

 14%|█▍        | 250M/1.70G [00:03<00:15, 101MB/s] 
 10%|█         | 226M/2.12G [00:03<00:21, 96.5MB/s]

 15%|█▌        | 263M/1.70G [00:03<00:14, 108MB/s]
 11%|█         | 238M/2.12G [00:03<00:19, 105MB/s] 
 11%|█▏        | 249M/2.12G [00:03<00:19, 103MB/s]

 16%|█▌        | 274M/1.70G [00:03<00:16, 91.6MB/s]
 12%|█▏        | 259M/2.12G [00:03<00:21, 93.3MB/s]

 16%|█▋        | 284M/1.70G [00:03<00:20, 76.0MB/s]
 12%|█▏        | 269M/2.12G [00:03<00:21, 94.3MB/s]

 17%|█▋        | 295M/1.70G [00:03<00:18, 84.0MB/s]
 13%|█▎        | 279M/2.12G [00:03<00:20, 94.2MB/s]

 17%|█▋        | 304M/1.70G [00:03<00:17, 84.4MB/s]
 13%|█▎        | 289M/2.12G [00:03<00:20, 94.9MB/s]

 18%|█▊        | 313M/1.70G [00:03<00:18, 81.9MB/s]
 14%|█▍        | 299M/2.12G [00:03<00:21, 91.4MB/s]
 14%|█▍        | 308M/2.12G [00:04<00:21, 89.4MB/s]

 18%|█▊        | 322M/1.70G [00:03<00:20, 73.5MB/s]

 19%|█▉        | 330M/1.70G [00:04<00:19, 74.9MB/s]
 15%|█▍        | 317M/2.12G [00:04<00:23, 81.1MB/s]
 15%|█▌        | 326M/2.12G [00:04<00:23, 83.6MB/s]

 19%|█▉        | 338M/1.70G [00:04<00:20, 72.0MB/s]

 20%|█▉        | 346M/1.70G [00:04<00:19, 74.6MB/s]
 15%|█▌        | 335M/2.12G [00:04<00:24, 79.2MB/s]

 20%|██        | 354M/1.70G [00:04<00:19, 75.0MB/s]
 16%|█▌        | 344M/2.12G [00:04<00:23, 81.4MB/s]
 16%|█▋        | 352M/2.12G [00:04<00:28, 67.3MB/s]

 21%|██        | 362M/1.70G [00:04<00:26, 54.3MB/s]
 17%|█▋        | 359M/2.12G [00:04<00:31, 59.6MB/s]

 21%|██        | 369M/1.70G [00:04<00:26, 53.4MB/s]
 17%|█▋        | 366M/2.12G [00:05<00:31, 59.0MB/s]

 22%|██▏       | 375M/1.70G [00:04<00:26, 54.9MB/s]
 17%|█▋        | 372M/2.12G [00:05<00:31, 59.2MB/s]

 22%|██▏       | 381M/1.70G [00:05<00:25, 56.2MB/s]
 17%|█▋        | 379M/2.12G [00:05<00:30, 62.3MB/s]

 22%|██▏       | 388M/1.70G [00:05<00:24, 56.8MB/s]
 18%|█▊        | 386M/2.12G [00:05<00:29, 63.8MB/s]

 23%|██▎       | 395M/1.70G [00:05<00:23, 60.2MB/s]
 18%|█▊        | 394M/2.12G [00:05<00:27, 68.5MB/s]

 23%|██▎       | 402M/1.70G [00:05<00:22, 62.7MB/s]
 19%|█▊        | 401M/2.12G [00:05<00:27, 66.3MB/s]

 23%|██▎       | 409M/1.70G [00:05<00:21, 64.4MB/s]
 19%|█▉        | 408M/2.12G [00:05<00:28, 65.4MB/s]

 24%|██▍       | 416M/1.70G [00:05<00:21, 65.4MB/s]

 24%|██▍       | 423M/1.70G [00:05<00:26, 51.4MB/s]
 19%|█▉        | 415M/2.12G [00:07<03:02, 10.1MB/s]

 25%|██▍       | 429M/1.70G [00:08<02:56, 7.79MB/s]
 19%|█▉        | 420M/2.12G [00:08<03:17, 9.28MB/s]

 25%|██▌       | 439M/1.70G [00:08<01:52, 12.2MB/s]
 20%|█▉        | 432M/2.12G [00:08<01:56, 15.7MB/s]

 26%|██▌       | 447M/1.70G [00:08<01:22, 16.5MB/s]
 20%|██        | 441M/2.12G [00:08<01:25, 21.1MB/s]

 26%|██▌       | 454M/1.70G [00:08<01:05, 20.5MB/s]
 21%|██        | 448M/2.12G [00:09<01:14, 24.0MB/s]

 26%|██▋       | 460M/1.70G [00:08<00:54, 24.4MB/s]

 27%|██▋       | 468M/1.70G [00:09<00:42, 31.6MB/s]
 21%|██        | 454M/2.12G [00:09<01:07, 26.4MB/s]
 21%|██▏       | 464M/2.12G [00:09<00:49, 36.4MB/s]

 27%|██▋       | 476M/1.70G [00:09<00:38, 34.4MB/s]

 28%|██▊       | 487M/1.70G [00:09<00:28, 47.0MB/s]
 22%|██▏       | 471M/2.12G [00:09<00:53, 33.2MB/s]

 28%|██▊       | 495M/1.70G [00:09<00:28, 46.0MB/s]
 22%|██▏       | 477M/2.12G [00:09<00:49, 36.0MB/s]

 29%|██▉       | 502M/1.70G [00:09<00:27, 47.6MB/s]

 29%|██▉       | 510M/1.70G [00:09<00:23, 54.1MB/s]
 22%|██▏       | 483M/2.12G [00:09<00:52, 33.9MB/s]

 30%|██▉       | 519M/1.70G [00:09<00:20, 62.0MB/s]
 23%|██▎       | 491M/2.12G [00:10<00:41, 41.9MB/s]

 30%|███       | 527M/1.70G [00:09<00:19, 65.6MB/s]
 23%|██▎       | 497M/2.12G [00:10<00:47, 37.1MB/s]
 23%|██▎       | 506M/2.12G [00:10<00:36, 47.1MB/s]

 31%|███       | 535M/1.70G [00:10<00:26, 47.1MB/s]
 24%|██▎       | 513M/2.12G [00:10<00:35, 49.5MB/s]

 31%|███       | 541M/1.70G [00:10<00:25, 49.2MB/s]
 24%|██▍       | 523M/2.12G [00:10<00:28, 60.8MB/s]

 32%|███▏      | 551M/1.70G [00:10<00:20, 60.3MB/s]
 24%|██▍       | 530M/2.12G [00:10<00:30, 56.8MB/s]

 32%|███▏      | 561M/1.70G [00:10<00:18, 65.7MB/s]
 25%|██▍       | 537M/2.12G [00:10<00:29, 58.3MB/s]

 33%|███▎      | 569M/1.70G [00:10<00:18, 67.2MB/s]
 25%|██▌       | 547M/2.12G [00:10<00:24, 68.2MB/s]

 33%|███▎      | 578M/1.70G [00:10<00:16, 73.2MB/s]
 26%|██▌       | 557M/2.12G [00:11<00:21, 77.0MB/s]

 34%|███▎      | 586M/1.70G [00:10<00:17, 71.0MB/s]

 34%|███▍      | 595M/1.70G [00:11<00:15, 76.1MB/s]
 26%|██▌       | 565M/2.12G [00:11<00:24, 69.2MB/s]

 35%|███▍      | 609M/1.70G [00:11<00:13, 88.9MB/s]
 26%|██▋       | 573M/2.12G [00:11<00:26, 63.3MB/s]

 35%|███▌      | 618M/1.70G [00:11<00:13, 90.0MB/s]
 27%|██▋       | 583M/2.12G [00:11<00:23, 71.8MB/s]

 36%|███▌      | 630M/1.70G [00:11<00:11, 99.5MB/s]

 37%|███▋      | 640M/1.70G [00:12<00:37, 31.0MB/s]
 27%|██▋       | 591M/2.12G [00:12<01:09, 23.8MB/s]

 37%|███▋      | 650M/1.70G [00:12<00:29, 38.7MB/s]
 28%|██▊       | 602M/2.12G [00:12<00:49, 32.9MB/s]
 28%|██▊       | 611M/2.12G [00:12<00:40, 40.3MB/s]

 38%|███▊      | 660M/1.70G [00:12<00:24, 46.6MB/s]

 39%|███▊      | 673M/1.70G [00:12<00:18, 60.3MB/s]
 29%|██▊       | 619M/2.12G [00:12<00:37, 43.2MB/s]

 39%|███▉      | 684M/1.70G [00:12<00:15, 69.5MB/s]
 29%|██▉       | 626M/2.12G [00:12<00:35, 45.0MB/s]

 40%|████      | 697M/1.70G [00:12<00:13, 79.8MB/s]
 29%|██▉       | 638M/2.12G [00:13<00:27, 59.2MB/s]

 41%|████      | 707M/1.70G [00:12<00:12, 83.7MB/s]
 30%|██▉       | 646M/2.12G [00:13<00:25, 63.4MB/s]

 41%|████      | 717M/1.70G [00:13<00:12, 88.5MB/s]
 30%|███       | 654M/2.12G [00:13<00:23, 67.5MB/s]
 31%|███       | 662M/2.12G [00:13<00:22, 70.8MB/s]

 42%|████▏     | 727M/1.70G [00:13<00:15, 67.7MB/s]

 42%|████▏     | 736M/1.70G [00:13<00:15, 68.8MB/s]
 31%|███       | 670M/2.12G [00:13<00:26, 58.5MB/s]

 43%|████▎     | 744M/1.70G [00:13<00:15, 67.3MB/s]
 31%|███▏      | 677M/2.12G [00:13<00:29, 53.2MB/s]

 43%|████▎     | 755M/1.70G [00:13<00:13, 77.3MB/s]
 32%|███▏      | 683M/2.12G [00:13<00:28, 54.4MB/s]

 44%|████▍     | 765M/1.70G [00:13<00:12, 83.9MB/s]
 32%|███▏      | 690M/2.12G [00:13<00:26, 58.6MB/s]

 44%|████▍     | 774M/1.70G [00:13<00:13, 77.1MB/s]
 32%|███▏      | 703M/2.12G [00:14<00:19, 77.2MB/s]

 45%|████▌     | 786M/1.70G [00:14<00:11, 88.4MB/s]
 33%|███▎      | 712M/2.12G [00:14<00:20, 73.5MB/s]

 46%|████▌     | 797M/1.70G [00:14<00:10, 94.8MB/s]
 33%|███▎      | 722M/2.12G [00:14<00:19, 79.4MB/s]

 46%|████▋     | 807M/1.70G [00:14<00:10, 93.8MB/s]
 34%|███▍      | 731M/2.12G [00:14<00:18, 81.6MB/s]

 47%|████▋     | 817M/1.70G [00:14<00:10, 90.0MB/s]
 34%|███▍      | 740M/2.12G [00:14<00:17, 83.8MB/s]

 48%|████▊     | 829M/1.70G [00:14<00:09, 98.2MB/s]
 35%|███▍      | 749M/2.12G [00:14<00:17, 84.2MB/s]

 48%|████▊     | 839M/1.70G [00:14<00:09, 95.3MB/s]
 35%|███▌      | 759M/2.12G [00:14<00:16, 89.8MB/s]
 36%|███▌      | 769M/2.12G [00:14<00:15, 93.3MB/s]

 49%|████▉     | 849M/1.70G [00:14<00:09, 93.8MB/s]
 36%|███▌      | 780M/2.12G [00:14<00:14, 97.7MB/s]

 49%|████▉     | 859M/1.70G [00:14<00:10, 91.0MB/s]
 37%|███▋      | 793M/2.12G [00:15<00:13, 106MB/s] 

 50%|████▉     | 868M/1.70G [00:14<00:10, 89.9MB/s]
 37%|███▋      | 804M/2.12G [00:15<00:13, 107MB/s]

 50%|█████     | 877M/1.70G [00:15<00:10, 87.0MB/s]

 51%|█████     | 886M/1.70G [00:15<00:10, 85.0MB/s]
 38%|███▊      | 815M/2.12G [00:15<00:16, 84.8MB/s]

 51%|█████▏    | 895M/1.70G [00:15<00:12, 69.5MB/s]
 38%|███▊      | 824M/2.12G [00:15<00:18, 74.1MB/s]

 52%|█████▏    | 904M/1.70G [00:15<00:11, 73.7MB/s]
 38%|███▊      | 832M/2.12G [00:15<00:18, 75.1MB/s]

 52%|█████▏    | 912M/1.70G [00:15<00:11, 75.6MB/s]
 39%|███▉      | 843M/2.12G [00:15<00:16, 83.7MB/s]
 40%|███▉      | 856M/2.12G [00:15<00:14, 95.7MB/s]

 53%|█████▎    | 921M/1.70G [00:15<00:12, 71.1MB/s]
 40%|███▉      | 866M/2.12G [00:15<00:13, 97.5MB/s]

 53%|█████▎    | 931M/1.70G [00:15<00:10, 77.9MB/s]
 41%|████      | 878M/2.12G [00:16<00:12, 104MB/s] 

 54%|█████▍    | 939M/1.70G [00:16<00:11, 70.3MB/s]
 41%|████      | 889M/2.12G [00:16<00:12, 104MB/s]

 55%|█████▍    | 950M/1.70G [00:16<00:10, 80.9MB/s]

 56%|█████▌    | 967M/1.70G [00:16<00:07, 105MB/s] 
 42%|████▏     | 900M/2.12G [00:16<00:17, 73.9MB/s]

 56%|█████▌    | 978M/1.70G [00:16<00:07, 105MB/s]
 42%|████▏     | 909M/2.12G [00:16<00:17, 76.9MB/s]

 57%|█████▋    | 989M/1.70G [00:16<00:07, 103MB/s]
 43%|████▎     | 921M/2.12G [00:16<00:14, 87.9MB/s]

 57%|█████▋    | 0.98G/1.70G [00:16<00:07, 105MB/s]

 58%|█████▊    | 0.99G/1.70G [00:16<00:06, 110MB/s]
 43%|████▎     | 931M/2.12G [00:16<00:15, 81.4MB/s]
 43%|████▎     | 940M/2.12G [00:16<00:15, 82.6MB/s]

 59%|█████▊    | 1.00G/1.70G [00:16<00:09, 76.3MB/s]
 44%|████▍     | 949M/2.12G [00:17<00:18, 70.7MB/s]
 44%|████▍     | 957M/2.12G [00:17<00:18, 67.3MB/s]

 59%|█████▉    | 1.01G/1.70G [00:17<00:11, 64.5MB/s]
 45%|████▍     | 964M/2.12G [00:17<00:19, 65.9MB/s]

 60%|█████▉    | 1.02G/1.70G [00:17<00:11, 64.5MB/s]
 45%|████▍     | 971M/2.12G [00:17<00:19, 65.2MB/s]

 60%|██████    | 1.02G/1.70G [00:17<00:11, 63.6MB/s]
 45%|████▌     | 978M/2.12G [00:17<00:19, 63.6MB/s]

 61%|██████    | 1.03G/1.70G [00:17<00:11, 62.9MB/s]
 45%|████▌     | 985M/2.12G [00:17<00:19, 64.7MB/s]

 61%|██████    | 1.04G/1.70G [00:17<00:11, 62.8MB/s]
 46%|████▌     | 992M/2.12G [00:17<00:18, 65.3MB/s]

 61%|██████▏   | 1.04G/1.70G [00:17<00:10, 64.5MB/s]
 46%|████▌     | 0.98G/2.12G [00:17<00:17, 68.9MB/s]

 62%|██████▏   | 1.05G/1.70G [00:17<00:10, 66.5MB/s]
 46%|████▋     | 0.98G/2.12G [00:18<00:17, 69.8MB/s]

 62%|██████▏   | 1.06G/1.70G [00:17<00:10, 67.7MB/s]
 47%|████▋     | 0.99G/2.12G [00:18<00:16, 73.2MB/s]

 63%|██████▎   | 1.07G/1.70G [00:18<00:09, 69.0MB/s]
 47%|████▋     | 1.00G/2.12G [00:18<00:16, 72.2MB/s]

 63%|██████▎   | 1.07G/1.70G [00:18<00:09, 68.5MB/s]
 48%|████▊     | 1.01G/2.12G [00:18<00:16, 73.8MB/s]

 63%|██████▎   | 1.08G/1.70G [00:18<00:09, 69.1MB/s]
 48%|████▊     | 1.01G/2.12G [00:18<00:18, 63.5MB/s]

 64%|██████▍   | 1.09G/1.70G [00:18<00:10, 61.4MB/s]
 48%|████▊     | 1.02G/2.12G [00:18<00:20, 57.1MB/s]

 64%|██████▍   | 1.09G/1.70G [00:18<00:11, 55.9MB/s]
 49%|████▊     | 1.03G/2.12G [00:18<00:20, 57.9MB/s]

 65%|██████▍   | 1.10G/1.70G [00:18<00:11, 56.5MB/s]
 49%|████▉     | 1.04G/2.12G [00:18<00:18, 63.5MB/s]

 65%|██████▍   | 1.10G/1.70G [00:18<00:11, 57.4MB/s]
 49%|████▉     | 1.04G/2.12G [00:19<00:18, 63.4MB/s]

 65%|██████▌   | 1.11G/1.70G [00:18<00:10, 58.5MB/s]
 50%|████▉     | 1.05G/2.12G [00:19<00:17, 64.7MB/s]

 66%|██████▌   | 1.12G/1.70G [00:19<00:10, 61.8MB/s]
 50%|████▉     | 1.06G/2.12G [00:19<00:16, 67.6MB/s]

 66%|██████▌   | 1.12G/1.70G [00:19<00:09, 63.1MB/s]
 50%|█████     | 1.06G/2.12G [00:19<00:15, 70.6MB/s]

 67%|██████▋   | 1.13G/1.70G [00:19<00:08, 69.1MB/s]
 51%|█████     | 1.07G/2.12G [00:19<00:15, 72.6MB/s]

 67%|██████▋   | 1.14G/1.70G [00:19<00:08, 71.4MB/s]
 51%|█████     | 1.08G/2.12G [00:19<00:15, 73.6MB/s]

 68%|██████▊   | 1.15G/1.70G [00:19<00:07, 74.3MB/s]
 51%|█████▏    | 1.09G/2.12G [00:19<00:14, 76.0MB/s]

 68%|██████▊   | 1.16G/1.70G [00:19<00:07, 74.0MB/s]
 52%|█████▏    | 1.10G/2.12G [00:19<00:15, 69.1MB/s]

 69%|██████▊   | 1.17G/1.70G [00:19<00:08, 69.9MB/s]
 52%|█████▏    | 1.10G/2.12G [00:19<00:15, 70.8MB/s]

 69%|██████▉   | 1.17G/1.70G [00:19<00:08, 70.0MB/s]
 52%|█████▏    | 1.11G/2.12G [00:20<00:16, 66.4MB/s]

 69%|██████▉   | 1.18G/1.70G [00:19<00:09, 60.2MB/s]

 70%|██████▉   | 1.19G/1.70G [00:20<00:08, 62.5MB/s]
 53%|█████▎    | 1.12G/2.12G [00:20<00:19, 54.8MB/s]

 70%|███████   | 1.19G/1.70G [00:20<00:08, 63.8MB/s]
 53%|█████▎    | 1.12G/2.12G [00:20<00:18, 57.7MB/s]

 71%|███████   | 1.20G/1.70G [00:20<00:08, 64.8MB/s]
 53%|█████▎    | 1.13G/2.12G [00:20<00:17, 61.3MB/s]

 71%|███████   | 1.21G/1.70G [00:20<00:07, 68.3MB/s]
 54%|█████▍    | 1.14G/2.12G [00:20<00:16, 65.0MB/s]

 71%|███████▏  | 1.21G/1.70G [00:20<00:07, 66.1MB/s]
 54%|█████▍    | 1.15G/2.12G [00:20<00:16, 64.4MB/s]

 72%|███████▏  | 1.22G/1.70G [00:20<00:07, 66.4MB/s]
 54%|█████▍    | 1.15G/2.12G [00:20<00:16, 63.0MB/s]

 72%|███████▏  | 1.23G/1.70G [00:20<00:08, 61.2MB/s]
 55%|█████▍    | 1.16G/2.12G [00:20<00:16, 61.6MB/s]

 73%|███████▎  | 1.23G/1.70G [00:20<00:08, 58.0MB/s]
 55%|█████▌    | 1.17G/2.12G [00:21<00:16, 61.0MB/s]
 55%|█████▌    | 1.17G/2.12G [00:22<01:11, 14.1MB/s]

 73%|███████▎  | 1.24G/1.70G [00:22<00:37, 13.4MB/s]
 56%|█████▌    | 1.18G/2.12G [00:22<00:51, 19.6MB/s]

 73%|███████▎  | 1.25G/1.70G [00:22<00:23, 20.3MB/s]
 56%|█████▌    | 1.19G/2.12G [00:22<00:42, 23.4MB/s]

 74%|███████▍  | 1.25G/1.70G [00:22<00:19, 24.2MB/s]

 74%|███████▍  | 1.26G/1.70G [00:22<00:13, 34.0MB/s]

 75%|███████▌  | 1.28G/1.70G [00:22<00:08, 50.6MB/s]

 76%|███████▌  | 1.29G/1.70G [00:22<00:07, 59.8MB/s]
 57%|█████▋    | 1.20G/2.12G [00:23<00:35, 27.6MB/s]
 57%|█████▋    | 1.21G/2.12G [00:23<00:26, 36.3MB/s]

 76%|███████▋  | 1.30G/1.70G [00:23<00:07, 57.6MB/s]

 77%|███████▋  | 1.31G/1.70G [00:23<00:06, 62.4MB/s]
 57%|█████▋    | 1.21G/2.12G [00:23<00:27, 35.1MB/s]
 58%|█████▊    | 1.22G/2.12G [00:23<00:24, 38.9MB/s]

 77%|███████▋  | 1.31G/1.70G [00:23<00:07, 53.2MB/s]
 58%|█████▊    | 1.23G/2.12G [00:23<00:22, 43.0MB/s]

 78%|███████▊  | 1.32G/1.70G [00:23<00:06, 61.9MB/s]

 78%|███████▊  | 1.33G/1.70G [00:23<00:05, 68.7MB/s]
 58%|█████▊    | 1.24G/2.12G [00:23<00:20, 46.8MB/s]

 79%|███████▉  | 1.34G/1.70G [00:23<00:05, 72.2MB/s]
 59%|█████▉    | 1.24G/2.12G [00:23<00:20, 46.0MB/s]

 80%|███████▉  | 1.35G/1.70G [00:23<00:04, 77.2MB/s]

 80%|███████▉  | 1.36G/1.70G [00:23<00:04, 74.6MB/s]
 59%|█████▉    | 1.25G/2.12G [00:24<00:19, 47.6MB/s]

 81%|████████  | 1.37G/1.70G [00:24<00:04, 79.9MB/s]
 60%|█████▉    | 1.26G/2.12G [00:24<00:16, 56.2MB/s]

 81%|████████  | 1.38G/1.70G [00:24<00:03, 88.6MB/s]
 60%|█████▉    | 1.27G/2.12G [00:24<00:18, 48.6MB/s]

 82%|████████▏ | 1.39G/1.70G [00:24<00:03, 87.9MB/s]
 60%|██████    | 1.27G/2.12G [00:24<00:16, 55.1MB/s]

 82%|████████▏ | 1.40G/1.70G [00:24<00:03, 81.4MB/s]
 61%|██████    | 1.28G/2.12G [00:24<00:14, 62.4MB/s]

 83%|████████▎ | 1.41G/1.70G [00:24<00:03, 82.2MB/s]
 61%|██████    | 1.29G/2.12G [00:24<00:14, 62.8MB/s]

 83%|████████▎ | 1.42G/1.70G [00:24<00:03, 85.9MB/s]
 61%|██████▏   | 1.30G/2.12G [00:24<00:13, 64.0MB/s]

 84%|████████▍ | 1.43G/1.70G [00:24<00:02, 99.6MB/s]

 85%|████████▍ | 1.45G/1.70G [00:24<00:02, 109MB/s] 
 62%|██████▏   | 1.31G/2.12G [00:25<00:15, 57.2MB/s]

 86%|████████▌ | 1.46G/1.70G [00:25<00:02, 110MB/s]
 62%|██████▏   | 1.32G/2.12G [00:25<00:12, 69.9MB/s]

 86%|████████▌ | 1.47G/1.70G [00:25<00:02, 110MB/s]
 63%|██████▎   | 1.33G/2.12G [00:25<00:11, 74.1MB/s]

 87%|████████▋ | 1.48G/1.70G [00:25<00:02, 102MB/s]
 63%|██████▎   | 1.34G/2.12G [00:25<00:10, 82.6MB/s]

 87%|████████▋ | 1.49G/1.70G [00:25<00:02, 96.1MB/s]
 64%|██████▎   | 1.34G/2.12G [00:25<00:09, 85.4MB/s]

 88%|████████▊ | 1.50G/1.70G [00:25<00:02, 106MB/s] 
 64%|██████▍   | 1.35G/2.12G [00:25<00:11, 71.7MB/s]

 89%|████████▉ | 1.52G/1.70G [00:25<00:01, 119MB/s]
 65%|██████▍   | 1.37G/2.12G [00:25<00:09, 84.5MB/s]

 90%|████████▉ | 1.53G/1.70G [00:25<00:01, 117MB/s]
 65%|██████▍   | 1.37G/2.12G [00:25<00:11, 69.7MB/s]

 91%|█████████ | 1.54G/1.70G [00:25<00:01, 99.4MB/s]
 65%|██████▌   | 1.38G/2.12G [00:26<00:10, 74.7MB/s]

 91%|█████████ | 1.55G/1.70G [00:25<00:01, 99.8MB/s]
 66%|██████▌   | 1.39G/2.12G [00:26<00:10, 74.7MB/s]

 92%|█████████▏| 1.56G/1.70G [00:26<00:01, 102MB/s] 
 66%|██████▋   | 1.40G/2.12G [00:26<00:09, 83.9MB/s]

 93%|█████████▎| 1.57G/1.70G [00:26<00:01, 108MB/s]
 67%|██████▋   | 1.41G/2.12G [00:26<00:08, 91.4MB/s]

 93%|█████████▎| 1.58G/1.70G [00:26<00:01, 100MB/s]
 67%|██████▋   | 1.42G/2.12G [00:26<00:08, 90.9MB/s]

 94%|█████████▎| 1.59G/1.70G [00:26<00:01, 87.1MB/s]
 68%|██████▊   | 1.43G/2.12G [00:26<00:08, 86.6MB/s]

 94%|█████████▍| 1.60G/1.70G [00:26<00:01, 82.8MB/s]
 68%|██████▊   | 1.44G/2.12G [00:26<00:10, 70.8MB/s]

 95%|█████████▍| 1.61G/1.70G [00:26<00:01, 78.2MB/s]
 68%|██████▊   | 1.45G/2.12G [00:26<00:09, 73.6MB/s]

 95%|█████████▌| 1.62G/1.70G [00:26<00:01, 83.3MB/s]
 69%|██████▉   | 1.46G/2.12G [00:27<00:08, 80.8MB/s]

 96%|█████████▌| 1.63G/1.70G [00:26<00:00, 85.3MB/s]
 69%|██████▉   | 1.47G/2.12G [00:27<00:08, 81.4MB/s]

 96%|█████████▋| 1.64G/1.70G [00:27<00:00, 87.5MB/s]
 70%|██████▉   | 1.48G/2.12G [00:27<00:07, 86.9MB/s]

 97%|█████████▋| 1.65G/1.70G [00:27<00:00, 70.2MB/s]
 70%|███████   | 1.48G/2.12G [00:27<00:10, 67.4MB/s]

 97%|█████████▋| 1.66G/1.70G [00:27<00:00, 75.5MB/s]
 71%|███████   | 1.49G/2.12G [00:27<00:09, 71.1MB/s]

 98%|█████████▊| 1.67G/1.70G [00:27<00:00, 82.3MB/s]
 71%|███████   | 1.50G/2.12G [00:27<00:08, 74.9MB/s]

 99%|█████████▊| 1.68G/1.70G [00:27<00:00, 90.1MB/s]
 71%|███████▏  | 1.51G/2.12G [00:27<00:08, 75.7MB/s]

 99%|█████████▉| 1.69G/1.70G [00:27<00:00, 89.7MB/s]
 72%|███████▏  | 1.52G/2.12G [00:27<00:08, 79.7MB/s]

100%|██████████| 1.70G/1.70G [00:27<00:00, 65.5MB/s]

 72%|███████▏  | 1.53G/2.12G [00:28<00:08, 76.6MB/s]
 73%|███████▎  | 1.54G/2.12G [00:28<00:06, 98.0MB/s]
 74%|███████▎  | 1.56G/2.12G [00:28<00:05, 112MB/s] 
 74%|███████▍  | 1.57G/2.12G [00:28<00:05, 105MB/s]
 75%|███████▍  | 1.58G/2.12G [00:28<00:05, 107MB/s]
 75%|███████▌  | 1.59G/2.12G [00:28<00:06, 89.3MB/s]
 76%|███████▌  | 1.61G/2.12G [00:28<00:05, 101MB/s] 
 77%|███████▋  | 1.62G/2.12G [00:28<00:04, 112MB/s]
 77%|███████▋  | 1.63G/2.12G [00:29<00:05, 92.3MB/s]
 78%|███████▊  | 1.64G/2.12G [00:29<00:06, 78.4MB/s]
 78%|███████▊  | 1.66G/2.12G [00:29<00:05, 95.5MB/s]
 79%|███████▉  | 1.67G/2.12G [00:29<00:04, 101MB/s] 
 80%|███████▉  | 1.69G/2.12G [00:29<00:04, 114MB/s]
 80%|████████  | 1.70G/2.12G [00:29<00:03, 124MB/s]
 81%|████████  | 1.71G/2.12G [00:29<00:03, 122MB/s]
 82%|████████▏ | 1.73G/2.12G [00:30<00:04, 95.5MB/s]
 82%|████████▏ | 1.74G/2.12G [00:30<00:03, 104MB/s] 
 83%|████████▎ | 1.75G/2.12G [00:30<00:03, 103MB/s]
 83%|████████▎ | 1.76G/2.12G [00:30<00:04, 76.8MB/s]
 84%|████████▍ | 1.78G/2.12G [00:30<00:03, 96.8MB/s]
 85%|████████▍ | 1.79G/2.12G [00:30<00:03, 102MB/s] 
 85%|████████▌ | 1.80G/2.12G [00:31<00:04, 69.5MB/s]
 86%|████████▌ | 1.82G/2.12G [00:31<00:03, 92.2MB/s]
 87%|████████▋ | 1.83G/2.12G [00:31<00:03, 91.5MB/s]
 87%|████████▋ | 1.84G/2.12G [00:31<00:02, 98.1MB/s]
 88%|████████▊ | 1.85G/2.12G [00:31<00:03, 85.1MB/s]
 88%|████████▊ | 1.86G/2.12G [00:31<00:03, 88.0MB/s]
 89%|████████▊ | 1.87G/2.12G [00:31<00:02, 88.9MB/s]
 89%|████████▉ | 1.88G/2.12G [00:32<00:02, 93.5MB/s]
 90%|████████▉ | 1.90G/2.12G [00:32<00:02, 106MB/s] 
 90%|█████████ | 1.91G/2.12G [00:32<00:01, 111MB/s]
 91%|█████████ | 1.92G/2.12G [00:32<00:02, 98.7MB/s]
 91%|█████████▏| 1.93G/2.12G [00:32<00:01, 107MB/s] 
 92%|█████████▏| 1.95G/2.12G [00:32<00:01, 104MB/s]
 93%|█████████▎| 1.96G/2.12G [00:32<00:01, 117MB/s]
 93%|█████████▎| 1.97G/2.12G [00:32<00:01, 106MB/s]
 94%|█████████▍| 1.98G/2.12G [00:33<00:01, 92.6MB/s]
 94%|█████████▍| 1.99G/2.12G [00:33<00:01, 86.4MB/s]
 95%|█████████▍| 2.00G/2.12G [00:33<00:01, 68.3MB/s]
 95%|█████████▌| 2.02G/2.12G [00:33<00:01, 84.0MB/s]
 96%|█████████▌| 2.03G/2.12G [00:33<00:01, 91.6MB/s]
 96%|█████████▋| 2.04G/2.12G [00:33<00:00, 96.2MB/s]
 97%|█████████▋| 2.05G/2.12G [00:33<00:00, 108MB/s] 
 98%|█████████▊| 2.06G/2.12G [00:33<00:00, 89.9MB/s]
 98%|█████████▊| 2.08G/2.12G [00:34<00:00, 103MB/s] 
 99%|█████████▉| 2.09G/2.12G [00:34<00:00, 115MB/s]
100%|██████████| 2.12G/2.12G [00:34<00:00, 66.0MB/s]
print('GEMMA_PATH:', GEMMA_PATH)
GEMMA_PATH: /root/.cache/kagglehub/models/google/gemma-2-2b/flax/gemma2-2b-it/1
  1. モデルの重みとトークナイザの場所を確認して、パス変数を設定します。トークナイザー ディレクトリはモデルをダウンロードしたメイン ディレクトリにありますが、モデルの重みはサブディレクトリにあります。例:
  • tokenizer.model ファイルは /LOCAL/PATH/TO/gemma/flax/2b-it/2 にあります)。
  • モデルのチェックポイントは /LOCAL/PATH/TO/gemma/flax/2b-it/2/2b-it にあります)。
CKPT_PATH = os.path.join(GEMMA_PATH, GEMMA_VARIANT)
TOKENIZER_PATH = os.path.join(GEMMA_PATH, 'tokenizer.model')
print('CKPT_PATH:', CKPT_PATH)
print('TOKENIZER_PATH:', TOKENIZER_PATH)
CKPT_PATH: /root/.cache/kagglehub/models/google/gemma-2-2b/flax/gemma2-2b-it/1/gemma2-2b-it
TOKENIZER_PATH: /root/.cache/kagglehub/models/google/gemma-2-2b/flax/gemma2-2b-it/1/tokenizer.model

サンプリング/推論

  1. gemma.params.load_and_format_params メソッドを使用して、Gemma モデルのチェックポイントを読み込んでフォーマットします。
from gemma import params as params_lib

params = params_lib.load_and_format_params(CKPT_PATH)
  1. sentencepiece.SentencePieceProcessor を使用して作成された Gemma トークナイザを読み込みます。
import sentencepiece as spm

vocab = spm.SentencePieceProcessor()
vocab.Load(TOKENIZER_PATH)
True
  1. Gemma モデルのチェックポイントから正しい構成を自動的に読み込むには、gemma.transformer.TransformerConfig を使用します。cache_size 引数は、Gemma の Transformer キャッシュ内のタイムステップの数です。その後、gemma.transformer.Transformerflax.linen.Module から継承)を使用して、Gemma モデルを transformer としてインスタンス化します。
で確認できます。
from gemma import transformer as transformer_lib

transformer_config = transformer_lib.TransformerConfig.from_params(
    params=params,
    cache_size=1024
)

transformer = transformer_lib.Transformer(transformer_config)
  1. Gemma モデルのチェックポイント/重みとトークナイザの上に gemma.sampler.Sampler を使用して sampler を作成します。
from gemma import sampler as sampler_lib

sampler = sampler_lib.Sampler(
    transformer=transformer,
    vocab=vocab,
    params=params['transformer'],
)
  1. input_batch でプロンプトを記述し、推論を実行します。total_generation_steps(レスポンスの生成時に実行するステップ数。この例では 100 を使用してホストメモリを保持)を微調整できます。
で確認できます。
prompt = [
    "what is JAX in 3 bullet points?",
]

reply = sampler(input_strings=prompt,
                total_generation_steps=128,
                )

for input_string, out_string in zip(prompt, reply.text):
    print(f"Prompt:\n{input_string}\nOutput:\n{out_string}")
Prompt:
what is JAX in 3 bullet points?
Output:


* **High-performance numerical computation:** JAX leverages the power of GPUs and TPUs to accelerate complex mathematical operations, making it ideal for scientific computing, machine learning, and data analysis.
* **Automatic differentiation:** JAX provides automatic differentiation capabilities, allowing you to compute gradients and optimize models efficiently. This simplifies the process of training deep learning models.
* **Functional programming:** JAX embraces functional programming principles, promoting code readability and maintainability. It offers a flexible and expressive syntax for defining and manipulating data. 


<end_of_turn>
  1. (省略可)ノートブックの実行を完了し、別のプロンプトを試す場合は、このセルを実行してメモリを解放します。その後、ステップ 3 で sampler を再度インスタンス化し、ステップ 4 でプロンプトをカスタマイズして実行できます。
del sampler

その他の情報