Lihat di ai.google.dev | Mencoba notebook Colab | Lihat notebook di GitHub | Download notebook |
Dalam notebook ini, Anda akan mempelajari cara memulai layanan penyesuaian PaLM API menggunakan perintah curl atau API permintaan Python untuk memanggil PaLM REST API. Di sini, Anda akan mempelajari cara menyesuaikan model teks di balik layanan pembuatan teks PaLM API.
Penyiapan
Autentikasikan
PaLM API memungkinkan Anda menyesuaikan model dengan data Anda sendiri. Karena data dan model yang disesuaikan adalah milik Anda, hal ini memerlukan kontrol akses yang lebih ketat daripada yang dapat diberikan Kunci API.
Sebelum dapat menjalankan tutorial ini, Anda harus menyiapkan OAuth untuk project Anda.
Jika Anda ingin menjalankan notebook ini di Colab, mulailah dengan mengupload file client_secret*.json
menggunakan opsi "File > Upload".
cp client_secret*.json client_secret.json
ls
client_secret.json
Perintah gcloud ini mengubah file client_secret.json
menjadi kredensial yang dapat digunakan untuk melakukan autentikasi dengan layanan.
import os
if 'COLAB_RELEASE_TAG' in os.environ:
# Use `--no-browser` in colab
!gcloud auth application-default login --no-browser --client-id-file client_secret.json --scopes='https://www.googleapis.com/auth/cloud-platform,https://www.googleapis.com/auth/generative-language.tuning'
else:
!gcloud auth application-default login --client-id-file client_secret.json --scopes='https://www.googleapis.com/auth/cloud-platform,https://www.googleapis.com/auth/generative-language.tuning'
Memanggil REST API dengan CURL
Bagian ini memberikan contoh pernyataan curl untuk memanggil REST API. Anda akan mempelajari cara membuat tugas penyesuaian, memeriksa statusnya, dan setelah selesai, melakukan panggilan inferensi.
Menetapkan variabel
Tetapkan variabel untuk nilai berulang yang akan digunakan untuk panggilan REST API lainnya. Kode ini menggunakan library os
Python untuk menetapkan variabel lingkungan yang dapat diakses di semua sel kode.
Ini khusus untuk lingkungan notebook Colab. Kode di sel kode berikutnya setara dengan menjalankan perintah berikut di terminal bash.
export access_token=$(gcloud auth application-default print-access-token)
export project_id=my-project-id
export base_url=https://generativelanguage.googleapis.com
import os
access_token = !gcloud auth application-default print-access-token
access_token = '\n'.join(access_token)
os.environ['access_token'] = access_token
os.environ['project_id'] = "project-id"
os.environ['base_url'] = "https://generativelanguage.googleapis.com"
Mencantumkan model yang telah disesuaikan
Verifikasi penyiapan autentikasi Anda dengan mencantumkan model yang dioptimalkan yang saat ini tersedia.
curl -X GET ${base_url}/v1beta3/tunedModels \
-H 'Content-Type: application/json' \
-H "Authorization: Bearer ${access_token}" \
-H "x-goog-user-project: ${project_id}" | grep name
"name": "tunedModels/testnumbergenerator-fvitocr834l6", "name": "tunedModels/my-display-name-81-9wpmc1m920vq", "displayName": "my display name 81", "name": "tunedModels/number-generator-model-kctlevca1g3q", "name": "tunedModels/my-display-name-81-r9wcuda14lyy", "displayName": "my display name 81", "name": "tunedModels/number-generator-model-w1eabln5adwp", % Total % Received % Xferd Average Speed Time Time Time Current Dload Upload Total Spent Left Speed 100 17583 0 17583 0 0 51600 0 --:--:-- --:--:-- --:--:-- 51563
Membuat model yang disesuaikan
Untuk membuat model yang disesuaikan, Anda harus meneruskan set data ke model di kolom training_data
.
Untuk contoh ini, Anda akan menyesuaikan model untuk menghasilkan angka berikutnya dalam urutan. Misalnya, jika inputnya adalah 1
, model akan menghasilkan output 2
. Jika inputnya adalah one hundred
, outputnya harus one hundred one
.
curl -X POST ${base_url}/v1beta3/tunedModels \
-H 'Content-Type: application/json' \
-H "Authorization: Bearer ${access_token}" \
-H "x-goog-user-project: ${project_id}" \
-d '
{
"display_name": "number generator model",
"base_model": "models/text-bison-001",
"tuning_task": {
"hyperparameters": {
"batch_size": 2,
"learning_rate": 0.001,
"epoch_count":3,
},
"training_data": {
"examples": {
"examples": [
{
"text_input": "1",
"output": "2",
},{
"text_input": "3",
"output": "4",
},{
"text_input": "-3",
"output": "-2",
},{
"text_input": "twenty two",
"output": "twenty three",
},{
"text_input": "two hundred",
"output": "two hundred one",
},{
"text_input": "ninety nine",
"output": "one hundred",
},{
"text_input": "8",
"output": "9",
},{
"text_input": "-98",
"output": "-97",
},{
"text_input": "1,000",
"output": "1,001",
},{
"text_input": "10,100,000",
"output": "10,100,001",
},{
"text_input": "thirteen",
"output": "fourteen",
},{
"text_input": "eighty",
"output": "eighty one",
},{
"text_input": "one",
"output": "two",
},{
"text_input": "three",
"output": "four",
},{
"text_input": "seven",
"output": "eight",
}
]
}
}
}
}' | tee tunemodel.json
{ "name": "tunedModels/number-generator-model-q2d0uism5ivd/operations/xvyx09sjxlmh", "metadata": { "@type": "type.googleapis.com/google.ai.generativelanguage.v1beta3.CreateTunedModelMetadata", "totalSteps": 23, "tunedModel": "tunedModels/number-generator-model-q2d0uism5ivd" } } % Total % Received % Xferd Average Speed Time Time Time Current Dload Upload Total Spent Left Speed 100 2277 0 297 100 1980 146 975 0:00:02 0:00:02 --:--:-- 1121
Mendapatkan status model yang disesuaikan
Status model ditetapkan ke CREATING
selama pelatihan dan akan berubah menjadi ACTIVE
setelah selesai.
Di bawah ini adalah sedikit kode python untuk mengurai nama model yang dihasilkan dari JSON respons. Jika menjalankannya di terminal, Anda dapat mencoba menggunakan parser JSON bash untuk mengurai respons.
import json
first_page = json.load(open('tunemodel.json'))
os.environ['modelname'] = first_page['metadata']['tunedModel']
print(os.environ['modelname'])
tunedModels/number-generator-model-q2d0uism5ivd
Lakukan permintaan GET
lain dengan nama model untuk mendapatkan metadata model yang menyertakan kolom status.
curl -X GET ${base_url}/v1beta3/${modelname} \
-H 'Content-Type: application/json' \
-H "Authorization: Bearer ${access_token}" \
-H "x-goog-user-project: ${project_id}" \ | grep state
"state": "CREATING", % Total % Received % Xferd Average Speed Time Time Time Current Dload Upload Total Spent Left Speed 100 494 0 494 0 0 760 0 --:--:-- --:--:-- --:--:-- 760 curl: (3) URL using bad/illegal format or missing URL
Menjalankan inferensi
Setelah tugas penyesuaian selesai, Anda dapat menggunakannya untuk membuat teks dengan layanan teks.
curl -X POST ${base_url}/v1beta3/${modelname}:generateText \
-H 'Content-Type: application/json' \
-H "Authorization: Bearer ${access_token}" \
-H "x-goog-user-project: ${project_id}" \
-d '{
"prompt": {
"text": "4"
},
"temperature": 1.0,
"candidate_count": 2}' | grep output
"output": "3 2 1", "output": "3 2", % Total % Received % Xferd Average Speed Time Time Time Current Dload Upload Total Spent Left Speed 100 1569 0 1447 100 122 183 15 0:00:08 0:00:07 0:00:01 310
Output dari model Anda mungkin benar atau salah. Jika model yang disesuaikan tidak berperforma sesuai standar yang diperlukan, Anda dapat mencoba menambahkan lebih banyak contoh berkualitas tinggi, menyesuaikan hyperparameter, atau menambahkan field preamble ke contoh Anda. Anda bahkan dapat membuat model lain yang telah disesuaikan berdasarkan model pertama yang Anda buat.
Lihat panduan penyesuaian untuk mendapatkan panduan selengkapnya tentang cara meningkatkan performa.
Memanggil REST API dengan permintaan Python
Anda dapat memanggil API rest dengan library apa pun yang memungkinkan Anda mengirim permintaan http. Kumpulan contoh berikutnya menggunakan library permintaan Python, dan menunjukkan beberapa fitur yang lebih canggih.
Menetapkan variabel
access_token = !gcloud auth application-default print-access-token
access_token = '\n'.join(access_token)
project = 'project-id'
base_url = "https://generativelanguage.googleapis.com"
Impor library requests
.
import requests
import json
Membuat daftar model yang disesuaikan
Verifikasi penyiapan autentikasi Anda dengan mencantumkan model yang dioptimalkan yang saat ini tersedia.
headers={
'Authorization': 'Bearer ' + access_token,
'Content-Type': 'application/json',
'x-goog-user-project': project
}
result = requests.get(
url=f'{base_url}/v1beta3/tunedModels',
headers = headers,
)
result.json()
{'tunedModels': [{'name': 'tunedModels/testnumbergenerator-fvitocr834l6', 'baseModel': 'models/text-bison-001', 'displayName': 'test_number_generator', 'description': '{"description":"generates the next number in the sequence given the input text","exampleInput":"input: 1","exampleOutput":"output: 2","datasourceUrl":"https://drive.google.com/open?id=11Pdm6GNom4vlBMUHwO6yFjGQT3t1yi44WVShXMFnkVA&authuser=0&resourcekey=0-2d17tccbdBoThXMkNDvtag","showedTuningComplete":false}', 'state': 'ACTIVE', 'createTime': '2023-09-18T11:06:39.092786Z', 'updateTime': '2023-09-18T11:07:24.198359Z', 'tuningTask': {'startTime': '2023-09-18T11:06:39.461814784Z', 'completeTime': '2023-09-18T11:07:24.198359Z', 'snapshots': [{'step': 1, 'meanLoss': 16.613504, 'computeTime': '2023-09-18T11:06:44.532937624Z'}, {'step': 2, 'epoch': 1, 'meanLoss': 20.299532, 'computeTime': '2023-09-18T11:06:47.825134421Z'}, {'step': 3, 'epoch': 1, 'meanLoss': 8.169708, 'computeTime': '2023-09-18T11:06:50.580344344Z'}, {'step': 4, 'epoch': 2, 'meanLoss': 3.7588992, 'computeTime': '2023-09-18T11:06:53.219133748Z'}, {'step': 5, 'epoch': 3, 'meanLoss': 2.0643115, 'computeTime': '2023-09-18T11:06:55.828458606Z'}, {'step': 6, 'epoch': 3, 'meanLoss': 1.9765375, 'computeTime': '2023-09-18T11:06:58.426053772Z'}, {'step': 7, 'epoch': 4, 'meanLoss': 0.9276156, 'computeTime': '2023-09-18T11:07:01.231832398Z'}, {'step': 8, 'epoch': 5, 'meanLoss': 1.8424839, 'computeTime': '2023-09-18T11:07:03.822710074Z'}, {'step': 9, 'epoch': 5, 'meanLoss': 1.1747926, 'computeTime': '2023-09-18T11:07:06.441685551Z'}, {'step': 10, 'epoch': 6, 'meanLoss': 0.3079359, 'computeTime': '2023-09-18T11:07:08.793491157Z'}, {'step': 11, 'epoch': 7, 'meanLoss': 0.543368, 'computeTime': '2023-09-18T11:07:11.393264892Z'}, {'step': 12, 'epoch': 7, 'meanLoss': 0.35068464, 'computeTime': '2023-09-18T11:07:13.808021238Z'}, {'step': 13, 'epoch': 8, 'meanLoss': 0.026032856, 'computeTime': '2023-09-18T11:07:16.295972078Z'}, {'step': 14, 'epoch': 8, 'meanLoss': 0.108341046, 'computeTime': '2023-09-18T11:07:18.941247488Z'}, {'step': 15, 'epoch': 9, 'meanLoss': 0.016470395, 'computeTime': '2023-09-18T11:07:21.607654306Z'}, {'step': 16, 'epoch': 10, 'meanLoss': 0.063049875, 'computeTime': '2023-09-18T11:07:24.077271307Z'}], 'hyperparameters': {'epochCount': 10, 'batchSize': 16, 'learningRate': 0.02} }, 'temperature': 0.7, 'topP': 0.95, 'topK': 40}, {'name': 'tunedModels/my-display-name-81-9wpmc1m920vq', 'baseModel': 'models/text-bison-tuning-test', 'displayName': 'my display name 81', 'state': 'ACTIVE', 'createTime': '2023-09-18T22:02:08.690991Z', 'updateTime': '2023-09-18T22:02:28.806318Z', 'tuningTask': {'startTime': '2023-09-18T22:02:09.161100369Z', 'completeTime': '2023-09-18T22:02:28.806318Z', 'snapshots': [{'step': 1, 'meanLoss': 7.2774773, 'computeTime': '2023-09-18T22:02:12.453056368Z'}, {'step': 2, 'meanLoss': 6.1902447, 'computeTime': '2023-09-18T22:02:13.789508217Z'}, {'step': 3, 'meanLoss': 5.5545835, 'computeTime': '2023-09-18T22:02:15.136220505Z'}, {'step': 4, 'epoch': 1, 'meanLoss': 7.9237704, 'computeTime': '2023-09-18T22:02:16.474358517Z'}, {'step': 5, 'epoch': 1, 'meanLoss': 7.6770706, 'computeTime': '2023-09-18T22:02:17.758261108Z'}, {'step': 6, 'epoch': 1, 'meanLoss': 7.378622, 'computeTime': '2023-09-18T22:02:19.114072224Z'}, {'step': 7, 'epoch': 1, 'meanLoss': 4.485537, 'computeTime': '2023-09-18T22:02:20.927434115Z'}, {'step': 8, 'epoch': 2, 'meanLoss': 6.815181, 'computeTime': '2023-09-18T22:02:22.267906011Z'}, {'step': 9, 'epoch': 2, 'meanLoss': 6.411363, 'computeTime': '2023-09-18T22:02:24.078114085Z'}, {'step': 10, 'epoch': 2, 'meanLoss': 8.585093, 'computeTime': '2023-09-18T22:02:25.441598938Z'}, {'step': 11, 'epoch': 2, 'meanLoss': 4.901249, 'computeTime': '2023-09-18T22:02:27.108985392Z'}, {'step': 12, 'epoch': 3, 'meanLoss': 7.073003, 'computeTime': '2023-09-18T22:02:28.441662034Z'}], 'hyperparameters': {'epochCount': 3, 'batchSize': 4, 'learningRate': 0.001} }, 'temperature': 0.7, 'topP': 0.95, 'topK': 40}, {'name': 'tunedModels/number-generator-model-kctlevca1g3q', 'baseModel': 'models/text-bison-tuning-test', 'displayName': 'number generator model', 'state': 'ACTIVE', 'createTime': '2023-09-18T23:43:21.461545Z', 'updateTime': '2023-09-18T23:43:49.205493Z', 'tuningTask': {'startTime': '2023-09-18T23:43:21.542403958Z', 'completeTime': '2023-09-18T23:43:49.205493Z', 'snapshots': [{'step': 1, 'meanLoss': 7.342065, 'computeTime': '2023-09-18T23:43:23.356271969Z'}, {'step': 2, 'meanLoss': 7.255807, 'computeTime': '2023-09-18T23:43:24.620248223Z'}, {'step': 3, 'meanLoss': 5.4591417, 'computeTime': '2023-09-18T23:43:25.854505395Z'}, {'step': 4, 'meanLoss': 6.968665, 'computeTime': '2023-09-18T23:43:27.138260198Z'}, {'step': 5, 'meanLoss': 4.578809, 'computeTime': '2023-09-18T23:43:28.404943274Z'}, {'step': 6, 'meanLoss': 6.4862137, 'computeTime': '2023-09-18T23:43:29.631624883Z'}, {'step': 7, 'meanLoss': 9.781939, 'computeTime': '2023-09-18T23:43:30.801341449Z'}, {'step': 8, 'epoch': 1, 'meanLoss': 5.990006, 'computeTime': '2023-09-18T23:43:31.854703315Z'}, {'step': 9, 'epoch': 1, 'meanLoss': 8.846312, 'computeTime': '2023-09-18T23:43:33.075785103Z'}, {'step': 10, 'epoch': 1, 'meanLoss': 6.1585655, 'computeTime': '2023-09-18T23:43:34.310432174Z'}, {'step': 11, 'epoch': 1, 'meanLoss': 4.7877502, 'computeTime': '2023-09-18T23:43:35.381582526Z'}, {'step': 12, 'epoch': 1, 'meanLoss': 9.660514, 'computeTime': '2023-09-18T23:43:36.445446408Z'}, {'step': 13, 'epoch': 1, 'meanLoss': 5.6482882, 'computeTime': '2023-09-18T23:43:37.603237821Z'}, {'step': 14, 'epoch': 1, 'meanLoss': 3.162092, 'computeTime': '2023-09-18T23:43:38.671463397Z'}, {'step': 15, 'epoch': 2, 'meanLoss': 6.322996, 'computeTime': '2023-09-18T23:43:39.769742201Z'}, {'step': 16, 'epoch': 2, 'meanLoss': 6.781, 'computeTime': '2023-09-18T23:43:40.985967994Z'}, {'step': 17, 'epoch': 2, 'meanLoss': 5.136773, 'computeTime': '2023-09-18T23:43:42.235469710Z'}, {'step': 18, 'epoch': 2, 'meanLoss': 7.2091155, 'computeTime': '2023-09-18T23:43:43.415178581Z'}, {'step': 19, 'epoch': 2, 'meanLoss': 7.7508755, 'computeTime': '2023-09-18T23:43:44.775221774Z'}, {'step': 20, 'epoch': 2, 'meanLoss': 8.144815, 'computeTime': '2023-09-18T23:43:45.788824334Z'}, {'step': 21, 'epoch': 2, 'meanLoss': 5.485137, 'computeTime': '2023-09-18T23:43:46.812663998Z'}, {'step': 22, 'epoch': 2, 'meanLoss': 3.709197, 'computeTime': '2023-09-18T23:43:47.971764087Z'}, {'step': 23, 'epoch': 3, 'meanLoss': 6.0069466, 'computeTime': '2023-09-18T23:43:49.004191079Z'}], 'hyperparameters': {'epochCount': 3, 'batchSize': 2, 'learningRate': 0.001} }, 'temperature': 0.7, 'topP': 0.95, 'topK': 40}, {'name': 'tunedModels/my-display-name-81-r9wcuda14lyy', 'baseModel': 'models/text-bison-tuning-test', 'displayName': 'my display name 81', 'state': 'ACTIVE', 'createTime': '2023-09-18T23:52:06.980185Z', 'updateTime': '2023-09-18T23:52:26.679601Z', 'tuningTask': {'startTime': '2023-09-18T23:52:07.616953503Z', 'completeTime': '2023-09-18T23:52:26.679601Z', 'snapshots': [{'step': 1, 'meanLoss': 7.2774773, 'computeTime': '2023-09-18T23:52:10.278936662Z'}, {'step': 2, 'meanLoss': 6.2793097, 'computeTime': '2023-09-18T23:52:11.630844790Z'}, {'step': 3, 'meanLoss': 5.540499, 'computeTime': '2023-09-18T23:52:13.027840389Z'}, {'step': 4, 'epoch': 1, 'meanLoss': 7.977523, 'computeTime': '2023-09-18T23:52:14.368199020Z'}, {'step': 5, 'epoch': 1, 'meanLoss': 7.6197805, 'computeTime': '2023-09-18T23:52:15.872428752Z'}, {'step': 6, 'epoch': 1, 'meanLoss': 7.3851357, 'computeTime': '2023-09-18T23:52:17.213094182Z'}, {'step': 7, 'epoch': 1, 'meanLoss': 4.5342345, 'computeTime': '2023-09-18T23:52:19.090698421Z'}, {'step': 8, 'epoch': 2, 'meanLoss': 6.8603754, 'computeTime': '2023-09-18T23:52:20.494844731Z'}, {'step': 9, 'epoch': 2, 'meanLoss': 6.418575, 'computeTime': '2023-09-18T23:52:21.815997555Z'}, {'step': 10, 'epoch': 2, 'meanLoss': 8.659064, 'computeTime': '2023-09-18T23:52:23.524287192Z'}, {'step': 11, 'epoch': 2, 'meanLoss': 4.856765, 'computeTime': '2023-09-18T23:52:24.864661291Z'}, {'step': 12, 'epoch': 3, 'meanLoss': 7.1078596, 'computeTime': '2023-09-18T23:52:26.225055381Z'}], 'hyperparameters': {'epochCount': 3, 'batchSize': 4, 'learningRate': 0.001} }, 'temperature': 0.7, 'topP': 0.95, 'topK': 40}, {'name': 'tunedModels/number-generator-model-w1eabln5adwp', 'baseModel': 'models/text-bison-tuning-test', 'displayName': 'number generator model', 'state': 'ACTIVE', 'createTime': '2023-09-19T19:29:08.622497Z', 'updateTime': '2023-09-19T19:29:46.063853Z', 'tuningTask': {'startTime': '2023-09-19T19:29:08.806930486Z', 'completeTime': '2023-09-19T19:29:46.063853Z', 'snapshots': [{'step': 1, 'meanLoss': 7.342065, 'computeTime': '2023-09-19T19:29:13.023811994Z'}, {'step': 2, 'meanLoss': 7.1960244, 'computeTime': '2023-09-19T19:29:14.844046282Z'}, {'step': 3, 'meanLoss': 5.480289, 'computeTime': '2023-09-19T19:29:16.596884354Z'}, {'step': 4, 'meanLoss': 6.851822, 'computeTime': '2023-09-19T19:29:17.741735378Z'}, {'step': 5, 'meanLoss': 4.5535283, 'computeTime': '2023-09-19T19:29:18.914760812Z'}, {'step': 6, 'meanLoss': 6.449012, 'computeTime': '2023-09-19T19:29:20.053316042Z'}, {'step': 7, 'meanLoss': 9.842458, 'computeTime': '2023-09-19T19:29:21.371286675Z'}, {'step': 8, 'epoch': 1, 'meanLoss': 5.9831877, 'computeTime': '2023-09-19T19:29:22.915277044Z'}, {'step': 9, 'epoch': 1, 'meanLoss': 8.936815, 'computeTime': '2023-09-19T19:29:24.666461680Z'}, {'step': 10, 'epoch': 1, 'meanLoss': 6.14651, 'computeTime': '2023-09-19T19:29:26.793310451Z'}, {'step': 11, 'epoch': 1, 'meanLoss': 4.853589, 'computeTime': '2023-09-19T19:29:28.328297535Z'}, {'step': 12, 'epoch': 1, 'meanLoss': 9.6831045, 'computeTime': '2023-09-19T19:29:29.501236840Z'}, {'step': 13, 'epoch': 1, 'meanLoss': 5.706586, 'computeTime': '2023-09-19T19:29:30.612807978Z'}, {'step': 14, 'epoch': 1, 'meanLoss': 3.276942, 'computeTime': '2023-09-19T19:29:31.928747103Z'}, {'step': 15, 'epoch': 2, 'meanLoss': 6.1736736, 'computeTime': '2023-09-19T19:29:33.588699180Z'}, {'step': 16, 'epoch': 2, 'meanLoss': 6.857398, 'computeTime': '2023-09-19T19:29:35.239083809Z'}, {'step': 17, 'epoch': 2, 'meanLoss': 5.098094, 'computeTime': '2023-09-19T19:29:37.000705047Z'}, {'step': 18, 'epoch': 2, 'meanLoss': 7.27724, 'computeTime': '2023-09-19T19:29:38.532313231Z'}, {'step': 19, 'epoch': 2, 'meanLoss': 7.6310735, 'computeTime': '2023-09-19T19:29:39.696034301Z'}, {'step': 20, 'epoch': 2, 'meanLoss': 8.152623, 'computeTime': '2023-09-19T19:29:40.803342042Z'}, {'step': 21, 'epoch': 2, 'meanLoss': 5.451577, 'computeTime': '2023-09-19T19:29:42.445788199Z'}, {'step': 22, 'epoch': 2, 'meanLoss': 3.7990716, 'computeTime': '2023-09-19T19:29:43.866737307Z'}, {'step': 23, 'epoch': 3, 'meanLoss': 6.120624, 'computeTime': '2023-09-19T19:29:45.599248553Z'}], 'hyperparameters': {'epochCount': 3, 'batchSize': 2, 'learningRate': 0.001} }, 'temperature': 0.7, 'topP': 0.95, 'topK': 40}]}
Membuat model yang disesuaikan
Sama seperti contoh Curl, Anda meneruskan set data melalui kolom training_data
.
operation = requests.post(
url = f'{base_url}/v1beta3/tunedModels',
headers=headers,
json= {
"display_name": "number generator",
"base_model": "models/text-bison-001",
"tuning_task": {
"hyperparameters": {
"batch_size": 4,
"learning_rate": 0.001,
"epoch_count":3,
},
"training_data": {
"examples": {
"examples": [
{
'text_input': '1',
'output': '2',
},{
'text_input': '3',
'output': '4',
},{
'text_input': '-3',
'output': '-2',
},{
'text_input': 'twenty two',
'output': 'twenty three',
},{
'text_input': 'two hundred',
'output': 'two hundred one',
},{
'text_input': 'ninety nine',
'output': 'one hundred',
},{
'text_input': '8',
'output': '9',
},{
'text_input': '-98',
'output': '-97',
},{
'text_input': '1,000',
'output': '1,001',
},{
'text_input': '10,100,000',
'output': '10,100,001',
},{
'text_input': 'thirteen',
'output': 'fourteen',
},{
'text_input': 'eighty',
'output': 'eighty one',
},{
'text_input': 'one',
'output': 'two',
},{
'text_input': 'three',
'output': 'four',
},{
'text_input': 'seven',
'output': 'eight',
}
]
}
}
}
}
)
operation
<Response [200]>
operation.json()
{'name': 'tunedModels/number-generator-ncqqnysl74dt/operations/qqlbwzfyzn0k', 'metadata': {'@type': 'type.googleapis.com/google.ai.generativelanguage.v1beta3.CreateTunedModelMetadata', 'totalSteps': 12, 'tunedModel': 'tunedModels/number-generator-ncqqnysl74dt'} }
Tetapkan variabel dengan nama model yang disesuaikan untuk digunakan untuk panggilan lainnya.
name=operation.json()["metadata"]["tunedModel"]
name
'tunedModels/number-generator-ncqqnysl74dt'
Mendapatkan status model yang di-tuning
Anda dapat memeriksa progres tugas tuning dengan memeriksa kolom status. CREATING
berarti tugas penyesuaian masih berlangsung dan ACTIVE
berarti pelatihan selesai dan model yang disesuaikan siap digunakan.
tuned_model = requests.get(
url = f'{base_url}/v1beta3/{name}',
headers=headers,
)
tuned_model.json()
{'name': 'tunedModels/number-generator-ncqqnysl74dt', 'baseModel': 'models/text-bison-001', 'displayName': 'number generator', 'state': 'CREATING', 'createTime': '2023-09-19T19:56:25.999303Z', 'updateTime': '2023-09-19T19:56:25.999303Z', 'tuningTask': {'startTime': '2023-09-19T19:56:26.297862545Z', 'hyperparameters': {'epochCount': 3, 'batchSize': 4, 'learningRate': 0.001} }, 'temperature': 0.7, 'topP': 0.95, 'topK': 40}
Kode di bawah memeriksa kolom status setiap 5 detik hingga tidak lagi dalam status CREATING
.
import time
import pprint
op_json = operation.json()
response = op_json.get('response')
error = op_json.get('error')
while response is None and error is None:
time.sleep(31)
operation = requests.get(
url = f'{base_url}/v1/{op_json["name"]}',
headers=headers,
)
op_json = operation.json()
response = op_json.get('response')
error = op_json.get('error')
percent = op_json['metadata'].get('completedPercent')
if percent is not None:
print(f"{percent:.2f}% - {op_json['metadata']['snapshots'][-1]}")
print()
if error is not None:
raise Exception(error)
21.28% - {'step': 40, 'epoch': 10, 'meanLoss': 2.4871845, 'computeTime': '2023-09-20T00:23:55.255785843Z'} 21.28% - {'step': 40, 'epoch': 10, 'meanLoss': 2.4871845, 'computeTime': '2023-09-20T00:23:55.255785843Z'} 43.09% - {'step': 81, 'epoch': 21, 'meanLoss': 0.032220088, 'computeTime': '2023-09-20T00:24:56.302837803Z'} 43.09% - {'step': 81, 'epoch': 21, 'meanLoss': 0.032220088, 'computeTime': '2023-09-20T00:24:56.302837803Z'} 63.83% - {'step': 120, 'epoch': 32, 'meanLoss': 0.0030430648, 'computeTime': '2023-09-20T00:25:57.228615435Z'} 63.83% - {'step': 120, 'epoch': 32, 'meanLoss': 0.0030430648, 'computeTime': '2023-09-20T00:25:57.228615435Z'} 85.11% - {'step': 160, 'epoch': 42, 'meanLoss': -1.1145603e-06, 'computeTime': '2023-09-20T00:26:57.819011896Z'} 100.00% - {'step': 188, 'epoch': 50, 'meanLoss': 0.00040101097, 'computeTime': '2023-09-20T00:27:40.024132813Z'}
Menjalankan inferensi
Setelah tugas penyesuaian selesai, Anda dapat menggunakannya untuk membuat teks dengan cara yang sama seperti menggunakan model teks dasar.
import time
m = requests.post(
url = f'{base_url}/v1beta3/{name}:generateText',
headers=headers,
json= {
"prompt": {
"text": "9"
},
})
import pprint
print(m.json()['candidates'][0]['output'])
9
Output dari model Anda mungkin benar atau salah. Jika model yang disesuaikan tidak berperforma sesuai standar yang diperlukan, Anda dapat mencoba menambahkan lebih banyak contoh berkualitas tinggi, menyesuaikan hyperparameter, atau menambahkan awalan ke contoh Anda.
Langkah berikutnya
- Lihat panduan memulai penyesuaian dengan Python untuk mulai melakukan coding dengan layanan penyesuaian.
- Lihat panduan penyesuaian untuk mengetahui detail selengkapnya tentang cara menyesuaikan model dengan baik untuk kasus penggunaan Anda.