Përmbledhje
CustomOpDispatcher është zëvendësimi i API-t për përcaktimin e operacioneve të personalizuara të CPU-së dhe zgjidhësve të operacioneve të personalizuara në LiteRT. Ai ofron një ndërfaqe më të pastër për integrimin e operacioneve të personalizuara në modelet LiteRT.
Pse të përdorni CustomOpDispatcher?
Qasje Tradicionale (E Vjetërsuar)
Më parë, zhvilluesit duhej të:
- Krijoni manualisht strukturat
TfLiteRegistration - Implementoni funksionet e rikthimit të thirrjes specifike për TFLite (init, prepare, invoke, free)
- Punoni drejtpërdrejt me strukturat TFLite të nivelit të ulët (
TfLiteContext,TfLiteNode,TfLiteTensor) - Përdorni direkt
MutableOpResolver::AddCustom()
Qasja e re CustomOpDispatcher
CustomOpDispatcher ofron:
- Pastroni shtresën e abstraksionit mbi brendësitë e TFLite
- Integrimi me modelin e kompiluar të LiteRT
Fluksi
┌─────────────────┐
│ User Custom Op │ (Your implementation)
└────────┬────────┘
│
▼
┌─────────────────────────┐
│ LiteRtCustomOpKernel │ (C API interface)
└────────┬────────────────┘
│
▼
┌─────────────────────────┐
│ CustomOpDispatcher │ (Bridge layer)
└────────┬────────────────┘
│
▼
┌─────────────────────────┐
│ TfLiteRegistration │ (TFLite runtime)
└─────────────────────────┘
Komponentët dhe Skedarët Kryesorë
Implementimi thelbësor
- runtime/custom_op_dispatcher.h : Koka e klasës kryesore të dispeçerit
- runtime/custom_op_dispatcher.cc : Implementimi që lidh LiteRT me TFLite
Titujt e API-t
- c/litert_custom_op_kernel.h : C API për ndërfaqen e personalizuar të kernelit op
- cc/litert_custom_op_kernel.h : Mbështjellës C++ që ofron ndërfaqe të orientuar nga objektet
Sistemi i opsioneve
- core/options.h : Struktura e opsioneve kryesore me
CustomOpOption
- c/litert_options.h : API C për menaxhimin e opsioneve të kompajlimit
- cc/litert_options.h : Mbështjellës C++ për menaxhimin e opsioneve
Shembuj Testesh
- cc/litert_custom_op_test.cc : Shembull përdorimi i API-t C++
- c/littert_custom_op_test.cc : Shembull përdorimi i API-t C
Referenca e API-t
Ndërfaqja e bërthamës kryesore (C API)
typedef struct {
LiteRtStatus (*Init)(void* user_data, const void* init_data,
size_t init_data_size);
LiteRtStatus (*GetOutputLayouts)(void* user_data, size_t num_inputs,
const LiteRtLayout* input_layouts,
size_t num_outputs,
LiteRtLayout* output_layouts);
LiteRtStatus (*Run)(void* user_data, size_t num_inputs,
const LiteRtTensorBuffer* inputs, size_t num_outputs,
LiteRtTensorBuffer* outputs);
LiteRtStatus (*Destroy)(void* user_data);
} LiteRtCustomOpKernel;
Klasa Bazë Abstrakte C++
class CustomOpKernel {
public:
virtual const std::string& OpName() const = 0;
virtual int OpVersion() const = 0;
virtual Expected<void> Init(const void* init_data, size_t init_data_size) = 0;
virtual Expected<void> GetOutputLayouts(
const std::vector<Layout>& input_layouts,
std::vector<Layout>& output_layouts) = 0;
virtual Expected<void> Run(const std::vector<TensorBuffer>& inputs,
std::vector<TensorBuffer>& outputs) = 0;
virtual Expected<void> Destroy() = 0;
};
Udhëzues Zbatimi
Hapi 1: Përcaktoni Operacionin tuaj të Personalizuar
Implementimi në C++
#include "litert/cc/litert_custom_op_kernel.h"
class MyCustomOpKernel : public litert::CustomOpKernel {
public:
const std::string& OpName() const override {
return op_name_;
}
int OpVersion() const override {
return 1;
}
Expected<void> Init(const void* init_data, size_t init_data_size) override {
// Initialize any persistent state
return {};
}
Expected<void> GetOutputLayouts(
const std::vector<Layout>& input_layouts,
std::vector<Layout>& output_layouts) override {
// Define output tensor shapes based on inputs
output_layouts[0] = input_layouts[0];
return {};
}
Expected<void> Run(const std::vector<TensorBuffer>& inputs,
std::vector<TensorBuffer>& outputs) override {
// Lock input buffers for reading
LITERT_ASSIGN_OR_RETURN(auto input_lock,
TensorBufferScopedLock::Create<float>(
inputs[0], TensorBuffer::LockMode::kRead));
// Lock output buffer for writing
LITERT_ASSIGN_OR_RETURN(auto output_lock,
TensorBufferScopedLock::Create<float>(
outputs[0], TensorBuffer::LockMode::kWrite));
const float* input_data = input_lock.second;
float* output_data = output_lock.second;
// Perform computation
// ... your custom operation logic ...
return {};
}
Expected<void> Destroy() override {
// Clean up resources
return {};
}
private:
const std::string op_name_ = "MyCustomOp";
};
Implementimi i C
#include "litert/c/litert_custom_op_kernel.h"
LiteRtStatus MyOp_Init(void* user_data, const void* init_data,
size_t init_data_size) {
// Initialize state
return kLiteRtStatusOk;
}
LiteRtStatus MyOp_GetOutputLayouts(void* user_data, size_t num_inputs,
const LiteRtLayout* input_layouts,
size_t num_outputs,
LiteRtLayout* output_layouts) {
// Set output shape to match first input
output_layouts[0] = input_layouts[0];
return kLiteRtStatusOk;
}
LiteRtStatus MyOp_Run(void* user_data, size_t num_inputs,
const LiteRtTensorBuffer* inputs, size_t num_outputs,
LiteRtTensorBuffer* outputs) {
// Lock buffers
void* input_addr;
LITERT_RETURN_IF_ERROR(LiteRtLockTensorBuffer(
inputs[0], &input_addr, kLiteRtTensorBufferLockModeRead));
void* output_addr;
LITERT_RETURN_IF_ERROR(LiteRtLockTensorBuffer(
outputs[0], &output_addr, kLiteRtTensorBufferLockModeWrite));
// Perform computation
float* in = (float*)input_addr;
float* out = (float*)output_addr;
// ... your custom operation logic ...
// Unlock buffers
LITERT_RETURN_IF_ERROR(LiteRtUnlockTensorBuffer(inputs[0]));
LITERT_RETURN_IF_ERROR(LiteRtUnlockTensorBuffer(outputs[0]));
return kLiteRtStatusOk;
}
LiteRtStatus MyOp_Destroy(void* user_data) {
// Clean up
return kLiteRtStatusOk;
}
Hapi 2: Regjistro Operacionin e Personalizuar
Regjistrimi në C++
#include "litert/cc/litert_environment.h"
#include "litert/cc/litert_compiled_model.h"
#include "litert/cc/litert_options.h"
// Create environment
LITERT_ASSERT_OK_AND_ASSIGN(Environment env, Environment::Create({}));
// Load model
Model model = /* load your model */;
// Create options and register custom op
LITERT_ASSERT_OK_AND_ASSIGN(Options options, Options::Create());
options.SetHardwareAccelerators(kLiteRtHwAcceleratorCpu);
// Register custom op kernel
MyCustomOpKernel my_custom_op;
ASSERT_TRUE(options.AddCustomOpKernel(my_custom_op));
// Create compiled model with custom op
LITERT_ASSERT_OK_AND_ASSIGN(CompiledModel compiled_model,
CompiledModel::Create(env, model, options));
Regjistrimi C
#include "litert/c/litert_environment.h"
#include "litert/c/litert_compiled_model.h"
#include "litert/c/litert_options.h"
// Create options
LiteRtOptions options;
LiteRtCreateOptions(&options);
LiteRtSetOptionsHardwareAccelerators(options, kLiteRtHwAcceleratorCpu);
// Define kernel
LiteRtCustomOpKernel kernel = {
.Init = MyOp_Init,
.GetOutputLayouts = MyOp_GetOutputLayouts,
.Run = MyOp_Run,
.Destroy = MyOp_Destroy,
};
// Register custom op
LiteRtAddCustomOpKernelOption(options, "MyCustomOp", 1, &kernel, NULL);
// Create environment
LiteRtEnvironment env;
LiteRtCreateEnvironment(0, NULL, &env);
// Create compiled model
LiteRtCompiledModel compiled_model;
LiteRtCreateCompiledModel(env, model, options, &compiled_model);
Hapi 3: Ekzekutoni modelin
Ekzekutimi i C++
// Create buffers
LITERT_ASSERT_OK_AND_ASSIGN(auto input_buffers,
compiled_model.CreateInputBuffers());
LITERT_ASSERT_OK_AND_ASSIGN(auto output_buffers,
compiled_model.CreateOutputBuffers());
// Fill input data
input_buffers[0].Write<float>(your_input_data);
// Run inference
compiled_model.Run(input_buffers, output_buffers);
// Read output
LITERT_ASSERT_OK_AND_ASSIGN(auto lock,
TensorBufferScopedLock::Create<const float>(
output_buffers[0], TensorBuffer::LockMode::kRead));
const float* results = lock.second;
Ekzekutimi C
// Create buffers (see test files for complete buffer creation)
LiteRtTensorBuffer input_buffers[num_inputs];
LiteRtTensorBuffer output_buffers[num_outputs];
// ... buffer creation code ...
// Write input data
void* input_addr;
LiteRtLockTensorBuffer(input_buffers[0], &input_addr,
kLiteRtTensorBufferLockModeWrite);
memcpy(input_addr, your_data, data_size);
LiteRtUnlockTensorBuffer(input_buffers[0]);
// Run inference
LiteRtRunCompiledModel(compiled_model, 0, num_inputs, input_buffers,
num_outputs, output_buffers);
// Read output
void* output_addr;
LiteRtLockTensorBuffer(output_buffers[0], &output_addr,
kLiteRtTensorBufferLockModeRead);
// Process output_addr
LiteRtUnlockTensorBuffer(output_buffers[0]);