Gemma mit JAX und Flax anpassen

Auf ai.google.dev ansehen In Google Colab ausführen In Vertex AI öffnen Quelle auf GitHub ansehen

Überblick

Gemma ist eine Familie von schlanken, modernen offenen Large Language Models, die auf der Forschung und Technologie von Google DeepMind Gemini basieren. In diesem Tutorial erfahren Sie, wie Sie das Gemma 2B-InSTRUCT-Modell für eine englischsprachig-französische Übersetzungsaufgabe mit der gemma-Bibliothek von Google DeepMind, JAX (eine leistungsstarke numerische Computing-Bibliothek), Flax (die JAX-basierte neuronale Netzwerkbibliothek), Chex (eine Bibliothek mit Dienstprogrammen zum Schreiben von zuverlässigem JAX-Code{/10), der Optax-basierten Textoptimierung und der Optax Translation-Dataset-Optimierung (der JAX-Bibliothek für die Text-Optimierung) und der Optax Translation-Dataset-Optimierung (der JAX-Bibliothek für die Text-Optimierung von Google DeepMind) optimieren. Flax wird in diesem Notizbuch nicht direkt verwendet, aber aus Flax wurde Gemma hergestellt.

Die gemma-Bibliothek wurde mit JAX, Flax, Orbax (eine JAX-basierte Bibliothek für Trainingsdienstprogramme wie Checkpointing) und SentencePiece (eine Tokenizer-/Detokenizer-Bibliothek) geschrieben.

Einrichtung

1. Kaggle-Zugriff für Gemma einrichten

Um diese Anleitung abzuschließen, folgen Sie zuerst der Einrichtungsanleitung unter Gemma-Einrichtung, die Ihnen folgende Schritte zeigt:

  • Zugriff auf Gemma erhalten Sie unter kaggle.com.
  • Wählen Sie eine Colab-Laufzeit mit ausreichend Ressourcen zum Ausführen des Gemma-Modells aus.
  • Generieren und konfigurieren Sie einen Kaggle-Nutzernamen und einen API-Schlüssel.

Fahren Sie nach Abschluss der Gmma-Einrichtung mit dem nächsten Abschnitt fort, in dem Sie Umgebungsvariablen für Ihre Colab-Umgebung festlegen.

2. Umgebungsvariablen festlegen

Legen Sie Umgebungsvariablen für KAGGLE_USERNAME und KAGGLE_KEY fest. Wenn die Meldung „Zugriff gewähren?“ angezeigt wird, stimmen Sie der Bereitstellung des Secret-Zugriffs zu.

import os
from google.colab import userdata # `userdata` is a Colab API.

os.environ["KAGGLE_USERNAME"] = userdata.get('KAGGLE_USERNAME')
os.environ["KAGGLE_KEY"] = userdata.get('KAGGLE_KEY')

3. gemma-Bibliothek installieren

Die kostenlose Colab-Hardwarebeschleunigung ist derzeit zum Ausführen dieses Notebooks nicht ausreichend. Wenn Sie Colab „Pay as you go“ oder Colab Pro verwenden, klicken Sie auf Bearbeiten > Notebook-Einstellungen > A100-GPU > Speichern, um die Hardwarebeschleunigung zu aktivieren.

Als Nächstes müssen Sie die gemma-Bibliothek von Google DeepMind von github.com/google-deepmind/gemma installieren. Wenn Sie eine Fehlermeldung zum „Abhängigkeitsauflöser von pip“ erhalten, können Sie diese in der Regel ignorieren.

pip install -q git+https://github.com/google-deepmind/gemma.git

4. Bibliotheken importieren

Dieses Notebook verwendet Flax (für neuronale Netzwerke), Kern-JAX, SentencePiece (für die Tokenisierung), Chex (eine Bibliothek mit Dienstprogrammen zum Schreiben von zuverlässigem JAX-Code) und TensorFlow-Datasets.

import os
import enum
import re
import string

import chex
import jax
import jax.numpy as jnp
import optax

import tensorflow as tf
import tensorflow_datasets as tfds

from gemma import params as params_lib
from gemma import sampler as sampler_lib
from gemma import transformer as transformer_lib
import sentencepiece as spm

Gemma-Modell laden

Laden Sie das Gemma-Modell mit kagglehub.model_download, das drei Argumente verwendet:

  • handle: der Modell-Handle von Kaggle
  • path: (optionaler String) Der lokale Pfad
  • force_download: (optionaler boolescher Wert) Erzwingt einen erneuten Download des Modells
GEMMA_VARIANT = '2b-it' # @param ['2b', '2b-it'] {type:"string"}
import kagglehub

GEMMA_PATH = kagglehub.model_download(f'google/gemma/flax/{GEMMA_VARIANT}')
Downloading from https://www.kaggle.com/api/v1/models/google/gemma/flax/2b-it/2/download...
100%|██████████| 3.67G/3.67G [00:26<00:00, 147MB/s]
Extracting model files...
print('GEMMA_PATH:', GEMMA_PATH)
GEMMA_PATH: /root/.cache/kagglehub/models/google/gemma/flax/2b-it/2

Prüfen Sie den Speicherort der Modellgewichtungen und des Tokenizers und legen Sie dann die Pfadvariablen fest. Das Tokenizer-Verzeichnis befindet sich im Hauptverzeichnis, in das Sie das Modell heruntergeladen haben, während sich die Modellgewichtungen in einem Unterverzeichnis befinden. Beispiel:

  • Die Datei „tokenizer.model“ wird das Format /LOCAL/PATH/TO/gemma/flax/2b-it/2 haben.
  • Der Modell-Checkpoint befindet sich in /LOCAL/PATH/TO/gemma/flax/2b-it/2/2b-it.
CKPT_PATH = os.path.join(GEMMA_PATH, GEMMA_VARIANT)
TOKENIZER_PATH = os.path.join(GEMMA_PATH, 'tokenizer.model')
print('CKPT_PATH:', CKPT_PATH)
print('TOKENIZER_PATH:', TOKENIZER_PATH)
CKPT_PATH: /root/.cache/kagglehub/models/google/gemma/flax/2b-it/2/2b-it
TOKENIZER_PATH: /root/.cache/kagglehub/models/google/gemma/flax/2b-it/2/tokenizer.model

MTNT-Dataset und Gemma-Tokenizer laden und vorbereiten

Dazu verwenden Sie das Dataset MTNT (Machine Translation of Noisy Text), das bei TensorFlow Datasets verfügbar ist.

Laden Sie den englischsprachigen Dataset-Teil des MTNT-Datasets herunter und nehmen Sie zwei Beispiele vor. Jedes Beispiel im Dataset enthält zwei Einträge: src: der englische Originalsatz und dst: die entsprechende französische Übersetzung.

ds = tfds.load("mtnt/en-fr", split="train")

ds = ds.take(2)
ds = ds.as_numpy_iterator()

for idx, example in enumerate(ds):
  print(f'Example {idx}:')
  for key, val in example.items():
    print(f'{key}: {val}')
  print()
Downloading and preparing dataset 35.08 MiB (download: 35.08 MiB, generated: 11.33 MiB, total: 46.41 MiB) to /root/tensorflow_datasets/mtnt/en-fr/1.0.0...
Dl Completed...: 0 url [00:00, ? url/s]
Dl Size...: 0 MiB [00:00, ? MiB/s]
Extraction completed...: 0 file [00:00, ? file/s]
Generating splits...:   0%|          | 0/3 [00:00<?, ? splits/s]
Generating train examples...:   0%|          | 0/35692 [00:00<?, ? examples/s]
Shuffling /root/tensorflow_datasets/mtnt/en-fr/1.0.0.incomplete6YJMND/mtnt-train.tfrecord*...:   0%|          …
Generating test examples...:   0%|          | 0/1020 [00:00<?, ? examples/s]
Shuffling /root/tensorflow_datasets/mtnt/en-fr/1.0.0.incomplete6YJMND/mtnt-test.tfrecord*...:   0%|          |…
Generating valid examples...:   0%|          | 0/811 [00:00<?, ? examples/s]
Shuffling /root/tensorflow_datasets/mtnt/en-fr/1.0.0.incomplete6YJMND/mtnt-valid.tfrecord*...:   0%|          …
Dataset mtnt downloaded and prepared to /root/tensorflow_datasets/mtnt/en-fr/1.0.0. Subsequent calls will reuse this data.
Example 0:
dst: b'Le groupe de " toutes les \xc3\xa9toiles potentielles de la conf\xc3\xa9rence de l\'Est mais qui ne s\'en sortent pas dans le groupe de l\'Ouest ".'
src: b'The group of \xe2\x80\x9ceastern conference potential all stars but not making it in the West\xe2\x80\x9d group.'

Example 1:
dst: b"Kameron est-elle un peu aigrie de son manque de temps \xc3\xa0 l'\xc3\xa9cran ?"
src: b'Is Kameron a Little Salty About Her Lack of Air Time?'

Laden Sie den Gemma-Tokenizer, der mit sentencepiece.SentencePieceProcessor erstellt wurde:

vocab = spm.SentencePieceProcessor()
vocab.Load(TOKENIZER_PATH)
True

Passen Sie SentencePieceProcessor für die Übersetzungsaufgabe aus dem Englischen ins Französische an. Da Sie den englischen Teil des Gemma-Modells optimieren werden, müssen Sie einige Anpassungen vornehmen, z. B.:

  • Eingabepräfix: Jedem Eingabesignal wird ein gemeinsames Präfix hinzugefügt. Sie können beispielsweise eine Aufforderung mit einem Präfix wie Translate this into French: [INPUT_SENTENCE] verwenden.

  • Das Suffix für den Übersetzungsstart: Durch das Hinzufügen eines Suffixes am Ende jedes Prompts weist das Gemma-Modell genau an, wann die Übersetzung beginnen soll. Eine neue Zeile sollte funktionieren.

  • Sprachmodell-Tokens: Gemma-Modelle erwarten ein „Anfang der Sequenz“-Token am Anfang jeder Sequenz. Daher sollte das Hinzufügen eines „Ende der Sequenz“-Tokens am Ende jedes Trainingsbeispiels ausreichen.

    Erstellen Sie so einen benutzerdefinierten Wrapper um das SentencePieceProcessor:

class GemmaTokenizer:

  def __init__(self,
               spm_processor: spm.SentencePieceProcessor):
    self._spm_processor = spm_processor

  @property
  def pad_id(self) -> int:
    """Fast access to the pad ID."""
    return self._spm_processor.pad_id()

  def tokenize(self,
               example: str | bytes,
               prefix: str = '',
               suffix: str = '',
               add_eos: bool = True) -> jax.Array:
    """
    The tokenization function.

    Args:
      example: Input string to tokenize.
      prefix:  Prefix to add to the input string.
      suffix:  Suffix to add to the input string.
      add_eos: If True, add an "end of sentence" token at the end of the output
               sequence.
    Returns:
      Tokens corresponding to the input string.
    """
    int_list = [self._spm_processor.bos_id()]
    int_list.extend(self._spm_processor.EncodeAsIds(prefix + example + suffix))
    if add_eos:
      int_list.append(self._spm_processor.eos_id())

    return jnp.array(int_list, dtype=jnp.int32)

  def tokenize_tf_op(self,
                     str_tensor: tf.Tensor,
                     prefix: str = '',
                     suffix: str = '',
                     add_eos: bool = True) -> tf.Tensor:
    """A TensorFlow operator for the tokenize function."""
    encoded = tf.numpy_function(
        self.tokenize,
        [str_tensor, prefix, suffix, add_eos],
        tf.int32)
    encoded.set_shape([None])
    return encoded

  def to_string(self, tokens: jax.Array) -> str:
    """Convert an array of tokens to a string."""
    return self._spm_processor.EncodeIds(tokens.tolist())

Probieren Sie es aus, indem Sie Ihren neuen benutzerdefinierten GemmaTokenizer instanziieren und dann auf eine kleine Stichprobe des MTNT-Datasets anwenden:

tokenizer = GemmaTokenizer(vocab)

def tokenize_source(tokenizer, example: tf.Tensor):
  return tokenizer.tokenize_tf_op(example,
                                  prefix='Translate this into French:\n',
                                  suffix='\n',
                                  add_eos=False)
def tokenize_destination(tokenizer, example: tf.Tensor):
  return tokenizer.tokenize_tf_op(example,
                                  add_eos=True)

ds = tfds.load("mtnt/en-fr",split="train")
ds = ds.take(2)
ds = ds.map(lambda x: {'src': tokenize_source(tokenizer, x['src']),
                       'dst': tokenize_destination(tokenizer, x['dst'])})
ds = ds.as_numpy_iterator()

for idx, example in enumerate(ds):
  print(f'Example {idx}:')
  for key, val in example.items():
    print(f'{key}: {val}')
  print()
Example 0:
src: [     2  49688    736   1280   6987 235292    108    651   2778    576
   1080 104745  11982   5736    832   8995    901    780   3547    665
    575    573   4589 235369   2778 235265    108]
dst: [     2   2025  29653    581    664  16298   1437  55563  41435   7840
    581    683 111452    581    533 235303   9776   4108   2459    679
    485 235303    479   6728    579   1806   2499    709  29653    581
    533 235303 101323  16054      1]

Example 1:
src: [     2  49688    736   1280   6987 235292    108   2437  87150    477
    476  11709 230461   8045   3636  40268    576   4252   4897 235336
    108]
dst: [     2 213606    477   1455 235290   3510    748   8268 191017   2809
    581   2032  69972    581  11495   1305    533 235303  65978   1654
      1]

Erstellen Sie ein Datenladeprogramm für das gesamte MTNT-Dataset:

@chex.dataclass(frozen=True)
class TrainingInput:
  # Input tokens provided to the model.
  input_tokens: jax.Array

  # A mask that determines which tokens contribute to the target loss
  # calculation.
  target_mask: jax.Array

class DatasetSplit(enum.Enum):
  TRAIN = 'train'
  VALIDATION = 'valid'

class MTNTDatasetBuilder:
  """The dataset builder for the MTNT dataset."""

  N_ITEMS = {DatasetSplit.TRAIN: 35_692,
             DatasetSplit.VALIDATION: 811}

  BUFFER_SIZE_SHUFFLE = 10_000
  TRANSLATION_PREFIX = 'Translate this into French:\n'
  TRANSLATION_SUFFIX = '\n'

  def __init__(self,
               tokenizer : GemmaTokenizer,
               max_seq_len: int):
    """Constructor.

    Args:
      tokenizer: Gemma tokenizer to use.
      max_seq_len: size of each sequence in a given batch.
    """
    self._tokenizer = tokenizer
    self._base_data = {
        DatasetSplit.TRAIN: tfds.load("mtnt/en-fr",split="train"),
        DatasetSplit.VALIDATION: tfds.load("mtnt/en-fr",split="valid"),
    }
    self._max_seq_len = max_seq_len

  def _tokenize_source(self, example: tf.Tensor):
    """Tokenization function for the source."""
    return self._tokenizer.tokenize_tf_op(example,
                                          prefix=self.TRANSLATION_PREFIX,
                                          suffix=self.TRANSLATION_SUFFIX,
                                          add_eos=False)

  def _tokenize_destination(self, example: tf.Tensor):
    """Tokenization function for the French translation."""
    return self._tokenizer.tokenize_tf_op(example,
                                          add_eos=True)

  def _pad_up_to_max_len(self,
                         input_tensor: tf.Tensor,
                         pad_value: int | bool,
                         ) -> tf.Tensor:
    """Pad the given tensor up to sequence length of a batch."""
    seq_len = tf.shape(input_tensor)[0]
    to_pad = tf.maximum(self._max_seq_len - seq_len, 0)
    return tf.pad(input_tensor,
                  [[0, to_pad]],
                  mode='CONSTANT',
                  constant_values=pad_value,
                  )

  def _to_training_input(self,
                         src_tokens: jax.Array,
                         dst_tokens: jax.Array,
                         ) -> TrainingInput:
    """Build a training input from a tuple of source and destination tokens."""

    # The input sequence fed to the model is simply the concatenation of the
    # source and the destination.
    tokens = tf.concat([src_tokens, dst_tokens], axis=0)

    # To prevent the model from updating based on the source (input)
    # tokens, add a target mask to each input.
    q_mask = tf.zeros_like(src_tokens, dtype=tf.bool)
    a_mask = tf.ones_like(dst_tokens, dtype=tf.bool)
    mask = tf.concat([q_mask, a_mask], axis=0)

    # If the output tokens sequence is smaller than the target sequence size,
    # then pad it with pad tokens.
    tokens = self._pad_up_to_max_len(tokens, self._tokenizer.pad_id)

    # Don't want to perform the backward pass on the pad tokens.
    mask = self._pad_up_to_max_len(mask, False)

    return TrainingInput(input_tokens=tokens, target_mask=mask)


  def get_train_dataset(self, batch_size: int, num_epochs: int):
    """Build the training dataset."""

    # Tokenize each sample.
    ds = self._base_data[DatasetSplit.TRAIN].map(lambda x : (self._tokenize_source(x['src']),
                                                             self._tokenize_destination(x['dst'])))

    # Convert the samples to training inputs.
    ds = ds.map(lambda x, y: self._to_training_input(x, y))

    # Remove the samples that are too long.
    ds = ds.filter(lambda x: tf.shape(x.input_tokens)[0] <= self._max_seq_len)

    # Shuffle the dataset.
    ds = ds.shuffle(buffer_size=self.BUFFER_SIZE_SHUFFLE)

    # Repeat if necessary.
    ds = ds.repeat(num_epochs)

    # Build batches.
    ds = ds.batch(batch_size, drop_remainder=True)
    return ds

  def get_validation_dataset(self, batch_size: int):
    """Build the validation dataset."""

    # Same steps as in `get_train_dataset`, but without shuffling and no repetition.
    ds = self._base_data[DatasetSplit.VALIDATION].map(lambda x : (self._tokenize_source(x['src']),
                                                                  self._tokenize_destination(x['dst'])))
    ds = ds.map(lambda x, y: self._to_training_input(x, y))
    ds = ds.filter(lambda x: tf.shape(x.input_tokens)[0] <= self._max_seq_len)
    ds = ds.batch(batch_size, drop_remainder=True)
    return ds

Probieren Sie den MTNTDatasetBuilder aus, indem Sie den benutzerdefinierten GemmaTokenizer noch einmal instanziieren, ihn dann auf das MTNT-Dataset anwenden und zwei Beispiele abfragen:

tokenizer = GemmaTokenizer(vocab)

dataset_builder = MTNTDatasetBuilder(tokenizer, max_seq_len=20)
ds = dataset_builder.get_train_dataset(3, 1)
ds = ds.take(2)
ds = ds.as_numpy_iterator()

for idx, example in enumerate(ds):
  print(f'Example {idx}:')
  for key, val in example.items():
    print(f'{key}: {val}')
  print()
WARNING:tensorflow:Mapping types may not work well with tf.nest. Prefer using MutableMapping for <class '__main__.TrainingInput'>
WARNING:tensorflow:Mapping types may not work well with tf.nest. Prefer using MutableMapping for <class '__main__.TrainingInput'>
WARNING:tensorflow:Mapping types may not work well with tf.nest. Prefer using MutableMapping for <class '__main__.TrainingInput'>
Example 0:
input_tokens: [[     2  49688    736   1280   6987 235292    108  10924    665  12302
  235341    108      2   4397  63011   1437  38696   1241      1      0]
 [     2  49688    736   1280   6987 235292    108  13835   1517 235265
     108      2  69875    540  19713 235265      1      0      0      0]
 [     2  49688    736   1280   6987 235292    108   6956   1586 235297
  235265    108      2  78368   1586 235297 235265      1      0      0]]
target_mask: [[False False False False False False False False False False False False
   True  True  True  True  True  True  True False]
 [False False False False False False False False False False False  True
   True  True  True  True  True False False False]
 [False False False False False False False False False False False False
   True  True  True  True  True  True False False]]

Example 1:
input_tokens: [[     2  49688    736   1280   6987 235292    108  18874 235341    108
       2 115905   6425   1241      1      0      0      0      0      0]
 [     2  49688    736   1280   6987 235292    108   7574   3356 235341
     108      2   7997  20707   1241      1      0      0      0      0]
 [     2  49688    736   1280   6987 235292    108   8703    665 235265
     108      2 235338 235303  90006  20133 235265      1      0      0]]
target_mask: [[False False False False False False False False False False  True  True
   True  True  True False False False False False]
 [False False False False False False False False False False False  True
   True  True  True  True False False False False]
 [False False False False False False False False False False False  True
   True  True  True  True  True  True False False]]

Modell konfigurieren

Bevor Sie mit der Feinabstimmung des Gemma-Modells beginnen, müssen Sie es konfigurieren.

Laden und formatieren Sie zuerst den Prüfpunkt für das Gemma-Modell mit der Methode gemma.params.load_and_format_params:

params = params_lib.load_and_format_params(CKPT_PATH)

Verwenden Sie gemma.transformer.TransformerConfig, um automatisch die richtige Konfiguration aus dem Gemma-Modellprüfpunkt zu laden. Das Argument cache_size ist die Anzahl der Zeitschritte im Gemma-Transformer-Cache. Instanziieren Sie anschließend das Gemma-Modell als model_2b mit gemma.transformer.Transformer (übernimmt von flax.linen.Module).

config_2b = transformer_lib.TransformerConfig.from_params(
    params,
    cache_size=30
)

model_2b = transformer_lib.Transformer(config=config_2b)

Modell-Feinabstimmung

In diesem Abschnitt führen Sie folgende Aufgaben aus:

  • Verwenden Sie die Klasse gemma.transformer.Transformer, um die Vorwärts-Pass- und Verlustfunktion zu erstellen.
  • Vektoren für Positions- und Aufmerksamkeitsmasken für Tokens erstellen
  • Erstellen Sie mit Flax eine Trainingsschrittfunktion.
  • Erstellen Sie den Validierungsschritt ohne Rückwärtsterminierung.
  • Erstellen Sie die Trainingsschleife.
  • Passen Sie das Gemma-Modell an.

Definieren Sie die Vorwärts- und Verlustfunktion mithilfe der Klasse gemma.transformer.Transformer. Die Transformer von Gemma übernimmt von flax.linen.Module und bietet zwei grundlegende Methoden:

  • init: Initialisiert die Parameter des Modells.
  • apply: führt die __call__-Funktion des Modells mit einem bestimmten Satz von Parametern aus.

    Da Sie mit vortrainierten Gemma-Gewichten arbeiten, müssen Sie die init-Funktion nicht verwenden.

def forward_and_loss_fn(params,
                        *,
                        model: transformer_lib.Transformer,
                        input_tokens: jax.Array,            # Shape [B, L]
                        input_mask: jax.Array,              # Shape [B, L]
                        positions: jax.Array,               # Shape [B, L]
                        attention_mask: jax.Array,          # [B, L, L]
                        ) -> jax.Array:
  """The forward pass and the loss function.

  Args:
    params: Model's input parameters.
    model: The Gemma transformer model to call.
    input_tokens: Input tokens sequence, shape [B, L].
    input_mask: Tokens to ignore when computing the loss, shape [B, L].
    positions: Relative position of each token, shape [B, L].
    attention_mask: Input attention mask, shape [B, L].

  Returns:
    The softmax cross-entropy loss for the next-token prediction task.
  """

  # The forward pass on the input data.
  # No attention cache is needed here.
  logits, _ = model.apply(
        params,
        input_tokens,
        positions,
        None,              # Attention cache is None.
        attention_mask,
    )

  # Exclude the last step as it does not appear in the targets.
  logits = logits[0, :-1]

  # Similarly, the first token cannot be predicted.
  target_tokens = input_tokens[0, 1:]
  target_mask = input_mask[0, 1:]

  # Convert the target labels to one-hot encoded vectors.
  one_hot = jax.nn.one_hot(target_tokens, logits.shape[-1])

  # Don't update on unwanted tokens.
  one_hot = one_hot * target_mask.astype(one_hot.dtype)[...,None]

  # Define the normalization factor.
  norm_factor = 1 / (jnp.sum(target_mask) + 1e-8)

  # Return the negative log likelihood (NLL) loss.
  return -jnp.sum(jax.nn.log_softmax(logits) * one_hot) * norm_factor

Die Klasse gemma.transformer.Transformer erfordert neben jeder Eingabe einen attention_mask- und einen positions-Vektor. Sie können diese generieren, indem Sie eine benutzerdefinierte Funktion erstellen, die Transformer.build_positions_from_mask und Transformer.make_causal_attn_mask verwendet:

def get_attention_mask_and_positions(example: jax.Array,
                                     pad_id : int,
                                     )-> tuple[jax.Array, jax.Array]:
  """Builds the position and attention mask vectors from the given tokens."""
  pad_mask = example != pad_id
  current_token_position = transformer_lib.build_positions_from_mask(pad_mask)
  attention_mask = transformer_lib.make_causal_attn_mask(pad_mask)
  return current_token_position, attention_mask

Erstellen Sie die Funktion train_step, die die Rückwärtsterminierung ausführt und die Parameter des Modells entsprechend aktualisiert. Dabei gilt:

  • jax.value_and_grad dient zur Auswertung der Verlustfunktion und der Gradienten während des Vorwärts- und Rückwärtsdurchlaufs.
  • Mit optax.apply_updates werden die Parameter aktualisiert.
def train_step(model: transformer_lib.Transformer,
               params,
               optimizer: optax.GradientTransformation,
               opt_state: optax.OptState,
               pad_id: int,
               example: TrainingInput):
  """Train step.

  Args:
    model: The Gemma transformer model.
    params: The model's input parameters.
    optimizer: The Optax optimizer to use.
    opt_state: The input optimizer's state.
    pad_id: ID of the pad token.
    example: Input batch.

  Returns:
    The training loss, the updated parameters, and the updated optimizer state.
  """

  # Build the position and attention mask vectors.
  positions, attention_mask = get_attention_mask_and_positions(example.input_tokens, pad_id)

  # The forward and backward passes.
  train_loss, grads = jax.value_and_grad(forward_and_loss_fn)(params,
                                                             model=model,
                                                             input_tokens=example.input_tokens,
                                                             input_mask=example.target_mask,
                                                             positions=positions,
                                                             attention_mask=attention_mask)
  # Update the parameters.
  updates, opt_state = optimizer.update(grads, opt_state)
  params = optax.apply_updates(params, updates)

  return train_loss, params, opt_state

Erstellen Sie die Funktion validation_step ohne die Rückwärtskarte:

def validation_step(model: transformer_lib.Transformer,
                    params,
                    pad_id: int,
                    example: TrainingInput,
                    ):
  positions, attention_mask = get_attention_mask_and_positions(example.input_tokens, pad_id)
  val_loss = forward_and_loss_fn(params,
                                 model=model,
                                 input_tokens=example.input_tokens,
                                 input_mask=example.target_mask,
                                 positions=positions,
                                 attention_mask=attention_mask)
  return val_loss

Definieren Sie die Trainingsschleife mit optax.sgd für die SGD-Optimierung:

@chex.dataclass(frozen=True)
class TrainingConfig:
  learning_rate: float
  num_epochs: int
  eval_every_n: int
  batch_size: int
  max_steps: int | None = None

def train_loop(
    model: transformer_lib.Transformer,
    params,
    dataset_builder: MTNTDatasetBuilder,
    training_cfg: TrainingConfig):

  # Apply `jax.jit` on the training step, making the whole loop much more efficient.
  compiled_train_step = jax.jit(train_step, static_argnames=['model', 'optimizer'])

  # Apply `jax.jit` on the validation step.
  compiled_validation_step = jax.jit(validation_step, static_argnames=['model'])

  # To save memory, use the SGD optimizer instead of the usual Adam optimizer.
  # Note that for this specific example, SGD is more than enough.
  optimizer = optax.sgd(training_cfg.learning_rate)
  opt_state = optimizer.init(params)

  # Build the training dataset.
  train_ds = dataset_builder.get_train_dataset(batch_size=training_cfg.batch_size,
                                               num_epochs=training_cfg.num_epochs)
  train_ds = train_ds.as_numpy_iterator()

  # Build the validation dataset, with a limited number of samples for this demo.
  validation_ds = dataset_builder.get_validation_dataset(batch_size=training_cfg.batch_size)
  validation_ds = validation_ds.take(50)

  n_steps = 0
  avg_loss=0

  # A first round of the validation loss.
  n_steps_eval = 0
  eval_loss = 0
  val_iterator = validation_ds.as_numpy_iterator()
  for val_example in val_iterator:
    eval_loss += compiled_validation_step(model,
                                          params,
                                          dataset_builder._tokenizer.pad_id,
                                          val_example)
    n_steps_eval += 1
  print(f"Start, validation loss: {eval_loss/n_steps_eval}")

  for train_example in train_ds:
    train_loss, params, opt_state = compiled_train_step(model=model,
                                                        params=params,
                                                        optimizer=optimizer,
                                                        opt_state=opt_state,
                                                        pad_id=dataset_builder._tokenizer.pad_id,
                                                        example=train_example)
    n_steps += 1
    avg_loss += train_loss
    if n_steps % training_cfg.eval_every_n == 0:
      eval_loss = 0

      n_steps_eval = 0
      val_iterator = validation_ds.as_numpy_iterator()
      for val_example in val_iterator:
        eval_loss += compiled_validation_step(model,
                                              params,
                                              dataset_builder._tokenizer.pad_id,
                                              val_example)
        n_steps_eval +=1
      avg_loss /= training_cfg.eval_every_n
      eval_loss /= n_steps_eval
      print(f"STEP {n_steps} training loss: {avg_loss} - eval loss: {eval_loss}")
      avg_loss=0
    if training_cfg.max_steps is not None and n_steps > training_cfg.max_steps:
      break
  return params

Beginnen Sie mit der Feinabstimmung des Gemma-Modells in einer begrenzten Anzahl von Schritten (SEQ_SIZE), damit es in den Speicher passt:

SEQ_SIZE = 25
tokenizer = GemmaTokenizer(vocab)
dataset_builder= MTNTDatasetBuilder(tokenizer, SEQ_SIZE)
training_cfg = TrainingConfig(learning_rate=1e-4,
                              num_epochs=1,
                              eval_every_n=20,
                              batch_size=1,
                              max_steps=100)

params = train_loop(model=model_2b,
                    params={'params': params['transformer']},
                    dataset_builder=dataset_builder,
                    training_cfg=training_cfg)
Start, validation loss: 10.647212982177734
STEP 20 training loss: 3.3015992641448975 - eval loss: 2.686880111694336
STEP 40 training loss: 5.375057220458984 - eval loss: 2.6751961708068848
STEP 60 training loss: 2.6599338054656982 - eval loss: 2.663877010345459
STEP 80 training loss: 4.822389125823975 - eval loss: 2.3333375453948975
STEP 100 training loss: 2.0131142139434814 - eval loss: 2.360811948776245

Sowohl der Trainings- als auch der Validierungsverlust sollten mit jeder Schrittzahl gesunken sein.

Erstellen Sie eine sampler mit gemma.sampler.Sampler. Dabei werden der Checkpoint des Gemma-Modells und der Tokenizer verwendet.

sampler = sampler_lib.Sampler(
    transformer=model_2b,
    vocab=vocab,
    params=params['params'],
)

Verwenden Sie sampler, um zu prüfen, ob Ihr Modell eine Übersetzung durchführen kann. Das Argument total_generation_steps in gemma.sampler.Sampler ist die Anzahl der Schritte, die beim Generieren einer Antwort ausgeführt werden. Damit die Eingabe dem Trainingsformat entspricht, verwenden Sie das Präfix Translate this into French:\n mit einem Zeilenumbruchzeichen am Ende. Dadurch wird dem Modell signalisiert, dass mit der Übersetzung begonnen werden soll.

sampler(
    ["Translate this into French:\nHello, my name is Morgane.\n"],
    total_generation_steps=100,
    ).text
["C'est Bonjour, mon nom est Morgane.C'est Bonjour, mon nom est Morgane."]

Weitere Informationen