Посмотреть на ai.google.dev | Запустить в Google Colab | Открыть в Vertex AI | Посмотреть исходный код на GitHub |
Обзор
Gemma — это семейство легких современных моделей открытого большого языка, основанных на исследованиях и технологиях Google DeepMind Gemini. В этом руководстве показано, как выполнить базовую выборку/вывод с помощью модели Gemma 2B Instruct с использованием библиотеки gemma
Google DeepMind , написанной с помощью JAX (библиотека высокопроизводительных численных вычислений), Flax (библиотека нейронных сетей на основе JAX), Orbax (библиотека высокопроизводительных численных вычислений). библиотека на основе JAX для обучения утилитам, таким как создание контрольных точек) и SentencePiece (библиотека токенизатора/детокенизатора). Хотя лен не используется непосредственно в этом блокноте, лен использовался для создания Джеммы.
Этот ноутбук может работать на Google Colab с бесплатным графическим процессором T4 (перейдите в «Правка» > «Настройки ноутбука» > в разделе «Аппаратный ускоритель» выберите «T4 GPU »).
Настраивать
1. Настройте доступ Kaggle для Джеммы.
Чтобы выполнить это руководство, сначала необходимо следовать инструкциям по установке на странице Gemma setup , в которых показано, как сделать следующее:
- Получите доступ к Джемме на kaggle.com .
- Выберите среду выполнения Colab с достаточными ресурсами для запуска модели Gemma.
- Создайте и настройте имя пользователя Kaggle и ключ API.
После завершения настройки Gemma перейдите к следующему разделу, где вы установите переменные среды для вашей среды Colab.
2. Установите переменные среды
Установите переменные среды для KAGGLE_USERNAME
и KAGGLE_KEY
. При появлении запроса «Предоставить доступ?» сообщения, согласитесь предоставить секретный доступ.
import os
from google.colab import userdata # `userdata` is a Colab API.
os.environ["KAGGLE_USERNAME"] = userdata.get('KAGGLE_USERNAME')
os.environ["KAGGLE_KEY"] = userdata.get('KAGGLE_KEY')
3. Установите библиотеку gemma
В этом ноутбуке основное внимание уделяется использованию бесплатного графического процессора Colab. Чтобы включить аппаратное ускорение, нажмите «Редактировать» > «Настройки ноутбука» > «Выбрать графический процессор T4» > «Сохранить» .
Далее вам необходимо установить библиотеку gemma
Google DeepMind с github.com/google-deepmind/gemma
. Если вы получаете сообщение об ошибке «преобразователь зависимостей pip», обычно вы можете игнорировать его.
pip install -q git+https://github.com/google-deepmind/gemma.git
Загрузите и подготовьте модель Джеммы.
- Загрузите модель Gemma с помощью
kagglehub.model_download
, который принимает три аргумента:
-
handle
: ручка модели от Kaggle. -
path
: (Необязательная строка) Локальный путь -
force_download
: (Необязательное логическое значение) Принудительно повторно загрузить модель.
GEMMA_VARIANT = 'gemma2-2b-it' # @param ['gemma2-2b', 'gemma2-2b-it'] {type:"string"}
import kagglehub
GEMMA_PATH = kagglehub.model_download(f'google/gemma-2/flax/{GEMMA_VARIANT}')
Downloading 11 files: 0%| | 0/11 [00:00<?, ?it/s] Downloading from https://www.kaggle.com/api/v1/models/google/gemma-2-2b/flax/gemma2-2b-it/1/download/gemma2-2b-it/ocdbt.process_0/manifest.ocdbt... 100%|██████████| 180/180 [00:00<00:00, 101kB/s] Downloading from https://www.kaggle.com/api/v1/models/google/gemma-2-2b/flax/gemma2-2b-it/1/download/gemma2-2b-it/d/b5a4695f4be0a2f41ec1e25616ebd7e7... 100%|██████████| 2.66k/2.66k [00:00<00:00, 5.36MB/s] Downloading from https://www.kaggle.com/api/v1/models/google/gemma-2-2b/flax/gemma2-2b-it/1/download/gemma2-2b-it/descriptor/descriptor.pbtxt... 100%|██████████| 45.0/45.0 [00:00<00:00, 90.0kB/s] Downloading from https://www.kaggle.com/api/v1/models/google/gemma-2-2b/flax/gemma2-2b-it/1/download/gemma2-2b-it/_METADATA... 100%|██████████| 55.3k/55.3k [00:00<00:00, 29.5MB/s] Downloading from https://www.kaggle.com/api/v1/models/google/gemma-2-2b/flax/gemma2-2b-it/1/download/gemma2-2b-it/_CHECKPOINT_METADATA... 100%|██████████| 92.0/92.0 [00:00<00:00, 234kB/s] Downloading from https://www.kaggle.com/api/v1/models/google/gemma-2-2b/flax/gemma2-2b-it/1/download/gemma2-2b-it/ocdbt.process_0/d/bf69258061ae5f35eb7a5669fe6877d4... 0%| | 0.00/2.12G [00:00<?, ?B/s] Downloading from https://www.kaggle.com/api/v1/models/google/gemma-2-2b/flax/gemma2-2b-it/1/download/gemma2-2b-it/ocdbt.process_0/d/fc20151969d7ca91ea9d8275bda0e219... 100%|██████████| 2.64k/2.64k [00:00<00:00, 5.58MB/s] 0%| | 2.00M/2.12G [00:00<01:48, 20.8MB/s] Downloading from https://www.kaggle.com/api/v1/models/google/gemma-2-2b/flax/gemma2-2b-it/1/download/gemma2-2b-it/ocdbt.process_0/d/834bb4bf1e3854eb09f6208c95c071b2... 0%| | 0.00/1.70G [00:00<?, ?B/s] 0%| | 9.00M/2.12G [00:00<00:46, 48.2MB/s] 0%| | 3.00M/1.70G [00:00<01:06, 27.6MB/s] 1%| | 14.0M/2.12G [00:00<00:46, 48.6MB/s] 1%| | 9.00M/1.70G [00:00<00:40, 44.5MB/s] Downloading from https://www.kaggle.com/api/v1/models/google/gemma-2-2b/flax/gemma2-2b-it/1/download/gemma2-2b-it/manifest.ocdbt... 100%|██████████| 118/118 [00:00<00:00, 303kB/s] 1%| | 21.0M/2.12G [00:00<00:41, 53.7MB/s] Downloading from https://www.kaggle.com/api/v1/models/google/gemma-2-2b/flax/gemma2-2b-it/1/download/gemma2-2b-it/checkpoint... 0%| | 0.00/22.5k [00:00<?, ?B/s] Downloading from https://www.kaggle.com/api/v1/models/google/gemma-2-2b/flax/gemma2-2b-it/1/download/tokenizer.model... 100%|██████████| 22.5k/22.5k [00:00<00:00, 24.7MB/s] 1%| | 17.0M/1.70G [00:00<00:36, 49.5MB/s] 0%| | 0.00/4.04M [00:00<?, ?B/s] 100%|██████████| 4.04M/4.04M [00:00<00:00, 64.6MB/s] 1%|▏ | 24.0M/1.70G [00:00<00:34, 52.7MB/s] 2%|▏ | 40.0M/2.12G [00:00<00:34, 64.6MB/s] 2%|▏ | 33.0M/1.70G [00:00<00:27, 64.4MB/s] 2%|▏ | 49.0M/2.12G [00:00<00:34, 64.8MB/s] 3%|▎ | 47.0M/1.70G [00:00<00:20, 86.9MB/s] 3%|▎ | 59.0M/2.12G [00:00<00:29, 74.4MB/s] 3%|▎ | 56.0M/1.70G [00:00<00:24, 73.1MB/s] 3%|▎ | 67.0M/2.12G [00:01<00:31, 70.1MB/s] 4%|▎ | 64.0M/1.70G [00:01<00:25, 69.4MB/s] 3%|▎ | 74.0M/2.12G [00:01<00:32, 67.4MB/s] 4%|▍ | 73.0M/1.70G [00:01<00:23, 75.7MB/s] 4%|▍ | 84.0M/2.12G [00:01<00:28, 75.5MB/s] 5%|▍ | 81.0M/1.70G [00:01<00:22, 77.7MB/s] 5%|▌ | 95.0M/1.70G [00:01<00:17, 96.5MB/s] 4%|▍ | 92.0M/2.12G [00:01<00:38, 56.7MB/s] 6%|▌ | 106M/1.70G [00:01<00:17, 101MB/s] 5%|▍ | 102M/2.12G [00:01<00:32, 67.2MB/s] 7%|▋ | 117M/1.70G [00:01<00:16, 102MB/s] 5%|▌ | 110M/2.12G [00:01<00:30, 70.5MB/s] 7%|▋ | 128M/1.70G [00:01<00:16, 105MB/s] 5%|▌ | 119M/2.12G [00:01<00:28, 75.6MB/s] 8%|▊ | 142M/1.70G [00:01<00:14, 117MB/s] 6%|▌ | 129M/2.12G [00:02<00:30, 70.1MB/s] 9%|▉ | 154M/1.70G [00:01<00:17, 92.5MB/s] 6%|▋ | 138M/2.12G [00:02<00:28, 73.9MB/s] 9%|▉ | 164M/1.70G [00:02<00:18, 87.7MB/s] 7%|▋ | 146M/2.12G [00:02<00:30, 70.2MB/s] 10%|▉ | 173M/1.70G [00:02<00:20, 81.7MB/s] 7%|▋ | 153M/2.12G [00:02<00:33, 63.0MB/s] 10%|█ | 182M/1.70G [00:02<00:19, 82.8MB/s] 8%|▊ | 164M/2.12G [00:02<00:27, 75.3MB/s] 11%|█ | 195M/1.70G [00:02<00:17, 90.8MB/s] 8%|▊ | 174M/2.12G [00:02<00:25, 82.0MB/s] 12%|█▏ | 207M/1.70G [00:02<00:16, 99.0MB/s] 9%|▊ | 186M/2.12G [00:02<00:22, 92.9MB/s] 13%|█▎ | 218M/1.70G [00:02<00:16, 99.7MB/s] 9%|▉ | 196M/2.12G [00:02<00:22, 92.4MB/s] 13%|█▎ | 229M/1.70G [00:02<00:15, 103MB/s] 10%|▉ | 206M/2.12G [00:02<00:22, 92.1MB/s] 14%|█▎ | 239M/1.70G [00:02<00:15, 99.4MB/s] 10%|▉ | 215M/2.12G [00:03<00:22, 91.3MB/s] 14%|█▍ | 250M/1.70G [00:03<00:15, 101MB/s] 10%|█ | 226M/2.12G [00:03<00:21, 96.5MB/s] 15%|█▌ | 263M/1.70G [00:03<00:14, 108MB/s] 11%|█ | 238M/2.12G [00:03<00:19, 105MB/s] 11%|█▏ | 249M/2.12G [00:03<00:19, 103MB/s] 16%|█▌ | 274M/1.70G [00:03<00:16, 91.6MB/s] 12%|█▏ | 259M/2.12G [00:03<00:21, 93.3MB/s] 16%|█▋ | 284M/1.70G [00:03<00:20, 76.0MB/s] 12%|█▏ | 269M/2.12G [00:03<00:21, 94.3MB/s] 17%|█▋ | 295M/1.70G [00:03<00:18, 84.0MB/s] 13%|█▎ | 279M/2.12G [00:03<00:20, 94.2MB/s] 17%|█▋ | 304M/1.70G [00:03<00:17, 84.4MB/s] 13%|█▎ | 289M/2.12G [00:03<00:20, 94.9MB/s] 18%|█▊ | 313M/1.70G [00:03<00:18, 81.9MB/s] 14%|█▍ | 299M/2.12G [00:03<00:21, 91.4MB/s] 14%|█▍ | 308M/2.12G [00:04<00:21, 89.4MB/s] 18%|█▊ | 322M/1.70G [00:03<00:20, 73.5MB/s] 19%|█▉ | 330M/1.70G [00:04<00:19, 74.9MB/s] 15%|█▍ | 317M/2.12G [00:04<00:23, 81.1MB/s] 15%|█▌ | 326M/2.12G [00:04<00:23, 83.6MB/s] 19%|█▉ | 338M/1.70G [00:04<00:20, 72.0MB/s] 20%|█▉ | 346M/1.70G [00:04<00:19, 74.6MB/s] 15%|█▌ | 335M/2.12G [00:04<00:24, 79.2MB/s] 20%|██ | 354M/1.70G [00:04<00:19, 75.0MB/s] 16%|█▌ | 344M/2.12G [00:04<00:23, 81.4MB/s] 16%|█▋ | 352M/2.12G [00:04<00:28, 67.3MB/s] 21%|██ | 362M/1.70G [00:04<00:26, 54.3MB/s] 17%|█▋ | 359M/2.12G [00:04<00:31, 59.6MB/s] 21%|██ | 369M/1.70G [00:04<00:26, 53.4MB/s] 17%|█▋ | 366M/2.12G [00:05<00:31, 59.0MB/s] 22%|██▏ | 375M/1.70G [00:04<00:26, 54.9MB/s] 17%|█▋ | 372M/2.12G [00:05<00:31, 59.2MB/s] 22%|██▏ | 381M/1.70G [00:05<00:25, 56.2MB/s] 17%|█▋ | 379M/2.12G [00:05<00:30, 62.3MB/s] 22%|██▏ | 388M/1.70G [00:05<00:24, 56.8MB/s] 18%|█▊ | 386M/2.12G [00:05<00:29, 63.8MB/s] 23%|██▎ | 395M/1.70G [00:05<00:23, 60.2MB/s] 18%|█▊ | 394M/2.12G [00:05<00:27, 68.5MB/s] 23%|██▎ | 402M/1.70G [00:05<00:22, 62.7MB/s] 19%|█▊ | 401M/2.12G [00:05<00:27, 66.3MB/s] 23%|██▎ | 409M/1.70G [00:05<00:21, 64.4MB/s] 19%|█▉ | 408M/2.12G [00:05<00:28, 65.4MB/s] 24%|██▍ | 416M/1.70G [00:05<00:21, 65.4MB/s] 24%|██▍ | 423M/1.70G [00:05<00:26, 51.4MB/s] 19%|█▉ | 415M/2.12G [00:07<03:02, 10.1MB/s] 25%|██▍ | 429M/1.70G [00:08<02:56, 7.79MB/s] 19%|█▉ | 420M/2.12G [00:08<03:17, 9.28MB/s] 25%|██▌ | 439M/1.70G [00:08<01:52, 12.2MB/s] 20%|█▉ | 432M/2.12G [00:08<01:56, 15.7MB/s] 26%|██▌ | 447M/1.70G [00:08<01:22, 16.5MB/s] 20%|██ | 441M/2.12G [00:08<01:25, 21.1MB/s] 26%|██▌ | 454M/1.70G [00:08<01:05, 20.5MB/s] 21%|██ | 448M/2.12G [00:09<01:14, 24.0MB/s] 26%|██▋ | 460M/1.70G [00:08<00:54, 24.4MB/s] 27%|██▋ | 468M/1.70G [00:09<00:42, 31.6MB/s] 21%|██ | 454M/2.12G [00:09<01:07, 26.4MB/s] 21%|██▏ | 464M/2.12G [00:09<00:49, 36.4MB/s] 27%|██▋ | 476M/1.70G [00:09<00:38, 34.4MB/s] 28%|██▊ | 487M/1.70G [00:09<00:28, 47.0MB/s] 22%|██▏ | 471M/2.12G [00:09<00:53, 33.2MB/s] 28%|██▊ | 495M/1.70G [00:09<00:28, 46.0MB/s] 22%|██▏ | 477M/2.12G [00:09<00:49, 36.0MB/s] 29%|██▉ | 502M/1.70G [00:09<00:27, 47.6MB/s] 29%|██▉ | 510M/1.70G [00:09<00:23, 54.1MB/s] 22%|██▏ | 483M/2.12G [00:09<00:52, 33.9MB/s] 30%|██▉ | 519M/1.70G [00:09<00:20, 62.0MB/s] 23%|██▎ | 491M/2.12G [00:10<00:41, 41.9MB/s] 30%|███ | 527M/1.70G [00:09<00:19, 65.6MB/s] 23%|██▎ | 497M/2.12G [00:10<00:47, 37.1MB/s] 23%|██▎ | 506M/2.12G [00:10<00:36, 47.1MB/s] 31%|███ | 535M/1.70G [00:10<00:26, 47.1MB/s] 24%|██▎ | 513M/2.12G [00:10<00:35, 49.5MB/s] 31%|███ | 541M/1.70G [00:10<00:25, 49.2MB/s] 24%|██▍ | 523M/2.12G [00:10<00:28, 60.8MB/s] 32%|███▏ | 551M/1.70G [00:10<00:20, 60.3MB/s] 24%|██▍ | 530M/2.12G [00:10<00:30, 56.8MB/s] 32%|███▏ | 561M/1.70G [00:10<00:18, 65.7MB/s] 25%|██▍ | 537M/2.12G [00:10<00:29, 58.3MB/s] 33%|███▎ | 569M/1.70G [00:10<00:18, 67.2MB/s] 25%|██▌ | 547M/2.12G [00:10<00:24, 68.2MB/s] 33%|███▎ | 578M/1.70G [00:10<00:16, 73.2MB/s] 26%|██▌ | 557M/2.12G [00:11<00:21, 77.0MB/s] 34%|███▎ | 586M/1.70G [00:10<00:17, 71.0MB/s] 34%|███▍ | 595M/1.70G [00:11<00:15, 76.1MB/s] 26%|██▌ | 565M/2.12G [00:11<00:24, 69.2MB/s] 35%|███▍ | 609M/1.70G [00:11<00:13, 88.9MB/s] 26%|██▋ | 573M/2.12G [00:11<00:26, 63.3MB/s] 35%|███▌ | 618M/1.70G [00:11<00:13, 90.0MB/s] 27%|██▋ | 583M/2.12G [00:11<00:23, 71.8MB/s] 36%|███▌ | 630M/1.70G [00:11<00:11, 99.5MB/s] 37%|███▋ | 640M/1.70G [00:12<00:37, 31.0MB/s] 27%|██▋ | 591M/2.12G [00:12<01:09, 23.8MB/s] 37%|███▋ | 650M/1.70G [00:12<00:29, 38.7MB/s] 28%|██▊ | 602M/2.12G [00:12<00:49, 32.9MB/s] 28%|██▊ | 611M/2.12G [00:12<00:40, 40.3MB/s] 38%|███▊ | 660M/1.70G [00:12<00:24, 46.6MB/s] 39%|███▊ | 673M/1.70G [00:12<00:18, 60.3MB/s] 29%|██▊ | 619M/2.12G [00:12<00:37, 43.2MB/s] 39%|███▉ | 684M/1.70G [00:12<00:15, 69.5MB/s] 29%|██▉ | 626M/2.12G [00:12<00:35, 45.0MB/s] 40%|████ | 697M/1.70G [00:12<00:13, 79.8MB/s] 29%|██▉ | 638M/2.12G [00:13<00:27, 59.2MB/s] 41%|████ | 707M/1.70G [00:12<00:12, 83.7MB/s] 30%|██▉ | 646M/2.12G [00:13<00:25, 63.4MB/s] 41%|████ | 717M/1.70G [00:13<00:12, 88.5MB/s] 30%|███ | 654M/2.12G [00:13<00:23, 67.5MB/s] 31%|███ | 662M/2.12G [00:13<00:22, 70.8MB/s] 42%|████▏ | 727M/1.70G [00:13<00:15, 67.7MB/s] 42%|████▏ | 736M/1.70G [00:13<00:15, 68.8MB/s] 31%|███ | 670M/2.12G [00:13<00:26, 58.5MB/s] 43%|████▎ | 744M/1.70G [00:13<00:15, 67.3MB/s] 31%|███▏ | 677M/2.12G [00:13<00:29, 53.2MB/s] 43%|████▎ | 755M/1.70G [00:13<00:13, 77.3MB/s] 32%|███▏ | 683M/2.12G [00:13<00:28, 54.4MB/s] 44%|████▍ | 765M/1.70G [00:13<00:12, 83.9MB/s] 32%|███▏ | 690M/2.12G [00:13<00:26, 58.6MB/s] 44%|████▍ | 774M/1.70G [00:13<00:13, 77.1MB/s] 32%|███▏ | 703M/2.12G [00:14<00:19, 77.2MB/s] 45%|████▌ | 786M/1.70G [00:14<00:11, 88.4MB/s] 33%|███▎ | 712M/2.12G [00:14<00:20, 73.5MB/s] 46%|████▌ | 797M/1.70G [00:14<00:10, 94.8MB/s] 33%|███▎ | 722M/2.12G [00:14<00:19, 79.4MB/s] 46%|████▋ | 807M/1.70G [00:14<00:10, 93.8MB/s] 34%|███▍ | 731M/2.12G [00:14<00:18, 81.6MB/s] 47%|████▋ | 817M/1.70G [00:14<00:10, 90.0MB/s] 34%|███▍ | 740M/2.12G [00:14<00:17, 83.8MB/s] 48%|████▊ | 829M/1.70G [00:14<00:09, 98.2MB/s] 35%|███▍ | 749M/2.12G [00:14<00:17, 84.2MB/s] 48%|████▊ | 839M/1.70G [00:14<00:09, 95.3MB/s] 35%|███▌ | 759M/2.12G [00:14<00:16, 89.8MB/s] 36%|███▌ | 769M/2.12G [00:14<00:15, 93.3MB/s] 49%|████▉ | 849M/1.70G [00:14<00:09, 93.8MB/s] 36%|███▌ | 780M/2.12G [00:14<00:14, 97.7MB/s] 49%|████▉ | 859M/1.70G [00:14<00:10, 91.0MB/s] 37%|███▋ | 793M/2.12G [00:15<00:13, 106MB/s] 50%|████▉ | 868M/1.70G [00:14<00:10, 89.9MB/s] 37%|███▋ | 804M/2.12G [00:15<00:13, 107MB/s] 50%|█████ | 877M/1.70G [00:15<00:10, 87.0MB/s] 51%|█████ | 886M/1.70G [00:15<00:10, 85.0MB/s] 38%|███▊ | 815M/2.12G [00:15<00:16, 84.8MB/s] 51%|█████▏ | 895M/1.70G [00:15<00:12, 69.5MB/s] 38%|███▊ | 824M/2.12G [00:15<00:18, 74.1MB/s] 52%|█████▏ | 904M/1.70G [00:15<00:11, 73.7MB/s] 38%|███▊ | 832M/2.12G [00:15<00:18, 75.1MB/s] 52%|█████▏ | 912M/1.70G [00:15<00:11, 75.6MB/s] 39%|███▉ | 843M/2.12G [00:15<00:16, 83.7MB/s] 40%|███▉ | 856M/2.12G [00:15<00:14, 95.7MB/s] 53%|█████▎ | 921M/1.70G [00:15<00:12, 71.1MB/s] 40%|███▉ | 866M/2.12G [00:15<00:13, 97.5MB/s] 53%|█████▎ | 931M/1.70G [00:15<00:10, 77.9MB/s] 41%|████ | 878M/2.12G [00:16<00:12, 104MB/s] 54%|█████▍ | 939M/1.70G [00:16<00:11, 70.3MB/s] 41%|████ | 889M/2.12G [00:16<00:12, 104MB/s] 55%|█████▍ | 950M/1.70G [00:16<00:10, 80.9MB/s] 56%|█████▌ | 967M/1.70G [00:16<00:07, 105MB/s] 42%|████▏ | 900M/2.12G [00:16<00:17, 73.9MB/s] 56%|█████▌ | 978M/1.70G [00:16<00:07, 105MB/s] 42%|████▏ | 909M/2.12G [00:16<00:17, 76.9MB/s] 57%|█████▋ | 989M/1.70G [00:16<00:07, 103MB/s] 43%|████▎ | 921M/2.12G [00:16<00:14, 87.9MB/s] 57%|█████▋ | 0.98G/1.70G [00:16<00:07, 105MB/s] 58%|█████▊ | 0.99G/1.70G [00:16<00:06, 110MB/s] 43%|████▎ | 931M/2.12G [00:16<00:15, 81.4MB/s] 43%|████▎ | 940M/2.12G [00:16<00:15, 82.6MB/s] 59%|█████▊ | 1.00G/1.70G [00:16<00:09, 76.3MB/s] 44%|████▍ | 949M/2.12G [00:17<00:18, 70.7MB/s] 44%|████▍ | 957M/2.12G [00:17<00:18, 67.3MB/s] 59%|█████▉ | 1.01G/1.70G [00:17<00:11, 64.5MB/s] 45%|████▍ | 964M/2.12G [00:17<00:19, 65.9MB/s] 60%|█████▉ | 1.02G/1.70G [00:17<00:11, 64.5MB/s] 45%|████▍ | 971M/2.12G [00:17<00:19, 65.2MB/s] 60%|██████ | 1.02G/1.70G [00:17<00:11, 63.6MB/s] 45%|████▌ | 978M/2.12G [00:17<00:19, 63.6MB/s] 61%|██████ | 1.03G/1.70G [00:17<00:11, 62.9MB/s] 45%|████▌ | 985M/2.12G [00:17<00:19, 64.7MB/s] 61%|██████ | 1.04G/1.70G [00:17<00:11, 62.8MB/s] 46%|████▌ | 992M/2.12G [00:17<00:18, 65.3MB/s] 61%|██████▏ | 1.04G/1.70G [00:17<00:10, 64.5MB/s] 46%|████▌ | 0.98G/2.12G [00:17<00:17, 68.9MB/s] 62%|██████▏ | 1.05G/1.70G [00:17<00:10, 66.5MB/s] 46%|████▋ | 0.98G/2.12G [00:18<00:17, 69.8MB/s] 62%|██████▏ | 1.06G/1.70G [00:17<00:10, 67.7MB/s] 47%|████▋ | 0.99G/2.12G [00:18<00:16, 73.2MB/s] 63%|██████▎ | 1.07G/1.70G [00:18<00:09, 69.0MB/s] 47%|████▋ | 1.00G/2.12G [00:18<00:16, 72.2MB/s] 63%|██████▎ | 1.07G/1.70G [00:18<00:09, 68.5MB/s] 48%|████▊ | 1.01G/2.12G [00:18<00:16, 73.8MB/s] 63%|██████▎ | 1.08G/1.70G [00:18<00:09, 69.1MB/s] 48%|████▊ | 1.01G/2.12G [00:18<00:18, 63.5MB/s] 64%|██████▍ | 1.09G/1.70G [00:18<00:10, 61.4MB/s] 48%|████▊ | 1.02G/2.12G [00:18<00:20, 57.1MB/s] 64%|██████▍ | 1.09G/1.70G [00:18<00:11, 55.9MB/s] 49%|████▊ | 1.03G/2.12G [00:18<00:20, 57.9MB/s] 65%|██████▍ | 1.10G/1.70G [00:18<00:11, 56.5MB/s] 49%|████▉ | 1.04G/2.12G [00:18<00:18, 63.5MB/s] 65%|██████▍ | 1.10G/1.70G [00:18<00:11, 57.4MB/s] 49%|████▉ | 1.04G/2.12G [00:19<00:18, 63.4MB/s] 65%|██████▌ | 1.11G/1.70G [00:18<00:10, 58.5MB/s] 50%|████▉ | 1.05G/2.12G [00:19<00:17, 64.7MB/s] 66%|██████▌ | 1.12G/1.70G [00:19<00:10, 61.8MB/s] 50%|████▉ | 1.06G/2.12G [00:19<00:16, 67.6MB/s] 66%|██████▌ | 1.12G/1.70G [00:19<00:09, 63.1MB/s] 50%|█████ | 1.06G/2.12G [00:19<00:15, 70.6MB/s] 67%|██████▋ | 1.13G/1.70G [00:19<00:08, 69.1MB/s] 51%|█████ | 1.07G/2.12G [00:19<00:15, 72.6MB/s] 67%|██████▋ | 1.14G/1.70G [00:19<00:08, 71.4MB/s] 51%|█████ | 1.08G/2.12G [00:19<00:15, 73.6MB/s] 68%|██████▊ | 1.15G/1.70G [00:19<00:07, 74.3MB/s] 51%|█████▏ | 1.09G/2.12G [00:19<00:14, 76.0MB/s] 68%|██████▊ | 1.16G/1.70G [00:19<00:07, 74.0MB/s] 52%|█████▏ | 1.10G/2.12G [00:19<00:15, 69.1MB/s] 69%|██████▊ | 1.17G/1.70G [00:19<00:08, 69.9MB/s] 52%|█████▏ | 1.10G/2.12G [00:19<00:15, 70.8MB/s] 69%|██████▉ | 1.17G/1.70G [00:19<00:08, 70.0MB/s] 52%|█████▏ | 1.11G/2.12G [00:20<00:16, 66.4MB/s] 69%|██████▉ | 1.18G/1.70G [00:19<00:09, 60.2MB/s] 70%|██████▉ | 1.19G/1.70G [00:20<00:08, 62.5MB/s] 53%|█████▎ | 1.12G/2.12G [00:20<00:19, 54.8MB/s] 70%|███████ | 1.19G/1.70G [00:20<00:08, 63.8MB/s] 53%|█████▎ | 1.12G/2.12G [00:20<00:18, 57.7MB/s] 71%|███████ | 1.20G/1.70G [00:20<00:08, 64.8MB/s] 53%|█████▎ | 1.13G/2.12G [00:20<00:17, 61.3MB/s] 71%|███████ | 1.21G/1.70G [00:20<00:07, 68.3MB/s] 54%|█████▍ | 1.14G/2.12G [00:20<00:16, 65.0MB/s] 71%|███████▏ | 1.21G/1.70G [00:20<00:07, 66.1MB/s] 54%|█████▍ | 1.15G/2.12G [00:20<00:16, 64.4MB/s] 72%|███████▏ | 1.22G/1.70G [00:20<00:07, 66.4MB/s] 54%|█████▍ | 1.15G/2.12G [00:20<00:16, 63.0MB/s] 72%|███████▏ | 1.23G/1.70G [00:20<00:08, 61.2MB/s] 55%|█████▍ | 1.16G/2.12G [00:20<00:16, 61.6MB/s] 73%|███████▎ | 1.23G/1.70G [00:20<00:08, 58.0MB/s] 55%|█████▌ | 1.17G/2.12G [00:21<00:16, 61.0MB/s] 55%|█████▌ | 1.17G/2.12G [00:22<01:11, 14.1MB/s] 73%|███████▎ | 1.24G/1.70G [00:22<00:37, 13.4MB/s] 56%|█████▌ | 1.18G/2.12G [00:22<00:51, 19.6MB/s] 73%|███████▎ | 1.25G/1.70G [00:22<00:23, 20.3MB/s] 56%|█████▌ | 1.19G/2.12G [00:22<00:42, 23.4MB/s] 74%|███████▍ | 1.25G/1.70G [00:22<00:19, 24.2MB/s] 74%|███████▍ | 1.26G/1.70G [00:22<00:13, 34.0MB/s] 75%|███████▌ | 1.28G/1.70G [00:22<00:08, 50.6MB/s] 76%|███████▌ | 1.29G/1.70G [00:22<00:07, 59.8MB/s] 57%|█████▋ | 1.20G/2.12G [00:23<00:35, 27.6MB/s] 57%|█████▋ | 1.21G/2.12G [00:23<00:26, 36.3MB/s] 76%|███████▋ | 1.30G/1.70G [00:23<00:07, 57.6MB/s] 77%|███████▋ | 1.31G/1.70G [00:23<00:06, 62.4MB/s] 57%|█████▋ | 1.21G/2.12G [00:23<00:27, 35.1MB/s] 58%|█████▊ | 1.22G/2.12G [00:23<00:24, 38.9MB/s] 77%|███████▋ | 1.31G/1.70G [00:23<00:07, 53.2MB/s] 58%|█████▊ | 1.23G/2.12G [00:23<00:22, 43.0MB/s] 78%|███████▊ | 1.32G/1.70G [00:23<00:06, 61.9MB/s] 78%|███████▊ | 1.33G/1.70G [00:23<00:05, 68.7MB/s] 58%|█████▊ | 1.24G/2.12G [00:23<00:20, 46.8MB/s] 79%|███████▉ | 1.34G/1.70G [00:23<00:05, 72.2MB/s] 59%|█████▉ | 1.24G/2.12G [00:23<00:20, 46.0MB/s] 80%|███████▉ | 1.35G/1.70G [00:23<00:04, 77.2MB/s] 80%|███████▉ | 1.36G/1.70G [00:23<00:04, 74.6MB/s] 59%|█████▉ | 1.25G/2.12G [00:24<00:19, 47.6MB/s] 81%|████████ | 1.37G/1.70G [00:24<00:04, 79.9MB/s] 60%|█████▉ | 1.26G/2.12G [00:24<00:16, 56.2MB/s] 81%|████████ | 1.38G/1.70G [00:24<00:03, 88.6MB/s] 60%|█████▉ | 1.27G/2.12G [00:24<00:18, 48.6MB/s] 82%|████████▏ | 1.39G/1.70G [00:24<00:03, 87.9MB/s] 60%|██████ | 1.27G/2.12G [00:24<00:16, 55.1MB/s] 82%|████████▏ | 1.40G/1.70G [00:24<00:03, 81.4MB/s] 61%|██████ | 1.28G/2.12G [00:24<00:14, 62.4MB/s] 83%|████████▎ | 1.41G/1.70G [00:24<00:03, 82.2MB/s] 61%|██████ | 1.29G/2.12G [00:24<00:14, 62.8MB/s] 83%|████████▎ | 1.42G/1.70G [00:24<00:03, 85.9MB/s] 61%|██████▏ | 1.30G/2.12G [00:24<00:13, 64.0MB/s] 84%|████████▍ | 1.43G/1.70G [00:24<00:02, 99.6MB/s] 85%|████████▍ | 1.45G/1.70G [00:24<00:02, 109MB/s] 62%|██████▏ | 1.31G/2.12G [00:25<00:15, 57.2MB/s] 86%|████████▌ | 1.46G/1.70G [00:25<00:02, 110MB/s] 62%|██████▏ | 1.32G/2.12G [00:25<00:12, 69.9MB/s] 86%|████████▌ | 1.47G/1.70G [00:25<00:02, 110MB/s] 63%|██████▎ | 1.33G/2.12G [00:25<00:11, 74.1MB/s] 87%|████████▋ | 1.48G/1.70G [00:25<00:02, 102MB/s] 63%|██████▎ | 1.34G/2.12G [00:25<00:10, 82.6MB/s] 87%|████████▋ | 1.49G/1.70G [00:25<00:02, 96.1MB/s] 64%|██████▎ | 1.34G/2.12G [00:25<00:09, 85.4MB/s] 88%|████████▊ | 1.50G/1.70G [00:25<00:02, 106MB/s] 64%|██████▍ | 1.35G/2.12G [00:25<00:11, 71.7MB/s] 89%|████████▉ | 1.52G/1.70G [00:25<00:01, 119MB/s] 65%|██████▍ | 1.37G/2.12G [00:25<00:09, 84.5MB/s] 90%|████████▉ | 1.53G/1.70G [00:25<00:01, 117MB/s] 65%|██████▍ | 1.37G/2.12G [00:25<00:11, 69.7MB/s] 91%|█████████ | 1.54G/1.70G [00:25<00:01, 99.4MB/s] 65%|██████▌ | 1.38G/2.12G [00:26<00:10, 74.7MB/s] 91%|█████████ | 1.55G/1.70G [00:25<00:01, 99.8MB/s] 66%|██████▌ | 1.39G/2.12G [00:26<00:10, 74.7MB/s] 92%|█████████▏| 1.56G/1.70G [00:26<00:01, 102MB/s] 66%|██████▋ | 1.40G/2.12G [00:26<00:09, 83.9MB/s] 93%|█████████▎| 1.57G/1.70G [00:26<00:01, 108MB/s] 67%|██████▋ | 1.41G/2.12G [00:26<00:08, 91.4MB/s] 93%|█████████▎| 1.58G/1.70G [00:26<00:01, 100MB/s] 67%|██████▋ | 1.42G/2.12G [00:26<00:08, 90.9MB/s] 94%|█████████▎| 1.59G/1.70G [00:26<00:01, 87.1MB/s] 68%|██████▊ | 1.43G/2.12G [00:26<00:08, 86.6MB/s] 94%|█████████▍| 1.60G/1.70G [00:26<00:01, 82.8MB/s] 68%|██████▊ | 1.44G/2.12G [00:26<00:10, 70.8MB/s] 95%|█████████▍| 1.61G/1.70G [00:26<00:01, 78.2MB/s] 68%|██████▊ | 1.45G/2.12G [00:26<00:09, 73.6MB/s] 95%|█████████▌| 1.62G/1.70G [00:26<00:01, 83.3MB/s] 69%|██████▉ | 1.46G/2.12G [00:27<00:08, 80.8MB/s] 96%|█████████▌| 1.63G/1.70G [00:26<00:00, 85.3MB/s] 69%|██████▉ | 1.47G/2.12G [00:27<00:08, 81.4MB/s] 96%|█████████▋| 1.64G/1.70G [00:27<00:00, 87.5MB/s] 70%|██████▉ | 1.48G/2.12G [00:27<00:07, 86.9MB/s] 97%|█████████▋| 1.65G/1.70G [00:27<00:00, 70.2MB/s] 70%|███████ | 1.48G/2.12G [00:27<00:10, 67.4MB/s] 97%|█████████▋| 1.66G/1.70G [00:27<00:00, 75.5MB/s] 71%|███████ | 1.49G/2.12G [00:27<00:09, 71.1MB/s] 98%|█████████▊| 1.67G/1.70G [00:27<00:00, 82.3MB/s] 71%|███████ | 1.50G/2.12G [00:27<00:08, 74.9MB/s] 99%|█████████▊| 1.68G/1.70G [00:27<00:00, 90.1MB/s] 71%|███████▏ | 1.51G/2.12G [00:27<00:08, 75.7MB/s] 99%|█████████▉| 1.69G/1.70G [00:27<00:00, 89.7MB/s] 72%|███████▏ | 1.52G/2.12G [00:27<00:08, 79.7MB/s] 100%|██████████| 1.70G/1.70G [00:27<00:00, 65.5MB/s] 72%|███████▏ | 1.53G/2.12G [00:28<00:08, 76.6MB/s] 73%|███████▎ | 1.54G/2.12G [00:28<00:06, 98.0MB/s] 74%|███████▎ | 1.56G/2.12G [00:28<00:05, 112MB/s] 74%|███████▍ | 1.57G/2.12G [00:28<00:05, 105MB/s] 75%|███████▍ | 1.58G/2.12G [00:28<00:05, 107MB/s] 75%|███████▌ | 1.59G/2.12G [00:28<00:06, 89.3MB/s] 76%|███████▌ | 1.61G/2.12G [00:28<00:05, 101MB/s] 77%|███████▋ | 1.62G/2.12G [00:28<00:04, 112MB/s] 77%|███████▋ | 1.63G/2.12G [00:29<00:05, 92.3MB/s] 78%|███████▊ | 1.64G/2.12G [00:29<00:06, 78.4MB/s] 78%|███████▊ | 1.66G/2.12G [00:29<00:05, 95.5MB/s] 79%|███████▉ | 1.67G/2.12G [00:29<00:04, 101MB/s] 80%|███████▉ | 1.69G/2.12G [00:29<00:04, 114MB/s] 80%|████████ | 1.70G/2.12G [00:29<00:03, 124MB/s] 81%|████████ | 1.71G/2.12G [00:29<00:03, 122MB/s] 82%|████████▏ | 1.73G/2.12G [00:30<00:04, 95.5MB/s] 82%|████████▏ | 1.74G/2.12G [00:30<00:03, 104MB/s] 83%|████████▎ | 1.75G/2.12G [00:30<00:03, 103MB/s] 83%|████████▎ | 1.76G/2.12G [00:30<00:04, 76.8MB/s] 84%|████████▍ | 1.78G/2.12G [00:30<00:03, 96.8MB/s] 85%|████████▍ | 1.79G/2.12G [00:30<00:03, 102MB/s] 85%|████████▌ | 1.80G/2.12G [00:31<00:04, 69.5MB/s] 86%|████████▌ | 1.82G/2.12G [00:31<00:03, 92.2MB/s] 87%|████████▋ | 1.83G/2.12G [00:31<00:03, 91.5MB/s] 87%|████████▋ | 1.84G/2.12G [00:31<00:02, 98.1MB/s] 88%|████████▊ | 1.85G/2.12G [00:31<00:03, 85.1MB/s] 88%|████████▊ | 1.86G/2.12G [00:31<00:03, 88.0MB/s] 89%|████████▊ | 1.87G/2.12G [00:31<00:02, 88.9MB/s] 89%|████████▉ | 1.88G/2.12G [00:32<00:02, 93.5MB/s] 90%|████████▉ | 1.90G/2.12G [00:32<00:02, 106MB/s] 90%|█████████ | 1.91G/2.12G [00:32<00:01, 111MB/s] 91%|█████████ | 1.92G/2.12G [00:32<00:02, 98.7MB/s] 91%|█████████▏| 1.93G/2.12G [00:32<00:01, 107MB/s] 92%|█████████▏| 1.95G/2.12G [00:32<00:01, 104MB/s] 93%|█████████▎| 1.96G/2.12G [00:32<00:01, 117MB/s] 93%|█████████▎| 1.97G/2.12G [00:32<00:01, 106MB/s] 94%|█████████▍| 1.98G/2.12G [00:33<00:01, 92.6MB/s] 94%|█████████▍| 1.99G/2.12G [00:33<00:01, 86.4MB/s] 95%|█████████▍| 2.00G/2.12G [00:33<00:01, 68.3MB/s] 95%|█████████▌| 2.02G/2.12G [00:33<00:01, 84.0MB/s] 96%|█████████▌| 2.03G/2.12G [00:33<00:01, 91.6MB/s] 96%|█████████▋| 2.04G/2.12G [00:33<00:00, 96.2MB/s] 97%|█████████▋| 2.05G/2.12G [00:33<00:00, 108MB/s] 98%|█████████▊| 2.06G/2.12G [00:33<00:00, 89.9MB/s] 98%|█████████▊| 2.08G/2.12G [00:34<00:00, 103MB/s] 99%|█████████▉| 2.09G/2.12G [00:34<00:00, 115MB/s] 100%|██████████| 2.12G/2.12G [00:34<00:00, 66.0MB/s]
print('GEMMA_PATH:', GEMMA_PATH)
GEMMA_PATH: /root/.cache/kagglehub/models/google/gemma-2-2b/flax/gemma2-2b-it/1
- Проверьте расположение весов модели и токенизатора, затем установите переменные пути. Каталог токенизатора будет находиться в основном каталоге, в который вы загрузили модель, а веса модели будут находиться в подкаталоге. Например:
- Файл
tokenizer.model
будет находиться в/LOCAL/PATH/TO/gemma/flax/2b-it/2
). - Контрольная точка модели будет находиться в
/LOCAL/PATH/TO/gemma/flax/2b-it/2/2b-it
).
CKPT_PATH = os.path.join(GEMMA_PATH, GEMMA_VARIANT)
TOKENIZER_PATH = os.path.join(GEMMA_PATH, 'tokenizer.model')
print('CKPT_PATH:', CKPT_PATH)
print('TOKENIZER_PATH:', TOKENIZER_PATH)
CKPT_PATH: /root/.cache/kagglehub/models/google/gemma-2-2b/flax/gemma2-2b-it/1/gemma2-2b-it TOKENIZER_PATH: /root/.cache/kagglehub/models/google/gemma-2-2b/flax/gemma2-2b-it/1/tokenizer.model
Выполнить выборку/вывод
- Загрузите и отформатируйте контрольную точку модели Gemma с помощью метода
gemma.params.load_and_format_params
:
from gemma import params as params_lib
params = params_lib.load_and_format_params(CKPT_PATH)
- Загрузите токенизатор Gemma, созданный с помощью
sentencepiece.SentencePieceProcessor
:
import sentencepiece as spm
vocab = spm.SentencePieceProcessor()
vocab.Load(TOKENIZER_PATH)
True
- Чтобы автоматически загрузить правильную конфигурацию из контрольной точки модели Gemma, используйте
gemma.transformer.TransformerConfig
. Аргументcache_size
— это количество временных шагов в кеше GemmaTransformer
. После этого создайте экземпляр модели Gemma какtransformer
с помощьюgemma.transformer.Transformer
(который наследуется отflax.linen.Module
).
from gemma import transformer as transformer_lib
transformer_config = transformer_lib.TransformerConfig.from_params(
params=params,
cache_size=1024
)
transformer = transformer_lib.Transformer(transformer_config)
- Создайте
sampler
с помощьюgemma.sampler.Sampler
поверх контрольной точки/весов модели Gemma и токенизатора:
from gemma import sampler as sampler_lib
sampler = sampler_lib.Sampler(
transformer=transformer,
vocab=vocab,
params=params['transformer'],
)
- Напишите запрос в
input_batch
и выполните вывод. Вы можете настроитьtotal_generation_steps
(количество шагов, выполняемых при генерации ответа — в этом примере используется100
для экономии памяти хоста).
prompt = [
"what is JAX in 3 bullet points?",
]
reply = sampler(input_strings=prompt,
total_generation_steps=128,
)
for input_string, out_string in zip(prompt, reply.text):
print(f"Prompt:\n{input_string}\nOutput:\n{out_string}")
Prompt: what is JAX in 3 bullet points? Output: * **High-performance numerical computation:** JAX leverages the power of GPUs and TPUs to accelerate complex mathematical operations, making it ideal for scientific computing, machine learning, and data analysis. * **Automatic differentiation:** JAX provides automatic differentiation capabilities, allowing you to compute gradients and optimize models efficiently. This simplifies the process of training deep learning models. * **Functional programming:** JAX embraces functional programming principles, promoting code readability and maintainability. It offers a flexible and expressive syntax for defining and manipulating data. <end_of_turn>
- (Необязательно) Запустите эту ячейку, чтобы освободить память, если вы завершили записную книжку и хотите попробовать еще одну подсказку. После этого вы можете снова создать экземпляр
sampler
на шаге 3, а затем настроить и запустить приглашение на шаге 4.
del sampler
Узнать больше
- Вы можете узнать больше о библиотеке
gemma
Google DeepMind на GitHub , которая содержит строки документации модулей, которые вы использовали в этом руководстве, таких какgemma.params
,gemma.transformer
иgemma.sampler
. - Следующие библиотеки имеют собственные сайты документации: core JAX , Flax и Orbax .
- Документацию по токенизатору/детокенизатору
sentencepiece
можно найти в репозитории Googlesentencepiece
на GitHub . - Документацию
kagglehub
можно найти вREADME.md
в репозиторииkagglehub
на GitHub . - Узнайте, как использовать модели Gemma с Google Cloud Vertex AI .