واجهة برمجة التطبيقات REST: ضبط التشغيل السريع

الاطّلاع على ai.google.dev تجربة "مفكرة Colab" عرض دفتر الملاحظات على GitHub تنزيل دفتر ملاحظات

في دفتر البيانات هذا، ستتعرّف على كيفية بدء استخدام خدمة ضبط PaLM API باستخدام أوامر curl أو واجهة برمجة التطبيقات Python request API للاتصال بواجهة برمجة التطبيقات PaLM REST API. ستتعرّف هنا على كيفية ضبط نموذج النصوص الذي يستند إليه تطبيق PaLM API لإنشاء النصوص.

ضبط إعدادات الجهاز

مصادقة

تتيح لك PaLM API ضبط النماذج استنادًا إلى بياناتك الخاصة. وبما أنّ هذه هي بياناتك ونماذجك المحسّنة، فإنّ ذلك يتطلّب عناصر تحكّم في الوصول أكثر صرامة من تلك التي يمكن أن تقدّمها مفاتيح واجهة برمجة التطبيقات.

قبل تشغيل هذا البرنامج التعليمي، يجب إعداد OAuth لمشروعك.

إذا أردت تشغيل ورقة الملاحظات هذه في Colab، يجب أولاً تحميل ملف client_secret*.json باستخدام الخيار "ملف > تحميل".

عرض خيار File (ملف) > Upload (تحميل) في colab

cp client_secret*.json client_secret.json
ls
client_secret.json

يحوّل أمر gcloud هذا ملف client_secret.json إلى بيانات اعتماد يمكن استخدامها للمصادقة مع الخدمة.

import os
if 'COLAB_RELEASE_TAG' in os.environ:
  # Use `--no-browser` in colab
  !gcloud auth application-default login --no-browser --client-id-file client_secret.json --scopes='https://www.googleapis.com/auth/cloud-platform,https://www.googleapis.com/auth/generative-language.tuning'
else:
  !gcloud auth application-default login --client-id-file client_secret.json --scopes='https://www.googleapis.com/auth/cloud-platform,https://www.googleapis.com/auth/generative-language.tuning'

طلب واجهة برمجة تطبيقات REST باستخدام CURL

يقدّم هذا القسم أمثلة على عبارات curl لاستدعاء واجهة برمجة تطبيقات REST. ستتعرّف على كيفية إنشاء مهمة ضبط والتحقّق من حالتها، وبعد اكتمالها، يمكنك إجراء مكالمة استنتاجية.

ضبط المتغيرات

يمكنك ضبط المتغيّرات للقيم المتكرّرة لاستخدامها في بقية طلبات البيانات من واجهة برمجة التطبيقات REST. يستخدم الرمز البرمجي مكتبة Python os لضبط متغيّرات البيئة التي يمكن الوصول إليها في جميع خلايا الرمز البرمجي.

ويكون هذا الخيار خاصًا ببيئة ورقة ملاحظات Colab. التعليمة البرمجية في خلية التعليمات البرمجية التالية مكافئة لتشغيل الأوامر التالية في وحدة طرفية bash.

export access_token=$(gcloud auth application-default print-access-token)
export project_id=my-project-id
export base_url=https://generativelanguage.googleapis.com
import os

access_token = !gcloud auth application-default print-access-token
access_token = '\n'.join(access_token)

os.environ['access_token'] = access_token
os.environ['project_id'] = "project-id"
os.environ['base_url'] = "https://generativelanguage.googleapis.com"

عرض النماذج المحسّنة

تأكَّد من إعداد المصادقة من خلال إدراج النماذج المحسّنة المتاحة حاليًا.


curl -X GET ${base_url}/v1beta3/tunedModels \
    -H 'Content-Type: application/json' \
    -H "Authorization: Bearer ${access_token}" \
    -H "x-goog-user-project: ${project_id}" | grep name
"name": "tunedModels/testnumbergenerator-fvitocr834l6",
      "name": "tunedModels/my-display-name-81-9wpmc1m920vq",
      "displayName": "my display name 81",
      "name": "tunedModels/number-generator-model-kctlevca1g3q",
      "name": "tunedModels/my-display-name-81-r9wcuda14lyy",
      "displayName": "my display name 81",
      "name": "tunedModels/number-generator-model-w1eabln5adwp",
% Total    % Received % Xferd  Average Speed   Time    Time     Time  Current
                                 Dload  Upload   Total   Spent    Left  Speed
100 17583    0 17583    0     0  51600      0 --:--:-- --:--:-- --:--:-- 51563

إنشاء نموذج معدَّل

لإنشاء نموذج معدَّل، عليك تمرير مجموعة البيانات إلى النموذج في الحقل training_data.

في هذا المثال، ستقوم بضبط نموذج لإنشاء الرقم التالي في التسلسل. على سبيل المثال، إذا كان المُدخل هو 1، يجب أن يعرض النموذج القيمة 2. إذا كان الإدخال one hundred، يجب أن يكون الناتج one hundred one.


curl -X POST ${base_url}/v1beta3/tunedModels \
    -H 'Content-Type: application/json' \
    -H "Authorization: Bearer ${access_token}" \
    -H "x-goog-user-project: ${project_id}" \
    -d '
      {
        "display_name": "number generator model",
        "base_model": "models/text-bison-001",
        "tuning_task": {
          "hyperparameters": {
            "batch_size": 2,
            "learning_rate": 0.001,
            "epoch_count":3,
          },
          "training_data": {
            "examples": {
              "examples": [
                {
                    "text_input": "1",
                    "output": "2",
                },{
                    "text_input": "3",
                    "output": "4",
                },{
                    "text_input": "-3",
                    "output": "-2",
                },{
                    "text_input": "twenty two",
                    "output": "twenty three",
                },{
                    "text_input": "two hundred",
                    "output": "two hundred one",
                },{
                    "text_input": "ninety nine",
                    "output": "one hundred",
                },{
                    "text_input": "8",
                    "output": "9",
                },{
                    "text_input": "-98",
                    "output": "-97",
                },{
                    "text_input": "1,000",
                    "output": "1,001",
                },{
                    "text_input": "10,100,000",
                    "output": "10,100,001",
                },{
                    "text_input": "thirteen",
                    "output": "fourteen",
                },{
                    "text_input": "eighty",
                    "output": "eighty one",
                },{
                    "text_input": "one",
                    "output": "two",
                },{
                    "text_input": "three",
                    "output": "four",
                },{
                    "text_input": "seven",
                    "output": "eight",
                }
              ]
            }
          }
        }
      }' | tee tunemodel.json
{
  "name": "tunedModels/number-generator-model-q2d0uism5ivd/operations/xvyx09sjxlmh",
  "metadata": {
    "@type": "type.googleapis.com/google.ai.generativelanguage.v1beta3.CreateTunedModelMetadata",
    "totalSteps": 23,
    "tunedModel": "tunedModels/number-generator-model-q2d0uism5ivd"
  }
}
% Total    % Received % Xferd  Average Speed   Time    Time     Time  Current
                                 Dload  Upload   Total   Spent    Left  Speed
100  2277    0   297  100  1980    146    975  0:00:02  0:00:02 --:--:--  1121

الحصول على حالة النموذج المحسَّن

يتم ضبط حالة النموذج على CREATING أثناء التدريب، وستتغير إلى ACTIVE بعد اكتمالها.

في ما يلي جزء من رمز بايثون لتحليل اسم النموذج الذي تم إنشاؤه من استجابة JSON. إذا كنت تستخدم هذا الإجراء في وحدة تحكّم، يمكنك تجربة استخدام برنامج تحليل JSON في bash لتحليل الاستجابة.

import json

first_page = json.load(open('tunemodel.json'))
os.environ['modelname'] = first_page['metadata']['tunedModel']

print(os.environ['modelname'])
tunedModels/number-generator-model-q2d0uism5ivd

قدِّم طلبًا آخر من النوع GET مع اسم الطراز للحصول على البيانات الوصفية للطراز التي تتضمّن حقل الحالة.


curl -X GET ${base_url}/v1beta3/${modelname} \
    -H 'Content-Type: application/json' \
    -H "Authorization: Bearer ${access_token}" \
    -H "x-goog-user-project: ${project_id}" \ | grep state
"state": "CREATING",
% Total    % Received % Xferd  Average Speed   Time    Time     Time  Current
                                 Dload  Upload   Total   Spent    Left  Speed
100   494    0   494    0     0    760      0 --:--:-- --:--:-- --:--:--   760
curl: (3) URL using bad/illegal format or missing URL

تنفيذ الاستنتاج

بعد الانتهاء من عملية الضبط، يمكنك استخدامها لإنشاء نص باستخدام خدمة النص.


curl -X POST ${base_url}/v1beta3/${modelname}:generateText \
    -H 'Content-Type: application/json' \
    -H "Authorization: Bearer ${access_token}" \
    -H "x-goog-user-project: ${project_id}" \
    -d '{
        "prompt": {
              "text": "4"
              },
        "temperature": 1.0,
        "candidate_count": 2}' | grep output
"output": "3 2 1",
      "output": "3 2",
% Total    % Received % Xferd  Average Speed   Time    Time     Time  Current
                                 Dload  Upload   Total   Spent    Left  Speed
100  1569    0  1447  100   122    183     15  0:00:08  0:00:07  0:00:01   310

قد تكون نتائج النموذج صحيحة أو غير صحيحة. إذا لم يكن أداء النموذج المحسَّن على مستوى المعايير المطلوبة، يمكنك محاولة إضافة المزيد من الأمثلة العالية الجودة أو تعديل المَعلمات الفائقة أو إضافة مقدّمة إلى أمثلةك. يمكنك أيضًا إنشاء نموذج آخر معدّل استنادًا إلى النموذج الأول الذي أنشأته.

اطّلِع على دليل الضبط للحصول على مزيد من الإرشادات حول تحسين الأداء.

استدعاء واجهة برمجة التطبيقات REST باستخدام طلبات Python

يمكنك طلب بيانات من واجهة برمجة التطبيقات rest باستخدام أي مكتبة تتيح لك إرسال طلبات http. تستخدِم المجموعة التالية من الأمثلة مكتبة Python requests، وتوضِّح بعض الميزات الأكثر تقدمًا.

ضبط المتغيّرات

access_token = !gcloud auth application-default print-access-token
access_token = '\n'.join(access_token)

project = 'project-id'
base_url = "https://generativelanguage.googleapis.com"

استورِد مكتبة requests.

import requests
import json

عرض النماذج المحسَّنة

تأكَّد من إعداد المصادقة من خلال إدراج النماذج المحسّنة المتاحة حاليًا.

headers={
  'Authorization': 'Bearer ' + access_token,
  'Content-Type': 'application/json',
  'x-goog-user-project': project
}

result = requests.get(
  url=f'{base_url}/v1beta3/tunedModels',
  headers = headers,
)
result.json()
{'tunedModels': [{'name': 'tunedModels/testnumbergenerator-fvitocr834l6',
   'baseModel': 'models/text-bison-001',
   'displayName': 'test_number_generator',
   'description': '{"description":"generates the  next number in the sequence given the input text","exampleInput":"input: 1","exampleOutput":"output: 2","datasourceUrl":"https://drive.google.com/open?id=11Pdm6GNom4vlBMUHwO6yFjGQT3t1yi44WVShXMFnkVA&authuser=0&resourcekey=0-2d17tccbdBoThXMkNDvtag","showedTuningComplete":false}',
   'state': 'ACTIVE',
   'createTime': '2023-09-18T11:06:39.092786Z',
   'updateTime': '2023-09-18T11:07:24.198359Z',
   'tuningTask': {'startTime': '2023-09-18T11:06:39.461814784Z',
    'completeTime': '2023-09-18T11:07:24.198359Z',
    'snapshots': [{'step': 1,
      'meanLoss': 16.613504,
      'computeTime': '2023-09-18T11:06:44.532937624Z'},
     {'step': 2,
      'epoch': 1,
      'meanLoss': 20.299532,
      'computeTime': '2023-09-18T11:06:47.825134421Z'},
     {'step': 3,
      'epoch': 1,
      'meanLoss': 8.169708,
      'computeTime': '2023-09-18T11:06:50.580344344Z'},
     {'step': 4,
      'epoch': 2,
      'meanLoss': 3.7588992,
      'computeTime': '2023-09-18T11:06:53.219133748Z'},
     {'step': 5,
      'epoch': 3,
      'meanLoss': 2.0643115,
      'computeTime': '2023-09-18T11:06:55.828458606Z'},
     {'step': 6,
      'epoch': 3,
      'meanLoss': 1.9765375,
      'computeTime': '2023-09-18T11:06:58.426053772Z'},
     {'step': 7,
      'epoch': 4,
      'meanLoss': 0.9276156,
      'computeTime': '2023-09-18T11:07:01.231832398Z'},
     {'step': 8,
      'epoch': 5,
      'meanLoss': 1.8424839,
      'computeTime': '2023-09-18T11:07:03.822710074Z'},
     {'step': 9,
      'epoch': 5,
      'meanLoss': 1.1747926,
      'computeTime': '2023-09-18T11:07:06.441685551Z'},
     {'step': 10,
      'epoch': 6,
      'meanLoss': 0.3079359,
      'computeTime': '2023-09-18T11:07:08.793491157Z'},
     {'step': 11,
      'epoch': 7,
      'meanLoss': 0.543368,
      'computeTime': '2023-09-18T11:07:11.393264892Z'},
     {'step': 12,
      'epoch': 7,
      'meanLoss': 0.35068464,
      'computeTime': '2023-09-18T11:07:13.808021238Z'},
     {'step': 13,
      'epoch': 8,
      'meanLoss': 0.026032856,
      'computeTime': '2023-09-18T11:07:16.295972078Z'},
     {'step': 14,
      'epoch': 8,
      'meanLoss': 0.108341046,
      'computeTime': '2023-09-18T11:07:18.941247488Z'},
     {'step': 15,
      'epoch': 9,
      'meanLoss': 0.016470395,
      'computeTime': '2023-09-18T11:07:21.607654306Z'},
     {'step': 16,
      'epoch': 10,
      'meanLoss': 0.063049875,
      'computeTime': '2023-09-18T11:07:24.077271307Z'}],
    'hyperparameters': {'epochCount': 10,
     'batchSize': 16,
     'learningRate': 0.02} },
   'temperature': 0.7,
   'topP': 0.95,
   'topK': 40},
  {'name': 'tunedModels/my-display-name-81-9wpmc1m920vq',
   'baseModel': 'models/text-bison-tuning-test',
   'displayName': 'my display name 81',
   'state': 'ACTIVE',
   'createTime': '2023-09-18T22:02:08.690991Z',
   'updateTime': '2023-09-18T22:02:28.806318Z',
   'tuningTask': {'startTime': '2023-09-18T22:02:09.161100369Z',
    'completeTime': '2023-09-18T22:02:28.806318Z',
    'snapshots': [{'step': 1,
      'meanLoss': 7.2774773,
      'computeTime': '2023-09-18T22:02:12.453056368Z'},
     {'step': 2,
      'meanLoss': 6.1902447,
      'computeTime': '2023-09-18T22:02:13.789508217Z'},
     {'step': 3,
      'meanLoss': 5.5545835,
      'computeTime': '2023-09-18T22:02:15.136220505Z'},
     {'step': 4,
      'epoch': 1,
      'meanLoss': 7.9237704,
      'computeTime': '2023-09-18T22:02:16.474358517Z'},
     {'step': 5,
      'epoch': 1,
      'meanLoss': 7.6770706,
      'computeTime': '2023-09-18T22:02:17.758261108Z'},
     {'step': 6,
      'epoch': 1,
      'meanLoss': 7.378622,
      'computeTime': '2023-09-18T22:02:19.114072224Z'},
     {'step': 7,
      'epoch': 1,
      'meanLoss': 4.485537,
      'computeTime': '2023-09-18T22:02:20.927434115Z'},
     {'step': 8,
      'epoch': 2,
      'meanLoss': 6.815181,
      'computeTime': '2023-09-18T22:02:22.267906011Z'},
     {'step': 9,
      'epoch': 2,
      'meanLoss': 6.411363,
      'computeTime': '2023-09-18T22:02:24.078114085Z'},
     {'step': 10,
      'epoch': 2,
      'meanLoss': 8.585093,
      'computeTime': '2023-09-18T22:02:25.441598938Z'},
     {'step': 11,
      'epoch': 2,
      'meanLoss': 4.901249,
      'computeTime': '2023-09-18T22:02:27.108985392Z'},
     {'step': 12,
      'epoch': 3,
      'meanLoss': 7.073003,
      'computeTime': '2023-09-18T22:02:28.441662034Z'}],
    'hyperparameters': {'epochCount': 3,
     'batchSize': 4,
     'learningRate': 0.001} },
   'temperature': 0.7,
   'topP': 0.95,
   'topK': 40},
  {'name': 'tunedModels/number-generator-model-kctlevca1g3q',
   'baseModel': 'models/text-bison-tuning-test',
   'displayName': 'number generator model',
   'state': 'ACTIVE',
   'createTime': '2023-09-18T23:43:21.461545Z',
   'updateTime': '2023-09-18T23:43:49.205493Z',
   'tuningTask': {'startTime': '2023-09-18T23:43:21.542403958Z',
    'completeTime': '2023-09-18T23:43:49.205493Z',
    'snapshots': [{'step': 1,
      'meanLoss': 7.342065,
      'computeTime': '2023-09-18T23:43:23.356271969Z'},
     {'step': 2,
      'meanLoss': 7.255807,
      'computeTime': '2023-09-18T23:43:24.620248223Z'},
     {'step': 3,
      'meanLoss': 5.4591417,
      'computeTime': '2023-09-18T23:43:25.854505395Z'},
     {'step': 4,
      'meanLoss': 6.968665,
      'computeTime': '2023-09-18T23:43:27.138260198Z'},
     {'step': 5,
      'meanLoss': 4.578809,
      'computeTime': '2023-09-18T23:43:28.404943274Z'},
     {'step': 6,
      'meanLoss': 6.4862137,
      'computeTime': '2023-09-18T23:43:29.631624883Z'},
     {'step': 7,
      'meanLoss': 9.781939,
      'computeTime': '2023-09-18T23:43:30.801341449Z'},
     {'step': 8,
      'epoch': 1,
      'meanLoss': 5.990006,
      'computeTime': '2023-09-18T23:43:31.854703315Z'},
     {'step': 9,
      'epoch': 1,
      'meanLoss': 8.846312,
      'computeTime': '2023-09-18T23:43:33.075785103Z'},
     {'step': 10,
      'epoch': 1,
      'meanLoss': 6.1585655,
      'computeTime': '2023-09-18T23:43:34.310432174Z'},
     {'step': 11,
      'epoch': 1,
      'meanLoss': 4.7877502,
      'computeTime': '2023-09-18T23:43:35.381582526Z'},
     {'step': 12,
      'epoch': 1,
      'meanLoss': 9.660514,
      'computeTime': '2023-09-18T23:43:36.445446408Z'},
     {'step': 13,
      'epoch': 1,
      'meanLoss': 5.6482882,
      'computeTime': '2023-09-18T23:43:37.603237821Z'},
     {'step': 14,
      'epoch': 1,
      'meanLoss': 3.162092,
      'computeTime': '2023-09-18T23:43:38.671463397Z'},
     {'step': 15,
      'epoch': 2,
      'meanLoss': 6.322996,
      'computeTime': '2023-09-18T23:43:39.769742201Z'},
     {'step': 16,
      'epoch': 2,
      'meanLoss': 6.781,
      'computeTime': '2023-09-18T23:43:40.985967994Z'},
     {'step': 17,
      'epoch': 2,
      'meanLoss': 5.136773,
      'computeTime': '2023-09-18T23:43:42.235469710Z'},
     {'step': 18,
      'epoch': 2,
      'meanLoss': 7.2091155,
      'computeTime': '2023-09-18T23:43:43.415178581Z'},
     {'step': 19,
      'epoch': 2,
      'meanLoss': 7.7508755,
      'computeTime': '2023-09-18T23:43:44.775221774Z'},
     {'step': 20,
      'epoch': 2,
      'meanLoss': 8.144815,
      'computeTime': '2023-09-18T23:43:45.788824334Z'},
     {'step': 21,
      'epoch': 2,
      'meanLoss': 5.485137,
      'computeTime': '2023-09-18T23:43:46.812663998Z'},
     {'step': 22,
      'epoch': 2,
      'meanLoss': 3.709197,
      'computeTime': '2023-09-18T23:43:47.971764087Z'},
     {'step': 23,
      'epoch': 3,
      'meanLoss': 6.0069466,
      'computeTime': '2023-09-18T23:43:49.004191079Z'}],
    'hyperparameters': {'epochCount': 3,
     'batchSize': 2,
     'learningRate': 0.001} },
   'temperature': 0.7,
   'topP': 0.95,
   'topK': 40},
  {'name': 'tunedModels/my-display-name-81-r9wcuda14lyy',
   'baseModel': 'models/text-bison-tuning-test',
   'displayName': 'my display name 81',
   'state': 'ACTIVE',
   'createTime': '2023-09-18T23:52:06.980185Z',
   'updateTime': '2023-09-18T23:52:26.679601Z',
   'tuningTask': {'startTime': '2023-09-18T23:52:07.616953503Z',
    'completeTime': '2023-09-18T23:52:26.679601Z',
    'snapshots': [{'step': 1,
      'meanLoss': 7.2774773,
      'computeTime': '2023-09-18T23:52:10.278936662Z'},
     {'step': 2,
      'meanLoss': 6.2793097,
      'computeTime': '2023-09-18T23:52:11.630844790Z'},
     {'step': 3,
      'meanLoss': 5.540499,
      'computeTime': '2023-09-18T23:52:13.027840389Z'},
     {'step': 4,
      'epoch': 1,
      'meanLoss': 7.977523,
      'computeTime': '2023-09-18T23:52:14.368199020Z'},
     {'step': 5,
      'epoch': 1,
      'meanLoss': 7.6197805,
      'computeTime': '2023-09-18T23:52:15.872428752Z'},
     {'step': 6,
      'epoch': 1,
      'meanLoss': 7.3851357,
      'computeTime': '2023-09-18T23:52:17.213094182Z'},
     {'step': 7,
      'epoch': 1,
      'meanLoss': 4.5342345,
      'computeTime': '2023-09-18T23:52:19.090698421Z'},
     {'step': 8,
      'epoch': 2,
      'meanLoss': 6.8603754,
      'computeTime': '2023-09-18T23:52:20.494844731Z'},
     {'step': 9,
      'epoch': 2,
      'meanLoss': 6.418575,
      'computeTime': '2023-09-18T23:52:21.815997555Z'},
     {'step': 10,
      'epoch': 2,
      'meanLoss': 8.659064,
      'computeTime': '2023-09-18T23:52:23.524287192Z'},
     {'step': 11,
      'epoch': 2,
      'meanLoss': 4.856765,
      'computeTime': '2023-09-18T23:52:24.864661291Z'},
     {'step': 12,
      'epoch': 3,
      'meanLoss': 7.1078596,
      'computeTime': '2023-09-18T23:52:26.225055381Z'}],
    'hyperparameters': {'epochCount': 3,
     'batchSize': 4,
     'learningRate': 0.001} },
   'temperature': 0.7,
   'topP': 0.95,
   'topK': 40},
  {'name': 'tunedModels/number-generator-model-w1eabln5adwp',
   'baseModel': 'models/text-bison-tuning-test',
   'displayName': 'number generator model',
   'state': 'ACTIVE',
   'createTime': '2023-09-19T19:29:08.622497Z',
   'updateTime': '2023-09-19T19:29:46.063853Z',
   'tuningTask': {'startTime': '2023-09-19T19:29:08.806930486Z',
    'completeTime': '2023-09-19T19:29:46.063853Z',
    'snapshots': [{'step': 1,
      'meanLoss': 7.342065,
      'computeTime': '2023-09-19T19:29:13.023811994Z'},
     {'step': 2,
      'meanLoss': 7.1960244,
      'computeTime': '2023-09-19T19:29:14.844046282Z'},
     {'step': 3,
      'meanLoss': 5.480289,
      'computeTime': '2023-09-19T19:29:16.596884354Z'},
     {'step': 4,
      'meanLoss': 6.851822,
      'computeTime': '2023-09-19T19:29:17.741735378Z'},
     {'step': 5,
      'meanLoss': 4.5535283,
      'computeTime': '2023-09-19T19:29:18.914760812Z'},
     {'step': 6,
      'meanLoss': 6.449012,
      'computeTime': '2023-09-19T19:29:20.053316042Z'},
     {'step': 7,
      'meanLoss': 9.842458,
      'computeTime': '2023-09-19T19:29:21.371286675Z'},
     {'step': 8,
      'epoch': 1,
      'meanLoss': 5.9831877,
      'computeTime': '2023-09-19T19:29:22.915277044Z'},
     {'step': 9,
      'epoch': 1,
      'meanLoss': 8.936815,
      'computeTime': '2023-09-19T19:29:24.666461680Z'},
     {'step': 10,
      'epoch': 1,
      'meanLoss': 6.14651,
      'computeTime': '2023-09-19T19:29:26.793310451Z'},
     {'step': 11,
      'epoch': 1,
      'meanLoss': 4.853589,
      'computeTime': '2023-09-19T19:29:28.328297535Z'},
     {'step': 12,
      'epoch': 1,
      'meanLoss': 9.6831045,
      'computeTime': '2023-09-19T19:29:29.501236840Z'},
     {'step': 13,
      'epoch': 1,
      'meanLoss': 5.706586,
      'computeTime': '2023-09-19T19:29:30.612807978Z'},
     {'step': 14,
      'epoch': 1,
      'meanLoss': 3.276942,
      'computeTime': '2023-09-19T19:29:31.928747103Z'},
     {'step': 15,
      'epoch': 2,
      'meanLoss': 6.1736736,
      'computeTime': '2023-09-19T19:29:33.588699180Z'},
     {'step': 16,
      'epoch': 2,
      'meanLoss': 6.857398,
      'computeTime': '2023-09-19T19:29:35.239083809Z'},
     {'step': 17,
      'epoch': 2,
      'meanLoss': 5.098094,
      'computeTime': '2023-09-19T19:29:37.000705047Z'},
     {'step': 18,
      'epoch': 2,
      'meanLoss': 7.27724,
      'computeTime': '2023-09-19T19:29:38.532313231Z'},
     {'step': 19,
      'epoch': 2,
      'meanLoss': 7.6310735,
      'computeTime': '2023-09-19T19:29:39.696034301Z'},
     {'step': 20,
      'epoch': 2,
      'meanLoss': 8.152623,
      'computeTime': '2023-09-19T19:29:40.803342042Z'},
     {'step': 21,
      'epoch': 2,
      'meanLoss': 5.451577,
      'computeTime': '2023-09-19T19:29:42.445788199Z'},
     {'step': 22,
      'epoch': 2,
      'meanLoss': 3.7990716,
      'computeTime': '2023-09-19T19:29:43.866737307Z'},
     {'step': 23,
      'epoch': 3,
      'meanLoss': 6.120624,
      'computeTime': '2023-09-19T19:29:45.599248553Z'}],
    'hyperparameters': {'epochCount': 3,
     'batchSize': 2,
     'learningRate': 0.001} },
   'temperature': 0.7,
   'topP': 0.95,
   'topK': 40}]}

إنشاء نموذج معدَّل

كما هو الحال في مثال Curl، يمكنك تمرير مجموعة البيانات من خلال الحقل training_data.

operation = requests.post(
    url = f'{base_url}/v1beta3/tunedModels',
    headers=headers,
    json= {
        "display_name": "number generator",
        "base_model": "models/text-bison-001",
        "tuning_task": {
          "hyperparameters": {
            "batch_size": 4,
            "learning_rate": 0.001,
            "epoch_count":3,
          },
          "training_data": {
            "examples": {
              "examples": [
                {
                    'text_input': '1',
                    'output': '2',
                },{
                    'text_input': '3',
                    'output': '4',
                },{
                    'text_input': '-3',
                    'output': '-2',
                },{
                    'text_input': 'twenty two',
                    'output': 'twenty three',
                },{
                    'text_input': 'two hundred',
                    'output': 'two hundred one',
                },{
                    'text_input': 'ninety nine',
                    'output': 'one hundred',
                },{
                    'text_input': '8',
                    'output': '9',
                },{
                    'text_input': '-98',
                    'output': '-97',
                },{
                    'text_input': '1,000',
                    'output': '1,001',
                },{
                    'text_input': '10,100,000',
                    'output': '10,100,001',
                },{
                    'text_input': 'thirteen',
                    'output': 'fourteen',
                },{
                    'text_input': 'eighty',
                    'output': 'eighty one',
                },{
                    'text_input': 'one',
                    'output': 'two',
                },{
                    'text_input': 'three',
                    'output': 'four',
                },{
                    'text_input': 'seven',
                    'output': 'eight',
                }
              ]
            }
          }
        }
      }
)
operation
<Response [200]>
operation.json()
{'name': 'tunedModels/number-generator-ncqqnysl74dt/operations/qqlbwzfyzn0k',
 'metadata': {'@type': 'type.googleapis.com/google.ai.generativelanguage.v1beta3.CreateTunedModelMetadata',
  'totalSteps': 12,
  'tunedModel': 'tunedModels/number-generator-ncqqnysl74dt'} }

اضبط متغيّرًا باسم النموذج الذي تم ضبطه لاستخدامه في بقية المكالمات.

name=operation.json()["metadata"]["tunedModel"]
name
'tunedModels/number-generator-ncqqnysl74dt'

الحصول على حالة النموذج الضبط

يمكنك التحقق من مستوى تقدم مهمة الضبط عن طريق التحقق من حقل الولاية. يشير الرمز CREATING إلى أنّ عملية الضبط لا تزال جارية، ويشير الرمز ACTIVE إلى اكتمال عملية التدريب وجاهزية النموذج المحسَّن للاستخدام.

tuned_model = requests.get(
    url = f'{base_url}/v1beta3/{name}',
    headers=headers,
)
tuned_model.json()
{'name': 'tunedModels/number-generator-ncqqnysl74dt',
 'baseModel': 'models/text-bison-001',
 'displayName': 'number generator',
 'state': 'CREATING',
 'createTime': '2023-09-19T19:56:25.999303Z',
 'updateTime': '2023-09-19T19:56:25.999303Z',
 'tuningTask': {'startTime': '2023-09-19T19:56:26.297862545Z',
  'hyperparameters': {'epochCount': 3, 'batchSize': 4, 'learningRate': 0.001} },
 'temperature': 0.7,
 'topP': 0.95,
 'topK': 40}

تتحقّق التعليمة البرمجية أدناه من حقل الحالة كل 5 ثوانٍ إلى أن تصبح الحالة غير CREATING.

import time
import pprint

op_json = operation.json()
response = op_json.get('response')
error = op_json.get('error')

while response is None and error is None:
    time.sleep(31)

    operation = requests.get(
        url = f'{base_url}/v1/{op_json["name"]}',
        headers=headers,
    )

    op_json = operation.json()
    response = op_json.get('response')
    error = op_json.get('error')

    percent = op_json['metadata'].get('completedPercent')
    if percent is not None:
      print(f"{percent:.2f}% - {op_json['metadata']['snapshots'][-1]}")
      print()

if error is not None:
    raise Exception(error)
21.28% - {'step': 40, 'epoch': 10, 'meanLoss': 2.4871845, 'computeTime': '2023-09-20T00:23:55.255785843Z'}

21.28% - {'step': 40, 'epoch': 10, 'meanLoss': 2.4871845, 'computeTime': '2023-09-20T00:23:55.255785843Z'}

43.09% - {'step': 81, 'epoch': 21, 'meanLoss': 0.032220088, 'computeTime': '2023-09-20T00:24:56.302837803Z'}

43.09% - {'step': 81, 'epoch': 21, 'meanLoss': 0.032220088, 'computeTime': '2023-09-20T00:24:56.302837803Z'}

63.83% - {'step': 120, 'epoch': 32, 'meanLoss': 0.0030430648, 'computeTime': '2023-09-20T00:25:57.228615435Z'}

63.83% - {'step': 120, 'epoch': 32, 'meanLoss': 0.0030430648, 'computeTime': '2023-09-20T00:25:57.228615435Z'}

85.11% - {'step': 160, 'epoch': 42, 'meanLoss': -1.1145603e-06, 'computeTime': '2023-09-20T00:26:57.819011896Z'}

100.00% - {'step': 188, 'epoch': 50, 'meanLoss': 0.00040101097, 'computeTime': '2023-09-20T00:27:40.024132813Z'}

تنفيذ الاستنتاج

بعد انتهاء عملية الضبط، يمكنك استخدامها لإنشاء نص بالطريقة نفسها التي تستخدم بها نموذج النص الأساسي.

import time

m = requests.post(
    url = f'{base_url}/v1beta3/{name}:generateText',
    headers=headers,
    json= {
         "prompt": {
              "text": "9"
              },
    })
import pprint
print(m.json()['candidates'][0]['output'])
9

قد يكون الناتج من النموذج صحيحًا أو غير صحيح. إذا لم يكن أداء النموذج المحسَّن على مستوى المعايير المطلوبة، يمكنك محاولة إضافة المزيد من الأمثلة العالية الجودة أو تعديل المَعلمات الفائقة أو إضافة مقدّمة إلى أمثلةك.

الخطوات التالية