Melatih Pengklasifikasi Teks Menggunakan Embeddings

Lihat di ai.google.dev Coba notebook Colab Lihat notebook di GitHub

Ringkasan

Di notebook ini, Anda akan belajar menggunakan embedding yang dihasilkan oleh Gemini API untuk melatih model yang dapat mengklasifikasikan berbagai jenis postingan grup berita berdasarkan topik.

Dalam tutorial ini, Anda akan melatih pengklasifikasi untuk memprediksi kelas postingan grup berita.

Prasyarat

Anda dapat menjalankan panduan memulai ini di Google Colab.

Untuk menyelesaikan panduan memulai ini di lingkungan pengembangan Anda sendiri, pastikan lingkungan Anda memenuhi persyaratan berikut:

  • Python 3.9 dan yang lebih baru
  • Penginstalan jupyter untuk menjalankan notebook.

Penyiapan

Pertama, download dan instal library Python Gemini API.

pip install -U -q google.generativeai
import re
import tqdm
import keras
import numpy as np
import pandas as pd

import google.generativeai as genai

# Used to securely store your API key
from google.colab import userdata

import seaborn as sns
import matplotlib.pyplot as plt

from keras import layers
from matplotlib.ticker import MaxNLocator
from sklearn.datasets import fetch_20newsgroups
import sklearn.metrics as skmetrics

Mengambil Kunci API

Sebelum dapat menggunakan Gemini API, Anda harus mendapatkan kunci API terlebih dahulu. Jika Anda belum memilikinya, buat kunci dengan sekali klik di Google AI Studio.

Mendapatkan kunci API

Di Colab, tambahkan kunci ke pengelola rahasia di bagian "Tarik" di panel kiri. Beri nama API_KEY.

Setelah Anda memiliki kunci API, teruskan ke SDK. Anda dapat melakukannya dengan dua cara:

  • Masukkan kunci di variabel lingkungan GOOGLE_API_KEY (SDK akan otomatis mengambilnya dari sana).
  • Teruskan kunci ke genai.configure(api_key=...)
genai.configure(api_key=GOOGLE_API_KEY)
for m in genai.list_models():
  if 'embedContent' in m.supported_generation_methods:
    print(m.name)
models/embedding-001
models/embedding-001

Set data

20 Newsgroups Text Dataset berisi 18.000 postingan grup berita tentang 20 topik yang dibagi menjadi set pelatihan dan pengujian. Pembagian antara set data pelatihan dan pengujian didasarkan pada pesan yang diposting sebelum dan setelah tanggal tertentu. Untuk tutorial ini, Anda akan menggunakan subset dari set data pelatihan dan pengujian. Anda akan melakukan pra-pemrosesan dan mengatur data ke dalam {i>dataframe<i} Pandas.

newsgroups_train = fetch_20newsgroups(subset='train')
newsgroups_test = fetch_20newsgroups(subset='test')

# View list of class names for dataset
newsgroups_train.target_names
['alt.atheism',
 'comp.graphics',
 'comp.os.ms-windows.misc',
 'comp.sys.ibm.pc.hardware',
 'comp.sys.mac.hardware',
 'comp.windows.x',
 'misc.forsale',
 'rec.autos',
 'rec.motorcycles',
 'rec.sport.baseball',
 'rec.sport.hockey',
 'sci.crypt',
 'sci.electronics',
 'sci.med',
 'sci.space',
 'soc.religion.christian',
 'talk.politics.guns',
 'talk.politics.mideast',
 'talk.politics.misc',
 'talk.religion.misc']

Berikut adalah contoh tampilan titik data dari set pelatihan.

idx = newsgroups_train.data[0].index('Lines')
print(newsgroups_train.data[0][idx:])
Lines: 15

 I was wondering if anyone out there could enlighten me on this car I saw
the other day. It was a 2-door sports car, looked to be from the late 60s/
early 70s. It was called a Bricklin. The doors were really small. In addition,
the front bumper was separate from the rest of the body. This is 
all I know. If anyone can tellme a model name, engine specs, years
of production, where this car is made, history, or whatever info you
have on this funky looking car, please e-mail.

Thanks,

- IL
   ---- brought to you by your neighborhood Lerxst ----

Sekarang Anda akan mulai memproses data untuk tutorial ini. Hapus semua informasi sensitif seperti nama, email, atau bagian teks yang berlebihan seperti "From: " dan "\nSubject: ". Mengatur informasi ke dalam {i>dataframe<i} Pandas agar lebih mudah dibaca.

def preprocess_newsgroup_data(newsgroup_dataset):
  # Apply functions to remove names, emails, and extraneous words from data points in newsgroups.data
  newsgroup_dataset.data = [re.sub(r'[\w\.-]+@[\w\.-]+', '', d) for d in newsgroup_dataset.data] # Remove email
  newsgroup_dataset.data = [re.sub(r"\([^()]*\)", "", d) for d in newsgroup_dataset.data] # Remove names
  newsgroup_dataset.data = [d.replace("From: ", "") for d in newsgroup_dataset.data] # Remove "From: "
  newsgroup_dataset.data = [d.replace("\nSubject: ", "") for d in newsgroup_dataset.data] # Remove "\nSubject: "

  # Cut off each text entry after 5,000 characters
  newsgroup_dataset.data = [d[0:5000] if len(d) > 5000 else d for d in newsgroup_dataset.data]

  # Put data points into dataframe
  df_processed = pd.DataFrame(newsgroup_dataset.data, columns=['Text'])
  df_processed['Label'] = newsgroup_dataset.target
  # Match label to target name index
  df_processed['Class Name'] = ''
  for idx, row in df_processed.iterrows():
    df_processed.at[idx, 'Class Name'] = newsgroup_dataset.target_names[row['Label']]

  return df_processed
# Apply preprocessing function to training and test datasets
df_train = preprocess_newsgroup_data(newsgroups_train)
df_test = preprocess_newsgroup_data(newsgroups_test)

df_train.head()

Selanjutnya, Anda akan mengambil sampel dari beberapa data dengan mengambil 100 titik data dalam {i>dataset<i} pelatihan, dan menjatuhkan beberapa kategori untuk dijalankan melalui tutorial ini. Pilih kategori sains untuk dibandingkan.

def sample_data(df, num_samples, classes_to_keep):
  df = df.groupby('Label', as_index = False).apply(lambda x: x.sample(num_samples)).reset_index(drop=True)

  df = df[df['Class Name'].str.contains(classes_to_keep)]

  # Reset the encoding of the labels after sampling and dropping certain categories
  df['Class Name'] = df['Class Name'].astype('category')
  df['Encoded Label'] = df['Class Name'].cat.codes

  return df
TRAIN_NUM_SAMPLES = 100
TEST_NUM_SAMPLES = 25
CLASSES_TO_KEEP = 'sci' # Class name should contain 'sci' in it to keep science categories
df_train = sample_data(df_train, TRAIN_NUM_SAMPLES, CLASSES_TO_KEEP)
df_test = sample_data(df_test, TEST_NUM_SAMPLES, CLASSES_TO_KEEP)
df_train.value_counts('Class Name')
Class Name
sci.crypt          100
sci.electronics    100
sci.med            100
sci.space          100
dtype: int64
df_test.value_counts('Class Name')
Class Name
sci.crypt          25
sci.electronics    25
sci.med            25
sci.space          25
dtype: int64

Membuat embedding

Di bagian ini, Anda akan melihat cara menghasilkan embeddings untuk sepotong teks menggunakan embeddings dari Gemini API. Untuk mempelajari penyematan lebih lanjut, buka panduan penyematan.

Perubahan API pada Embeddings embedding-001

Untuk model embedding baru, ada parameter jenis tugas baru dan judul opsional (hanya valid dengan task_type=RETRIEVAL_DOCUMENT).

Parameter baru ini hanya berlaku untuk model embedding terbaru.Jenis tugasnya adalah:

Jenis Tugas Deskripsi
RETRIEVAL_QUERY Menentukan bahwa teks yang diberikan merupakan kueri dalam setelan penelusuran/pengambilan.
RETRIEVAL_DOCUMENT Menentukan bahwa teks yang diberikan adalah dokumen dalam setelan penelusuran/pengambilan.
SEMANTIC_SIMILARITY Menentukan bahwa teks yang diberikan akan digunakan untuk Kemiripan Teks Semantik (STS).
KLASIFIKASI Menentukan bahwa embedding akan digunakan untuk klasifikasi.
PENGELOLAAN Menentukan bahwa embedding akan digunakan untuk pengelompokan.
from tqdm.auto import tqdm
tqdm.pandas()

from google.api_core import retry

def make_embed_text_fn(model):

  @retry.Retry(timeout=300.0)
  def embed_fn(text: str) -> list[float]:
    # Set the task_type to CLASSIFICATION.
    embedding = genai.embed_content(model=model,
                                    content=text,
                                    task_type="classification")
    return embedding['embedding']

  return embed_fn

def create_embeddings(model, df):
  df['Embeddings'] = df['Text'].progress_apply(make_embed_text_fn(model))
  return df
model = 'models/embedding-001'
df_train = create_embeddings(model, df_train)
df_test = create_embeddings(model, df_test)
0%|          | 0/400 [00:00<?, ?it/s]
0%|          | 0/100 [00:00<?, ?it/s]
df_train.head()

Membangun model klasifikasi sederhana

Di sini Anda akan menentukan model sederhana dengan satu lapisan tersembunyi dan satu output probabilitas class. Prediksi akan sesuai dengan probabilitas sepotong teks menjadi kelas berita tertentu. Saat Anda membangun model, Keras akan otomatis mengacak titik data.

def build_classification_model(input_size: int, num_classes: int) -> keras.Model:
  inputs = x = keras.Input(input_size)
  x = layers.Dense(input_size, activation='relu')(x)
  x = layers.Dense(num_classes, activation='sigmoid')(x)
  return keras.Model(inputs=[inputs], outputs=x)
# Derive the embedding size from the first training element.
embedding_size = len(df_train['Embeddings'].iloc[0])

# Give your model a different name, as you have already used the variable name 'model'
classifier = build_classification_model(embedding_size, len(df_train['Class Name'].unique()))
classifier.summary()

classifier.compile(loss = keras.losses.SparseCategoricalCrossentropy(from_logits=True),
                   optimizer = keras.optimizers.Adam(learning_rate=0.001),
                   metrics=['accuracy'])
Model: "model"
_________________________________________________________________
 Layer (type)                Output Shape              Param #   
=================================================================
 input_1 (InputLayer)        [(None, 768)]             0         
                                                                 
 dense (Dense)               (None, 768)               590592    
                                                                 
 dense_1 (Dense)             (None, 4)                 3076      
                                                                 
=================================================================
Total params: 593668 (2.26 MB)
Trainable params: 593668 (2.26 MB)
Non-trainable params: 0 (0.00 Byte)
_________________________________________________________________
embedding_size
768

Melatih model untuk mengklasifikasikan grup berita

Terakhir, Anda dapat melatih model sederhana. Gunakan sejumlah kecil epoch untuk menghindari overfitting. Epoch pertama memakan waktu lebih lama daripada yang lain, karena embeddings perlu dihitung hanya sekali.

NUM_EPOCHS = 20
BATCH_SIZE = 32

# Split the x and y components of the train and validation subsets.
y_train = df_train['Encoded Label']
x_train = np.stack(df_train['Embeddings'])
y_val = df_test['Encoded Label']
x_val = np.stack(df_test['Embeddings'])

# Train the model for the desired number of epochs.
callback = keras.callbacks.EarlyStopping(monitor='accuracy', patience=3)

history = classifier.fit(x=x_train,
                         y=y_train,
                         validation_data=(x_val, y_val),
                         callbacks=[callback],
                         batch_size=BATCH_SIZE,
                         epochs=NUM_EPOCHS,)
Epoch 1/20
/usr/local/lib/python3.10/dist-packages/keras/src/backend.py:5729: UserWarning: "`sparse_categorical_crossentropy` received `from_logits=True`, but the `output` argument was produced by a Softmax activation and thus does not represent logits. Was this intended?
  output, from_logits = _get_logits(
13/13 [==============================] - 1s 30ms/step - loss: 1.2141 - accuracy: 0.6675 - val_loss: 0.9801 - val_accuracy: 0.8800
Epoch 2/20
13/13 [==============================] - 0s 12ms/step - loss: 0.7580 - accuracy: 0.9400 - val_loss: 0.6061 - val_accuracy: 0.9300
Epoch 3/20
13/13 [==============================] - 0s 13ms/step - loss: 0.4249 - accuracy: 0.9525 - val_loss: 0.3902 - val_accuracy: 0.9200
Epoch 4/20
13/13 [==============================] - 0s 13ms/step - loss: 0.2561 - accuracy: 0.9625 - val_loss: 0.2597 - val_accuracy: 0.9400
Epoch 5/20
13/13 [==============================] - 0s 13ms/step - loss: 0.1693 - accuracy: 0.9700 - val_loss: 0.2145 - val_accuracy: 0.9300
Epoch 6/20
13/13 [==============================] - 0s 13ms/step - loss: 0.1240 - accuracy: 0.9850 - val_loss: 0.1801 - val_accuracy: 0.9600
Epoch 7/20
13/13 [==============================] - 0s 21ms/step - loss: 0.0931 - accuracy: 0.9875 - val_loss: 0.1623 - val_accuracy: 0.9400
Epoch 8/20
13/13 [==============================] - 0s 16ms/step - loss: 0.0736 - accuracy: 0.9925 - val_loss: 0.1418 - val_accuracy: 0.9600
Epoch 9/20
13/13 [==============================] - 0s 20ms/step - loss: 0.0613 - accuracy: 0.9925 - val_loss: 0.1315 - val_accuracy: 0.9700
Epoch 10/20
13/13 [==============================] - 0s 20ms/step - loss: 0.0479 - accuracy: 0.9975 - val_loss: 0.1235 - val_accuracy: 0.9600
Epoch 11/20
13/13 [==============================] - 0s 19ms/step - loss: 0.0399 - accuracy: 0.9975 - val_loss: 0.1219 - val_accuracy: 0.9700
Epoch 12/20
13/13 [==============================] - 0s 21ms/step - loss: 0.0326 - accuracy: 0.9975 - val_loss: 0.1158 - val_accuracy: 0.9700
Epoch 13/20
13/13 [==============================] - 0s 19ms/step - loss: 0.0263 - accuracy: 1.0000 - val_loss: 0.1127 - val_accuracy: 0.9700
Epoch 14/20
13/13 [==============================] - 0s 17ms/step - loss: 0.0229 - accuracy: 1.0000 - val_loss: 0.1123 - val_accuracy: 0.9700
Epoch 15/20
13/13 [==============================] - 0s 20ms/step - loss: 0.0195 - accuracy: 1.0000 - val_loss: 0.1063 - val_accuracy: 0.9700
Epoch 16/20
13/13 [==============================] - 0s 17ms/step - loss: 0.0172 - accuracy: 1.0000 - val_loss: 0.1070 - val_accuracy: 0.9700

Mengevaluasi performa model

Menggunakan Keras Model.evaluate untuk mendapatkan nilai kerugian dan akurasi pada {i>dataset<i} pengujian.

classifier.evaluate(x=x_val, y=y_val, return_dict=True)
4/4 [==============================] - 0s 4ms/step - loss: 0.1070 - accuracy: 0.9700
{'loss': 0.10700511932373047, 'accuracy': 0.9700000286102295}

Salah satu cara untuk mengevaluasi performa model Anda adalah dengan memvisualisasikan performa pengklasifikasi. Gunakan plot_history untuk melihat tren kerugian dan akurasi selama epoch.

def plot_history(history):
  """
    Plotting training and validation learning curves.

    Args:
      history: model history with all the metric measures
  """
  fig, (ax1, ax2) = plt.subplots(1,2)
  fig.set_size_inches(20, 8)

  # Plot loss
  ax1.set_title('Loss')
  ax1.plot(history.history['loss'], label = 'train')
  ax1.plot(history.history['val_loss'], label = 'test')
  ax1.set_ylabel('Loss')

  ax1.set_xlabel('Epoch')
  ax1.legend(['Train', 'Validation'])

  # Plot accuracy
  ax2.set_title('Accuracy')
  ax2.plot(history.history['accuracy'],  label = 'train')
  ax2.plot(history.history['val_accuracy'], label = 'test')
  ax2.set_ylabel('Accuracy')
  ax2.set_xlabel('Epoch')
  ax2.legend(['Train', 'Validation'])

  plt.show()

plot_history(history)

png

Cara lain untuk melihat performa model, lebih dari sekadar mengukur kerugian dan akurasi adalah dengan menggunakan matriks konfusi. Matriks konfusi memungkinkan Anda menilai performa model klasifikasi di luar akurasi. Anda dapat melihat poin yang salah diklasifikasikan sebagai apa. Untuk membuat matriks konfusi untuk masalah klasifikasi kelas multi-kelas ini, dapatkan nilai aktual dalam set pengujian dan nilai yang diprediksi.

Mulai dengan membuat class yang diprediksi untuk setiap contoh dalam set validasi menggunakan Model.predict().

y_hat = classifier.predict(x=x_val)
y_hat = np.argmax(y_hat, axis=1)
4/4 [==============================] - 0s 4ms/step
labels_dict = dict(zip(df_test['Class Name'], df_test['Encoded Label']))
labels_dict
{'sci.crypt': 0, 'sci.electronics': 1, 'sci.med': 2, 'sci.space': 3}
cm = skmetrics.confusion_matrix(y_val, y_hat)
disp = skmetrics.ConfusionMatrixDisplay(confusion_matrix=cm,
                              display_labels=labels_dict.keys())
disp.plot(xticks_rotation='vertical')
plt.title('Confusion matrix for newsgroup test dataset');
plt.grid(False)

png

Langkah berikutnya

Untuk mempelajari lebih lanjut tentang bagaimana Anda dapat menggunakan embeddings, lihat tutorial lainnya: