使用 JAX 和 Flax 对 RecurrentGemma 进行微调

前往 ai.google.dev 查看 在 Google Colab 中运行 在 Vertex AI 中打开 在 GitHub 上查看源代码

本教程演示了如何使用 Google DeepMind 的 recurrentgemmaJAX(一个高性能数值计算库)、Flax(基于 JAX 的神经网络库)、Chex(一个用于编写可靠 JAX 代码优化和 JAX 代码优化的实用程序库)微调 RecurrentGemma 2B Instruct 模型,完成英法翻译任务。Optax虽然此笔记本中并未直接使用 Flax,但使用了 Flax 来创建 Gemma。

recurrentgemma 库是使用 JAX、Flax、Orbax(一个基于 JAX 的库,用于检查点等训练实用程序的库)和 SentencePiece(一个标记生成器/去令牌生成器 库)编写的。

此笔记本可以在采用 T4 GPU 的 Google Colab 上运行(依次前往修改 > 笔记本设置 > 在硬件加速器下选择 T4 GPU)。

设置

以下部分介绍了准备笔记本以使用 RecurrentGemma 模型的步骤,包括模型访问、获取 API 密钥和配置笔记本运行时。

为 Gemma 设置 Kaggle 访问权限

如需完成本教程,您首先需要按照类似于 Gemma 设置的设置说明进行操作,但有一些例外情况:

  • kaggle.com 上访问 RecurrentGemma(而非 Gemma)。
  • 请选择具有足够资源的 Colab 运行时来运行 RecurrentGemma 模型。
  • 生成并配置 Kaggle 用户名和 API 密钥。

完成 RecurrentGemma 的设置后,请继续执行下一部分,您将为 Colab 环境设置环境变量。

设置环境变量

KAGGLE_USERNAMEKAGGLE_KEY 设置环境变量。当看到“是否授予访问权限?”的提示时,则同意提供私密访问。

import os
from google.colab import userdata # `userdata` is a Colab API.

os.environ["KAGGLE_USERNAME"] = userdata.get('KAGGLE_USERNAME')
os.environ["KAGGLE_KEY"] = userdata.get('KAGGLE_KEY')

安装 recurrentgemma

目前免费的 Colab 硬件加速功能不足以运行此笔记本。如果您使用的是 Colab 随用随付或 Colab Pro,请点击修改 >笔记本设置 >选择 A100 GPU >点击保存即可启用硬件加速。

接下来,您需要从 github.com/google-deepmind/recurrentgemma 安装 Google DeepMind recurrentgemma 库。如果您收到有关“pip 的依赖项解析器”的错误,通常可以忽略它。

pip install -q git+https://github.com/google-deepmind/recurrentgemma.git

导入库

此笔记本使用 Flax(用于神经网络)、核心 JAXSentencePiece(用于标记化)、Chex(用于编写可靠 JAX 代码的实用程序库)、Optax(梯度处理和优化库)和 TensorFlow 数据集。

import pathlib
from typing import Any, Mapping, Iterator
import enum
import functools

import chex
import jax
import jax.numpy as jnp
import optax

import tensorflow as tf
import tensorflow_datasets as tfds

import sentencepiece as spm

from recurrentgemma import jax as recurrentgemma

加载 RecurrentGemma 模型

  1. 使用 kagglehub.model_download 加载 RecurrentGemma 模型,该方法接受三个参数:
  • handle:Kaggle 的模型句柄
  • path:(可选字符串)本地路径
  • force_download:(可选布尔值)强制重新下载模型
RECURRENTGEMMA_VARIANT = '2b-it' # @param ['2b', '2b-it'] {type:"string"}
import kagglehub

RECURRENTGEMMA_PATH = kagglehub.model_download(f'google/recurrentgemma/flax/{RECURRENTGEMMA_VARIANT}')
Downloading from https://www.kaggle.com/api/v1/models/google/recurrentgemma/flax/2b-it/1/download...
100%|██████████| 3.85G/3.85G [00:50<00:00, 81.5MB/s]
Extracting model files...
print('RECURRENTGEMMA_VARIANT:', RECURRENTGEMMA_VARIANT)
RECURRENTGEMMA_VARIANT: 2b-it
  1. 检查模型权重和标记生成器的位置,然后设置路径变量。标记生成器目录位于下载模型的主目录中,而模型权重则位于子目录中。例如:
  • tokenizer.model 文件将位于 /LOCAL/PATH/TO/recurrentgemma/flax/2b-it/1 中。
  • 模型检查点将位于 /LOCAL/PATH/TO/recurrentgemma/flax/2b-it/1/2b-it 中。
CKPT_PATH = os.path.join(RECURRENTGEMMA_PATH, RECURRENTGEMMA_VARIANT)
TOKENIZER_PATH = os.path.join(RECURRENTGEMMA_PATH, 'tokenizer.model')
print('CKPT_PATH:', CKPT_PATH)
print('TOKENIZER_PATH:', TOKENIZER_PATH)
CKPT_PATH: /root/.cache/kagglehub/models/google/recurrentgemma/flax/2b-it/1/2b-it
TOKENIZER_PATH: /root/.cache/kagglehub/models/google/recurrentgemma/flax/2b-it/1/tokenizer.model

加载并准备 MTNT 数据集和 Gemma 标记生成器

您将使用 TensorFlow Datasets 中提供的 MTNT(包含噪声的文本的机器翻译)数据集。

下载 MTNT 数据集中英语到法语的数据集部分,然后对两个示例进行采样。数据集中的每个样本都包含两个条目:src:原始英语句子;和 dst:对应的法语翻译。

ds = tfds.load("mtnt/en-fr", split="train")

ds = ds.take(2)
ds = ds.as_numpy_iterator()

for idx, example in enumerate(ds):
  print(f'Example {idx}:')
  for key, val in example.items():
    print(f'{key}: {val}')
  print()
Downloading and preparing dataset 35.08 MiB (download: 35.08 MiB, generated: 11.33 MiB, total: 46.41 MiB) to /root/tensorflow_datasets/mtnt/en-fr/1.0.0...
Dl Completed...: 0 url [00:00, ? url/s]
Dl Size...: 0 MiB [00:00, ? MiB/s]
Extraction completed...: 0 file [00:00, ? file/s]
Generating splits...:   0%|          | 0/3 [00:00<?, ? splits/s]
Generating train examples...:   0%|          | 0/35692 [00:00<?, ? examples/s]
Shuffling /root/tensorflow_datasets/mtnt/en-fr/1.0.0.incompleteJLH33K/mtnt-train.tfrecord*...:   0%|          …
Generating test examples...:   0%|          | 0/1020 [00:00<?, ? examples/s]
Shuffling /root/tensorflow_datasets/mtnt/en-fr/1.0.0.incompleteJLH33K/mtnt-test.tfrecord*...:   0%|          |…
Generating valid examples...:   0%|          | 0/811 [00:00<?, ? examples/s]
Shuffling /root/tensorflow_datasets/mtnt/en-fr/1.0.0.incompleteJLH33K/mtnt-valid.tfrecord*...:   0%|          …
Dataset mtnt downloaded and prepared to /root/tensorflow_datasets/mtnt/en-fr/1.0.0. Subsequent calls will reuse this data.
Example 0:
dst: b'Le groupe de " toutes les \xc3\xa9toiles potentielles de la conf\xc3\xa9rence de l\'Est mais qui ne s\'en sortent pas dans le groupe de l\'Ouest ".'
src: b'The group of \xe2\x80\x9ceastern conference potential all stars but not making it in the West\xe2\x80\x9d group.'

Example 1:
dst: b"Kameron est-elle un peu aigrie de son manque de temps \xc3\xa0 l'\xc3\xa9cran ?"
src: b'Is Kameron a Little Salty About Her Lack of Air Time?'

加载使用 sentencepiece.SentencePieceProcessor 构造的 Gemma 标记生成器:

vocab = spm.SentencePieceProcessor()
vocab.Load(TOKENIZER_PATH)
True

为英语到法语翻译任务自定义 SentencePieceProcessor。由于您要对 RecurrentGemma (Griffin) 模型的英语部分进行微调,因此需要进行一些调整,例如:

  • 输入前缀:为每个输入添加一个公共前缀可指示转换任务。例如,您可以使用带有 Translate this into French: [INPUT_SENTENCE] 等前缀的提示。

  • 翻译开始后缀:在每个提示的末尾添加后缀可指示 Gemma 模型准确开始翻译过程。换行应该就可以了。

  • 语言模型令牌:RecurrentGemma (Griffin) 模型期望“序列开头”词元。同样,您需要使用“序列结束”词元。

围绕 SentencePieceProcessor 构建自定义封装容器,如下所示:

class GriffinTokenizer:
  """A custom wrapper around a SentencePieceProcessor."""

  def __init__(self, spm_processor: spm.SentencePieceProcessor):
    self._spm_processor = spm_processor

  @property
  def pad_id(self) -> int:
    """Fast access to the pad ID."""
    return self._spm_processor.pad_id()

  def tokenize(
      self,
      example: str | bytes,
      prefix: str = '',
      suffix: str = '',
      add_eos: bool = True,
  ) -> jax.Array:
    """
    A tokenization function.

    Args:
      example: Input string to tokenize.
      prefix:  Prefix to add to the input string.
      suffix:  Suffix to add to the input string.
      add_eos: If True, add an end of sentence token at the end of the output
               sequence.
    Returns:
      Tokens corresponding to the input string.
    """
    int_list = [self._spm_processor.bos_id()]
    int_list.extend(self._spm_processor.EncodeAsIds(prefix + example + suffix))
    if add_eos:
      int_list.append(self._spm_processor.eos_id())

    return jnp.array(int_list, dtype=jnp.int32)

  def tokenize_tf_op(
      self,
      str_tensor: tf.Tensor,
      prefix: str = '',
      suffix: str = '',
      add_eos: bool = True,
  ) -> tf.Tensor:
    """A TensforFlow operator for the `tokenize` function."""
    encoded = tf.numpy_function(
        self.tokenize,
        [str_tensor, prefix, suffix, add_eos],
        tf.int32)
    encoded.set_shape([None])
    return encoded

  def to_string(self, tokens: jax.Array) -> str:
    """Convert an array of tokens to a string."""
    return self._spm_processor.EncodeIds(tokens.tolist())

您可以尝试将新的自定义 GriffinTokenizer 实例化,然后将其应用于 MTNT 数据集的一个小样本:

def tokenize_source(tokenizer, example: tf.Tensor):
  return tokenizer.tokenize_tf_op(
      example,
      prefix='Translate this into French:\n',
      suffix='\n',
      add_eos=False
  )
def tokenize_destination(tokenizer, example: tf.Tensor):
  return tokenizer.tokenize_tf_op(example, add_eos=True)

tokenizer = GriffinTokenizer(vocab)

ds = tfds.load("mtnt/en-fr",split="train")
ds = ds.take(2)
ds = ds.map(lambda x: {
    'src': tokenize_source(tokenizer, x['src']),
    'dst': tokenize_destination(tokenizer, x['dst'])
  })
ds = ds.as_numpy_iterator()

for idx, example in enumerate(ds):
  print(f'Example {idx}:')
  for key, val in example.items():
    print(f'{key}: {val}')
  print()
Example 0:
src: [     2  49688    736   1280   6987 235292    108    651   2778    576
   1080 104745  11982   5736    832   8995    901    780   3547    665
    575    573   4589 235369   2778 235265    108]
dst: [     2   2025  29653    581    664  16298   1437  55563  41435   7840
    581    683 111452    581    533 235303   9776   4108   2459    679
    485 235303    479   6728    579   1806   2499    709  29653    581
    533 235303 101323  16054      1]

Example 1:
src: [     2  49688    736   1280   6987 235292    108   2437  87150    477
    476  11709 230461   8045   3636  40268    576   4252   4897 235336
    108]
dst: [     2 213606    477   1455 235290   3510    748   8268 191017   2809
    581   2032  69972    581  11495   1305    533 235303  65978   1654
      1]

为整个 MTNT 数据集构建数据加载器:

@chex.dataclass(frozen=True)
class TrainingInput:
  # Input tokens provided to the model.
  input_tokens: jax.Array

  # A mask that determines which tokens contribute to the target loss
  # calculation.
  target_mask: jax.Array

class DatasetSplit(enum.Enum):
  TRAIN = 'train'
  VALIDATION = 'valid'


class MTNTDatasetBuilder:
  """A data loader for the MTNT dataset."""

  N_ITEMS = {DatasetSplit.TRAIN: 35_692, DatasetSplit.VALIDATION: 811}

  BUFFER_SIZE_SHUFFLE = 10_000
  TRANSLATION_PREFIX = 'Translate this into French:\n'
  TRANSLATION_SUFFIX = '\n'

  def __init__(self,
               tokenizer : GriffinTokenizer,
               max_seq_len: int):
    """A constructor.

    Args:
      tokenizer: The tokenizer to use.
      max_seq_len: The size of each sequence in a given batch.
    """
    self._tokenizer = tokenizer
    self._base_data = {
        DatasetSplit.TRAIN: tfds.load("mtnt/en-fr",split="train"),
        DatasetSplit.VALIDATION: tfds.load("mtnt/en-fr",split="valid"),
    }
    self._max_seq_len = max_seq_len

  def _tokenize_source(self, example: tf.Tensor):
    """A tokenization function for the source."""
    return self._tokenizer.tokenize_tf_op(
        example, prefix=self.TRANSLATION_PREFIX, suffix=self.TRANSLATION_SUFFIX,
        add_eos=False
    )

  def _tokenize_destination(self, example: tf.Tensor):
    """A tokenization function for the French translation."""
    return self._tokenizer.tokenize_tf_op(example, add_eos=True)

  def _pad_up_to_max_len(self,
                         input_tensor: tf.Tensor,
                         pad_value: int | bool,
                         ) -> tf.Tensor:
    """Pad the given tensor up to sequence length of a batch."""
    seq_len = tf.shape(input_tensor)[0]
    to_pad = tf.maximum(self._max_seq_len - seq_len, 0)
    return tf.pad(
        input_tensor, [[0, to_pad]], mode='CONSTANT', constant_values=pad_value,
    )

  def _to_training_input(
      self,
      src_tokens: jax.Array,
      dst_tokens: jax.Array,
  ) -> TrainingInput:
    """Build a training input from a tuple of source and destination tokens."""

    # The input sequence fed to the model is simply the concatenation of the
    # source and the destination.
    tokens = tf.concat([src_tokens, dst_tokens], axis=0)

    # You want to prevent the model from updating based on the source (input)
    # tokens. To achieve this, add a target mask to each input.
    q_mask = tf.zeros_like(src_tokens, dtype=tf.bool)
    a_mask = tf.ones_like(dst_tokens, dtype=tf.bool)
    mask = tf.concat([q_mask, a_mask], axis=0)

    # If the output tokens sequence is smaller than the target sequence size,
    # then pad it with pad tokens.
    tokens = self._pad_up_to_max_len(tokens, self._tokenizer.pad_id)

    # You don't want to perform the backward on the pad tokens.
    mask = self._pad_up_to_max_len(mask, False)

    return TrainingInput(input_tokens=tokens, target_mask=mask)


  def get_train_dataset(self, batch_size: int, num_epochs: int):
    """Build the training dataset."""

    # Tokenize each sample.
    ds = self._base_data[DatasetSplit.TRAIN].map(
        lambda x : (self._tokenize_source(x['src']),
                    self._tokenize_destination(x['dst']))
    )

    # Convert them to training inputs.
    ds = ds.map(lambda x, y: self._to_training_input(x, y))

    # Remove the samples which are too long.
    ds = ds.filter(lambda x: tf.shape(x.input_tokens)[0] <= self._max_seq_len)

    # Shuffle the dataset.
    ds = ds.shuffle(buffer_size=self.BUFFER_SIZE_SHUFFLE)

    # Repeat if necessary.
    ds = ds.repeat(num_epochs)

    # Build batches.
    ds = ds.batch(batch_size, drop_remainder=True)
    return ds

  def get_validation_dataset(self, batch_size: int):
    """Build the validation dataset."""

    # Same as the training dataset, but no shuffling and no repetition
    ds = self._base_data[DatasetSplit.VALIDATION].map(
        lambda x : (self._tokenize_source(x['src']),
                    self._tokenize_destination(x['dst']))
    )
    ds = ds.map(lambda x, y: self._to_training_input(x, y))
    ds = ds.filter(lambda x: tf.shape(x.input_tokens)[0] <= self._max_seq_len)
    ds = ds.batch(batch_size, drop_remainder=True)
    return ds

通过再次实例化自定义 GriffinTokenizer,然后将其应用于 MTNT 数据集并对两个示例进行采样来试用 MTNTDatasetBuilder

dataset_builder = MTNTDatasetBuilder(tokenizer, max_seq_len=20)
ds = dataset_builder.get_train_dataset(3, 1)
ds = ds.take(2)
ds = ds.as_numpy_iterator()

for idx, example in enumerate(ds):
  print(f'Example {idx}:')
  for key, val in example.items():
    print(f'{key}: {val}')
  print()
WARNING:tensorflow:Mapping types may not work well with tf.nest. Prefer using MutableMapping for <class '__main__.TrainingInput'>
WARNING:tensorflow:Mapping types may not work well with tf.nest. Prefer using MutableMapping for <class '__main__.TrainingInput'>
WARNING:tensorflow:Mapping types may not work well with tf.nest. Prefer using MutableMapping for <class '__main__.TrainingInput'>
Example 0:
input_tokens: [[     2  49688    736   1280   6987 235292    108  12583    665 235265
     108      2   6151  94975   1320   6238 235265      1      0      0]
 [     2  49688    736   1280   6987 235292    108   4899  29960  11270
  108282 235265    108      2   4899  79025  11270 108282      1      0]
 [     2  49688    736   1280   6987 235292    108  26620 235265    108
       2  26620 235265      1      0      0      0      0      0      0]]
target_mask: [[False False False False False False False False False False False  True
   True  True  True  True  True  True False False]
 [False False False False False False False False False False False False
  False  True  True  True  True  True  True False]
 [False False False False False False False False False False  True  True
   True  True False False False False False False]]

Example 1:
input_tokens: [[     2  49688    736   1280   6987 235292    108    527   5174   1683
  235336    108      2 206790    581  20726    482   2208   1654      1]
 [     2  49688    736   1280   6987 235292    108  28484 235256 235336
     108      2 120500  13832   1654      1      0      0      0      0]
 [     2  49688    736   1280   6987 235292    108 235324 235304   2705
  235265    108      2 235324 235304  19963 235265      1      0      0]]
target_mask: [[False False False False False False False False False False False False
   True  True  True  True  True  True  True  True]
 [False False False False False False False False False False False  True
   True  True  True  True False False False False]
 [False False False False False False False False False False False False
   True  True  True  True  True  True False False]]

配置模型

在开始微调 Gemma 模型之前,需要对其进行配置。

使用 recurrentgemma.jax.utils.load_parameters 方法加载 RecurrentGemma (Griffin) 模型检查点:

params =  recurrentgemma.load_parameters(CKPT_PATH, "single_device")

如需从 RecurrentGemma 模型检查点自动加载正确配置,请使用 recurrentgemma.GriffinConfig.from_flax_params_or_variables

config = recurrentgemma.GriffinConfig.from_flax_params_or_variables(params)

使用 recurrentgemma.jax.Griffin 实例化 Griffin 模型:

model = recurrentgemma.Griffin(config)

在 RecurrentGemma 模型检查点/权重和标记生成器的基础上,使用 recurrentgemma.jax.Sampler 创建 sampler,以检查您的模型是否可以执行翻译:

sampler = recurrentgemma.Sampler(model=model, vocab=vocab, params=params)

微调模型

在此部分中,您将完成以下各项:

  • 使用 gemma.transformer.Transformer 类创建前向传播和损失函数。
  • 为词元构建位置和注意力掩码向量
  • 使用 Flax 构建训练步函数。
  • 构建不含向后传递的验证步骤。
  • 创建训练循环。
  • 微调 Gemma 模型。

使用 recurrentgemma.jax.griffin.Griffin 定义前向传播和损失函数 类。RecurrentGemma Griffin 继承自 flax.linen.Module,并提供两种基本方法:

  • init:初始化模型的参数。
  • apply:使用一组给定的参数执行模型的 __call__ 函数。

由于您使用的是预训练的 Gemma 权重,因此无需使用 init 函数。

def forward_and_loss_fn(
    params,
    *,
    model: recurrentgemma.Griffin,
    input_tokens: jax.Array,            # Shape [B, L]
    input_mask: jax.Array,              # Shape [B, L]
    positions: jax.Array,               # Shape [B, L]
) -> jax.Array:
  """Forward pass and loss function.

  Args:
    params: model's input parameters.
    model: Griffin model to call.
    input_tokens: input tokens sequence, shape [B, L].
    input_mask: tokens to ignore when computing the loss, shape [B, L].
    positions: relative position of each token, shape [B, L].

  Returns:
    Softmax cross-entropy loss for the next-token prediction task.
  """
  batch_size = input_tokens.shape[0]
  # Forward pass on the input data.
  # No attention cache is needed here.
  # Exclude the last step as it does not appear in the targets.
  logits, _ = model.apply(
        {"params": params},
        tokens=input_tokens[:, :-1],
        segment_pos=positions[:, :-1],
        cache=None,
    )

  # Similarly, the first token cannot be predicteds.
  target_tokens = input_tokens[:, 1:]
  target_mask = input_mask[:, 1:]

  # Convert the target labels into one-hot encoded vectors.
  one_hot = jax.nn.one_hot(target_tokens, logits.shape[-1])

  # Don't update on unwanted tokens.
  one_hot = one_hot * target_mask.astype(one_hot.dtype)[...,None]

  # Normalization factor.
  norm_factor = batch_size * (jnp.sum(target_mask) + 1e-8)

  # Return the negative log-likelihood loss (NLL) function.
  return -jnp.sum(jax.nn.log_softmax(logits) * one_hot) / norm_factor

构建执行反向传递并相应地更新模型的参数的 train_step 函数,其中:

Params = Mapping[str, Any]

def get_positions(example: jax.Array, pad_id : int) -> jax.Array:
  """Builds the position vector from the given tokens."""
  pad_mask = example != pad_id
  positions = jnp.cumsum(pad_mask, axis=-1)
  # Subtract one for all positions from the first valid one as they are
  # 0-indexed
  positions = positions - (positions >= 1)
  return positions

@functools.partial(
    jax.jit,
    static_argnames=['model', 'optimizer'],
    donate_argnames=['params', 'opt_state'],
)
def train_step(
    model: recurrentgemma.Griffin,
    params: Params,
    optimizer: optax.GradientTransformation,
    opt_state: optax.OptState,
    pad_id: int,
    example: TrainingInput,
) -> tuple[jax.Array, Params, optax.OptState]:
  """The train step.

  Args:
    model: The RecurrentGemma (Griffin) model.
    params: The model's input parameters.
    optimizer: The Optax optimizer to use.
    opt_state: The input optimizer's state.
    pad_id: The ID of the pad token.
    example: The input batch.

  Returns:
    Training loss, updated parameters, updated optimizer state.
  """

  positions = get_positions(example.input_tokens, pad_id)

  # Forward and backward passes.
  train_loss, grads = jax.value_and_grad(forward_and_loss_fn)(
      params,
      model=model,
      input_tokens=example.input_tokens,
      input_mask=example.target_mask,
      positions=positions,
  )
  # Update the parameters.
  updates, opt_state = optimizer.update(grads, opt_state, params)
  params = optax.apply_updates(params, updates)

  return train_loss, params, opt_state

在不使用反向传递的情况下构建 validation_step 函数:

@functools.partial(jax.jit, static_argnames=['model'])
def validation_step(
    model: recurrentgemma.Griffin,
    params: Params,
    pad_id: int,
    example: TrainingInput,
) -> jax.Array:
  return forward_and_loss_fn(
      params,
      model=model,
      input_tokens=example.input_tokens,
      input_mask=example.target_mask,
      positions=get_positions(example.input_tokens, pad_id),
  )

定义训练循环:

def train_loop(
    model: recurrentgemma.Griffin,
    params: Params,
    optimizer: optax.GradientTransformation,
    train_ds: Iterator[TrainingInput],
    validation_ds: Iterator[TrainingInput],
    num_steps: int | None = None,
    eval_every_n: int = 20,
):
  opt_state = jax.jit(optimizer.init)(params)

  step_counter = 0
  avg_loss=0

  # The first round of the validation loss.
  n_steps_eval = 0
  eval_loss = 0
  for val_example in validation_ds.as_numpy_iterator():
    eval_loss += validation_step(
        model, params, dataset_builder._tokenizer.pad_id, val_example
    )
    n_steps_eval += 1
  print(f"Start, validation loss: {eval_loss/n_steps_eval}")

  for train_example in train_ds:
    train_loss, params, opt_state = train_step(
        model=model,
        params=params,
        optimizer=optimizer,
        opt_state=opt_state,
        pad_id=dataset_builder._tokenizer.pad_id,
        example=train_example,
    )

    step_counter += 1
    avg_loss += train_loss
    if step_counter % eval_every_n == 0:
      eval_loss = 0

      n_steps_eval = 0
      val_iterator = validation_ds.as_numpy_iterator()
      for val_example in val_iterator:
        eval_loss += validation_step(
            model,
            params,
            dataset_builder._tokenizer.pad_id,
            val_example,
        )
        n_steps_eval +=1
      avg_loss /= eval_every_n
      eval_loss /= n_steps_eval
      print(f"STEP {step_counter} training loss: {avg_loss} - eval loss: {eval_loss}")
      avg_loss=0
    if num_steps is not None and step_counter > num_steps:
      break
  return params

此时,您必须选择一个 (Optax) 优化工具。对于内存较小的设备,您应使用 SGD,因为它占用的内存要少得多。为实现最佳微调性能,请尝试使用 Adam-W。此示例针对 2b-it 检查点提供了此笔记本中特定任务的每个优化器的最佳超参数。

def griffin_weight_decay_mask(params_like: optax.Params) -> Any:
  # Don't put weight decay on the RGLRU, the embeddings and any biases
  def enable_weight_decay(path: list[Any], _: Any) -> bool:
    # Parameters in the LRU and embedder
    path = [dict_key.key for dict_key in path]
    if 'rg_lru' in path or 'embedder' in path:
      return False
    # All biases and scales
    if path[-1] in ('b', 'scale'):
      return False
    return True

  return jax.tree_util.tree_map_with_path(enable_weight_decay, params_like)

optimizer_choice = "sgd"

if optimizer_choice == "sgd":
  optimizer = optax.sgd(learning_rate=1e-3)
  num_steps = 300
elif optimizer_choice == "adamw":
  optimizer = optax.adamw(
        learning_rate=1e-4,
        b2=0.96,
        eps=1e-8,
        weight_decay=0.1,
        mask=griffin_weight_decay_mask,
    )
  num_steps = 100
else:
  raise ValueError(f"Unknown optimizer: {optimizer_choice}")

准备训练和验证数据集:

# Choose a small sequence length size, so that everything fits in memory.
num_epochs = 1
batch_size = 1
sequence_length = 32

# Make the dataset builder.
tokenizer = GriffinTokenizer(vocab)
dataset_builder= MTNTDatasetBuilder(tokenizer, sequence_length + 1)

# Build the training dataset.
train_ds = dataset_builder.get_train_dataset(
    batch_size=batch_size,
    num_epochs=num_epochs,
).as_numpy_iterator()

# Build the validation dataset, with a limited number of samples for this demo.
validation_ds = dataset_builder.get_validation_dataset(
    batch_size=batch_size,
).take(50)

使用有限步数 (num_steps) 开始对 RecurrentGemma (Griffin) 模型进行微调:

trained_params = train_loop(
    model=model,
    params=params,
    optimizer=optimizer,
    train_ds=train_ds,
    validation_ds=validation_ds,
    num_steps=num_steps,
)
Start, validation loss: 7.894117832183838
/usr/local/lib/python3.10/dist-packages/jax/_src/interpreters/mlir.py:920: UserWarning: Some donated buffers were not usable: ShapedArray(int32[1,33]), ShapedArray(bool[1,33]), ShapedArray(int32[], weak_type=True).
See an explanation at https://jax.readthedocs.io/en/latest/faq.html#buffer_donation.
  warnings.warn("Some donated buffers were not usable:"
STEP 20 training loss: 4.592616081237793 - eval loss: 2.847407102584839
STEP 40 training loss: 2.7537424564361572 - eval loss: 2.9258534908294678
STEP 60 training loss: 2.835618257522583 - eval loss: 2.4382340908050537
STEP 80 training loss: 2.6322107315063477 - eval loss: 2.3696839809417725
STEP 100 training loss: 1.8703256845474243 - eval loss: 2.355681896209717
STEP 120 training loss: 2.7280433177948 - eval loss: 2.4059958457946777
STEP 140 training loss: 2.3047447204589844 - eval loss: 2.083082914352417
STEP 160 training loss: 2.3432137966156006 - eval loss: 2.095074415206909
STEP 180 training loss: 2.1081202030181885 - eval loss: 2.006460189819336
STEP 200 training loss: 2.5359647274017334 - eval loss: 1.9667452573776245
STEP 220 training loss: 2.202195644378662 - eval loss: 1.9440618753433228
STEP 240 training loss: 2.756615400314331 - eval loss: 2.1073737144470215
STEP 260 training loss: 2.5128934383392334 - eval loss: 2.117241859436035
STEP 280 training loss: 2.73045015335083 - eval loss: 1.9159646034240723
STEP 300 training loss: 2.0918595790863037 - eval loss: 1.9742532968521118

训练损失和验证损失都应随着步数的增加而下降。

为了确保您的输入与训练格式匹配,请务必在末尾使用前缀 Translate this into French:\n 和换行符。这会指示模型开始翻译。

sampler.params = trained_params
output = sampler(
    ["Translate this into French:\nHello, my name is Morgane.\n"],
    total_generation_steps=100,
)
print(output.text[0])
/usr/local/lib/python3.10/dist-packages/jax/_src/interpreters/mlir.py:920: UserWarning: Some donated buffers were not usable: ShapedArray(int32[1,16]).
See an explanation at https://jax.readthedocs.io/en/latest/faq.html#buffer_donation.
  warnings.warn("Some donated buffers were not usable:"
Mais je m'appelle Morgane.

了解详情