Wyświetl na ai.google.dev | Uruchom w Google Colab | Otwórz w Vertex AI | Wyświetl źródło w GitHubie |
Ten samouczek pokazuje, jak dostroić model RecurrentGemma za pomocą biblioteki Google DeepMind recurrentgemma
, JAX (zaawansowana liczbowa biblioteka obliczeniowa), Flax (biblioteka sieci neuronowej opartej na JAX), Chex (bibliotekę narzędzi do optymalizacji tekstu JAX (bibliotekę Opt1).Optax Choć w notatniku nie jest używany bezpośrednio w tym notatniku, do utworzenia Gemmy użyto flaxa.
Biblioteka recurrentgemma
została napisana przy użyciu języków JAX, Flax, Orbax (oparta na języku JAX biblioteka do narzędzi treningowych, takich jak punkty kontrolne) oraz SentencePiece (biblioteka do tokenizacji i detokenizera).
Ten notatnik może działać w Google Colab z GPU T4 (kliknij Edytuj > Ustawienia notatnika > w sekcji Akcelerator sprzętowy wybierz GPU T4).
Konfiguracja
W poniższych sekcjach opisano kroki przygotowywania notatnika do użycia modelu RecurrentGemma, w tym dostęp do modelu, uzyskiwanie klucza interfejsu API i konfigurowanie środowiska wykonawczego notatnika.
Konfigurowanie dostępu do Kaggle dla Gemma
Aby ukończyć ten samouczek, musisz najpierw wykonać instrukcje konfiguracji podobne do konfiguracji Gemma, z kilkoma wyjątkami:
- Uzyskaj dostęp do RecurrentGemma (zamiast Gemma) na kaggle.com.
- Wybierz środowisko wykonawcze Colab z wystarczającą ilością zasobów do uruchomienia modelu RecurrentGemma.
- Wygeneruj i skonfiguruj nazwę użytkownika i klucz interfejsu API Kaggle.
Po zakończeniu konfiguracji RecurrentGemma przejdź do następnej sekcji, w której możesz ustawić zmienne środowiskowe dla środowiska Colab.
Ustawianie zmiennych środowiskowych
Ustaw zmienne środowiskowe dla interfejsów KAGGLE_USERNAME
i KAGGLE_KEY
. Gdy pojawi się komunikat „Przyznać dostęp?”, Użytkownik wyraża zgodę na przyznanie tajnego dostępu.
import os
from google.colab import userdata # `userdata` is a Colab API.
os.environ["KAGGLE_USERNAME"] = userdata.get('KAGGLE_USERNAME')
os.environ["KAGGLE_KEY"] = userdata.get('KAGGLE_KEY')
Zainstaluj bibliotekę recurrentgemma
Bezpłatna akceleracja sprzętowa Colab jest obecnie niewystarczająca do uruchomienia tego notatnika. Jeśli korzystasz z Colab Pay As You Go lub Colab Pro, kliknij Edytuj > Ustawienia notatnika > Wybierz GPU A100 > Zapisz, aby włączyć akcelerację sprzętową.
Następnie musisz zainstalować bibliotekę Google DeepMind recurrentgemma
ze strony github.com/google-deepmind/recurrentgemma
. Jeśli pojawi się błąd dotyczący resolvera zależności pip, zwykle możesz go zignorować.
pip install -q git+https://github.com/google-deepmind/recurrentgemma.git
Importuj biblioteki
Ten notatnik korzysta z Flax (do obsługi sieci neuronowych), podstawowego JAX, SentencePiece (do tokenizacji), Chex (biblioteki narzędzi do pisania niezawodnego kodu JAX), Optax (biblioteki przetwarzania i optymalizacji gradientu) oraz zbiorów danych TensorFlow.
import pathlib
from typing import Any, Mapping, Iterator
import enum
import functools
import chex
import jax
import jax.numpy as jnp
import optax
import tensorflow as tf
import tensorflow_datasets as tfds
import sentencepiece as spm
from recurrentgemma import jax as recurrentgemma
Wczytaj model RecurrentGemma
- Wczytaj model RecurrentGemma za pomocą parametru
kagglehub.model_download
, który przyjmuje 3 argumenty:
handle
: uchwyt modelu z Kagglepath
: (opcjonalny ciąg znaków) ścieżka lokalnaforce_download
: (opcjonalna wartość logiczna) wymusza ponowne pobranie modelu.
RECURRENTGEMMA_VARIANT = '2b-it' # @param ['2b', '2b-it'] {type:"string"}
import kagglehub
RECURRENTGEMMA_PATH = kagglehub.model_download(f'google/recurrentgemma/flax/{RECURRENTGEMMA_VARIANT}')
Downloading from https://www.kaggle.com/api/v1/models/google/recurrentgemma/flax/2b-it/1/download... 100%|██████████| 3.85G/3.85G [00:50<00:00, 81.5MB/s] Extracting model files...
print('RECURRENTGEMMA_VARIANT:', RECURRENTGEMMA_VARIANT)
RECURRENTGEMMA_VARIANT: 2b-it
- Sprawdź lokalizację wag modelu i tokenizatora, a następnie ustaw zmienne ścieżki. Katalog tokenizera znajduje się w katalogu głównym, z którego został pobrany model, a wagi modelu – w podkatalogu. Na przykład:
- Plik
tokenizer.model
będzie w lokalizacji/LOCAL/PATH/TO/recurrentgemma/flax/2b-it/1
. - Punkt kontrolny modelu będzie w:
/LOCAL/PATH/TO/recurrentgemma/flax/2b-it/1/2b-it
.
CKPT_PATH = os.path.join(RECURRENTGEMMA_PATH, RECURRENTGEMMA_VARIANT)
TOKENIZER_PATH = os.path.join(RECURRENTGEMMA_PATH, 'tokenizer.model')
print('CKPT_PATH:', CKPT_PATH)
print('TOKENIZER_PATH:', TOKENIZER_PATH)
CKPT_PATH: /root/.cache/kagglehub/models/google/recurrentgemma/flax/2b-it/1/2b-it TOKENIZER_PATH: /root/.cache/kagglehub/models/google/recurrentgemma/flax/2b-it/1/tokenizer.model
Wczytywanie i przygotowywanie zbioru danych MTNT oraz tokenizatora Gemma
Użyjesz zbioru danych MTNT (Machine Translation of Noisy Text), który jest dostępny ze zbiorów danych TensorFlow.
Pobierz fragment zbioru danych MTNT z języka angielskiego na język francuski i wyświetl 2 przykłady. Każda próbka w zbiorze danych zawiera 2 pozycje: src
– oryginalne zdanie w języku angielskim; i dst
: odpowiednie tłumaczenie w języku francuskim.
ds = tfds.load("mtnt/en-fr", split="train")
ds = ds.take(2)
ds = ds.as_numpy_iterator()
for idx, example in enumerate(ds):
print(f'Example {idx}:')
for key, val in example.items():
print(f'{key}: {val}')
print()
Downloading and preparing dataset 35.08 MiB (download: 35.08 MiB, generated: 11.33 MiB, total: 46.41 MiB) to /root/tensorflow_datasets/mtnt/en-fr/1.0.0... Dl Completed...: 0 url [00:00, ? url/s] Dl Size...: 0 MiB [00:00, ? MiB/s] Extraction completed...: 0 file [00:00, ? file/s] Generating splits...: 0%| | 0/3 [00:00<?, ? splits/s] Generating train examples...: 0%| | 0/35692 [00:00<?, ? examples/s] Shuffling /root/tensorflow_datasets/mtnt/en-fr/1.0.0.incompleteJLH33K/mtnt-train.tfrecord*...: 0%| … Generating test examples...: 0%| | 0/1020 [00:00<?, ? examples/s] Shuffling /root/tensorflow_datasets/mtnt/en-fr/1.0.0.incompleteJLH33K/mtnt-test.tfrecord*...: 0%| |… Generating valid examples...: 0%| | 0/811 [00:00<?, ? examples/s] Shuffling /root/tensorflow_datasets/mtnt/en-fr/1.0.0.incompleteJLH33K/mtnt-valid.tfrecord*...: 0%| … Dataset mtnt downloaded and prepared to /root/tensorflow_datasets/mtnt/en-fr/1.0.0. Subsequent calls will reuse this data. Example 0: dst: b'Le groupe de " toutes les \xc3\xa9toiles potentielles de la conf\xc3\xa9rence de l\'Est mais qui ne s\'en sortent pas dans le groupe de l\'Ouest ".' src: b'The group of \xe2\x80\x9ceastern conference potential all stars but not making it in the West\xe2\x80\x9d group.' Example 1: dst: b"Kameron est-elle un peu aigrie de son manque de temps \xc3\xa0 l'\xc3\xa9cran ?" src: b'Is Kameron a Little Salty About Her Lack of Air Time?'
Wczytaj tokenizer Gemma utworzony za pomocą sentencepiece.SentencePieceProcessor
:
vocab = spm.SentencePieceProcessor()
vocab.Load(TOKENIZER_PATH)
True
Dostosuj SentencePieceProcessor
do zadania tłumaczenia z angielskiego na francuski. Ponieważ dostrajamy angielską część modelu RecurrentGemma (Griffin), musisz więc wprowadzić kilka zmian, na przykład:
Prefiks danych wejściowych: dodanie wspólnego prefiksu do każdego danych wejściowych sygnalizuje zadanie translacji. Możesz na przykład użyć promptu z prefiksem takim jak
Translate this into French: [INPUT_SENTENCE]
.Sufiks początkowy translacji: dodanie sufiksu na końcu każdego promptu zapewni modelowi Gemma dokładne informacje o tym, kiedy rozpocząć proces translacji. Nowy wiersz powinien wykonać zadanie.
Tokeny modeli językowych: modele RecurrentGemma (Griffin) oczekują „początku sekwencji”. na początku każdej sekwencji. Podobnie trzeba dodać „koniec sekwencji” na końcu każdego przykładu treningowego.
Utwórz własny kod wokół elementu SentencePieceProcessor
w ten sposób:
class GriffinTokenizer:
"""A custom wrapper around a SentencePieceProcessor."""
def __init__(self, spm_processor: spm.SentencePieceProcessor):
self._spm_processor = spm_processor
@property
def pad_id(self) -> int:
"""Fast access to the pad ID."""
return self._spm_processor.pad_id()
def tokenize(
self,
example: str | bytes,
prefix: str = '',
suffix: str = '',
add_eos: bool = True,
) -> jax.Array:
"""
A tokenization function.
Args:
example: Input string to tokenize.
prefix: Prefix to add to the input string.
suffix: Suffix to add to the input string.
add_eos: If True, add an end of sentence token at the end of the output
sequence.
Returns:
Tokens corresponding to the input string.
"""
int_list = [self._spm_processor.bos_id()]
int_list.extend(self._spm_processor.EncodeAsIds(prefix + example + suffix))
if add_eos:
int_list.append(self._spm_processor.eos_id())
return jnp.array(int_list, dtype=jnp.int32)
def tokenize_tf_op(
self,
str_tensor: tf.Tensor,
prefix: str = '',
suffix: str = '',
add_eos: bool = True,
) -> tf.Tensor:
"""A TensforFlow operator for the `tokenize` function."""
encoded = tf.numpy_function(
self.tokenize,
[str_tensor, prefix, suffix, add_eos],
tf.int32)
encoded.set_shape([None])
return encoded
def to_string(self, tokens: jax.Array) -> str:
"""Convert an array of tokens to a string."""
return self._spm_processor.EncodeIds(tokens.tolist())
Wypróbuj tę funkcję, tworząc nową niestandardową instancję GriffinTokenizer
, a następnie stosując ją do niewielkiej próbki zbioru danych MTNT:
def tokenize_source(tokenizer, example: tf.Tensor):
return tokenizer.tokenize_tf_op(
example,
prefix='Translate this into French:\n',
suffix='\n',
add_eos=False
)
def tokenize_destination(tokenizer, example: tf.Tensor):
return tokenizer.tokenize_tf_op(example, add_eos=True)
tokenizer = GriffinTokenizer(vocab)
ds = tfds.load("mtnt/en-fr",split="train")
ds = ds.take(2)
ds = ds.map(lambda x: {
'src': tokenize_source(tokenizer, x['src']),
'dst': tokenize_destination(tokenizer, x['dst'])
})
ds = ds.as_numpy_iterator()
for idx, example in enumerate(ds):
print(f'Example {idx}:')
for key, val in example.items():
print(f'{key}: {val}')
print()
Example 0: src: [ 2 49688 736 1280 6987 235292 108 651 2778 576 1080 104745 11982 5736 832 8995 901 780 3547 665 575 573 4589 235369 2778 235265 108] dst: [ 2 2025 29653 581 664 16298 1437 55563 41435 7840 581 683 111452 581 533 235303 9776 4108 2459 679 485 235303 479 6728 579 1806 2499 709 29653 581 533 235303 101323 16054 1] Example 1: src: [ 2 49688 736 1280 6987 235292 108 2437 87150 477 476 11709 230461 8045 3636 40268 576 4252 4897 235336 108] dst: [ 2 213606 477 1455 235290 3510 748 8268 191017 2809 581 2032 69972 581 11495 1305 533 235303 65978 1654 1]
Utwórz moduł wczytujący dane dla całego zbioru danych MTNT:
@chex.dataclass(frozen=True)
class TrainingInput:
# Input tokens provided to the model.
input_tokens: jax.Array
# A mask that determines which tokens contribute to the target loss
# calculation.
target_mask: jax.Array
class DatasetSplit(enum.Enum):
TRAIN = 'train'
VALIDATION = 'valid'
class MTNTDatasetBuilder:
"""A data loader for the MTNT dataset."""
N_ITEMS = {DatasetSplit.TRAIN: 35_692, DatasetSplit.VALIDATION: 811}
BUFFER_SIZE_SHUFFLE = 10_000
TRANSLATION_PREFIX = 'Translate this into French:\n'
TRANSLATION_SUFFIX = '\n'
def __init__(self,
tokenizer : GriffinTokenizer,
max_seq_len: int):
"""A constructor.
Args:
tokenizer: The tokenizer to use.
max_seq_len: The size of each sequence in a given batch.
"""
self._tokenizer = tokenizer
self._base_data = {
DatasetSplit.TRAIN: tfds.load("mtnt/en-fr",split="train"),
DatasetSplit.VALIDATION: tfds.load("mtnt/en-fr",split="valid"),
}
self._max_seq_len = max_seq_len
def _tokenize_source(self, example: tf.Tensor):
"""A tokenization function for the source."""
return self._tokenizer.tokenize_tf_op(
example, prefix=self.TRANSLATION_PREFIX, suffix=self.TRANSLATION_SUFFIX,
add_eos=False
)
def _tokenize_destination(self, example: tf.Tensor):
"""A tokenization function for the French translation."""
return self._tokenizer.tokenize_tf_op(example, add_eos=True)
def _pad_up_to_max_len(self,
input_tensor: tf.Tensor,
pad_value: int | bool,
) -> tf.Tensor:
"""Pad the given tensor up to sequence length of a batch."""
seq_len = tf.shape(input_tensor)[0]
to_pad = tf.maximum(self._max_seq_len - seq_len, 0)
return tf.pad(
input_tensor, [[0, to_pad]], mode='CONSTANT', constant_values=pad_value,
)
def _to_training_input(
self,
src_tokens: jax.Array,
dst_tokens: jax.Array,
) -> TrainingInput:
"""Build a training input from a tuple of source and destination tokens."""
# The input sequence fed to the model is simply the concatenation of the
# source and the destination.
tokens = tf.concat([src_tokens, dst_tokens], axis=0)
# You want to prevent the model from updating based on the source (input)
# tokens. To achieve this, add a target mask to each input.
q_mask = tf.zeros_like(src_tokens, dtype=tf.bool)
a_mask = tf.ones_like(dst_tokens, dtype=tf.bool)
mask = tf.concat([q_mask, a_mask], axis=0)
# If the output tokens sequence is smaller than the target sequence size,
# then pad it with pad tokens.
tokens = self._pad_up_to_max_len(tokens, self._tokenizer.pad_id)
# You don't want to perform the backward on the pad tokens.
mask = self._pad_up_to_max_len(mask, False)
return TrainingInput(input_tokens=tokens, target_mask=mask)
def get_train_dataset(self, batch_size: int, num_epochs: int):
"""Build the training dataset."""
# Tokenize each sample.
ds = self._base_data[DatasetSplit.TRAIN].map(
lambda x : (self._tokenize_source(x['src']),
self._tokenize_destination(x['dst']))
)
# Convert them to training inputs.
ds = ds.map(lambda x, y: self._to_training_input(x, y))
# Remove the samples which are too long.
ds = ds.filter(lambda x: tf.shape(x.input_tokens)[0] <= self._max_seq_len)
# Shuffle the dataset.
ds = ds.shuffle(buffer_size=self.BUFFER_SIZE_SHUFFLE)
# Repeat if necessary.
ds = ds.repeat(num_epochs)
# Build batches.
ds = ds.batch(batch_size, drop_remainder=True)
return ds
def get_validation_dataset(self, batch_size: int):
"""Build the validation dataset."""
# Same as the training dataset, but no shuffling and no repetition
ds = self._base_data[DatasetSplit.VALIDATION].map(
lambda x : (self._tokenize_source(x['src']),
self._tokenize_destination(x['dst']))
)
ds = ds.map(lambda x, y: self._to_training_input(x, y))
ds = ds.filter(lambda x: tf.shape(x.input_tokens)[0] <= self._max_seq_len)
ds = ds.batch(batch_size, drop_remainder=True)
return ds
Wypróbuj funkcję MTNTDatasetBuilder
, ponownie tworząc niestandardową instancję GriffinTokenizer
, a następnie stosując ją do zbioru danych MTNT i pobierając próbkowanie 2 przykładów:
dataset_builder = MTNTDatasetBuilder(tokenizer, max_seq_len=20)
ds = dataset_builder.get_train_dataset(3, 1)
ds = ds.take(2)
ds = ds.as_numpy_iterator()
for idx, example in enumerate(ds):
print(f'Example {idx}:')
for key, val in example.items():
print(f'{key}: {val}')
print()
WARNING:tensorflow:Mapping types may not work well with tf.nest. Prefer using MutableMapping for <class '__main__.TrainingInput'> WARNING:tensorflow:Mapping types may not work well with tf.nest. Prefer using MutableMapping for <class '__main__.TrainingInput'> WARNING:tensorflow:Mapping types may not work well with tf.nest. Prefer using MutableMapping for <class '__main__.TrainingInput'> Example 0: input_tokens: [[ 2 49688 736 1280 6987 235292 108 12583 665 235265 108 2 6151 94975 1320 6238 235265 1 0 0] [ 2 49688 736 1280 6987 235292 108 4899 29960 11270 108282 235265 108 2 4899 79025 11270 108282 1 0] [ 2 49688 736 1280 6987 235292 108 26620 235265 108 2 26620 235265 1 0 0 0 0 0 0]] target_mask: [[False False False False False False False False False False False True True True True True True True False False] [False False False False False False False False False False False False False True True True True True True False] [False False False False False False False False False False True True True True False False False False False False]] Example 1: input_tokens: [[ 2 49688 736 1280 6987 235292 108 527 5174 1683 235336 108 2 206790 581 20726 482 2208 1654 1] [ 2 49688 736 1280 6987 235292 108 28484 235256 235336 108 2 120500 13832 1654 1 0 0 0 0] [ 2 49688 736 1280 6987 235292 108 235324 235304 2705 235265 108 2 235324 235304 19963 235265 1 0 0]] target_mask: [[False False False False False False False False False False False False True True True True True True True True] [False False False False False False False False False False False True True True True True False False False False] [False False False False False False False False False False False False True True True True True True False False]]
Konfigurowanie modelu
Zanim zaczniesz dostrajać model Gemma, musisz go skonfigurować.
Wczytaj punkt kontrolny modelu RecurrentGemma (Griffin) za pomocą metody recurrentgemma.jax.utils.load_parameters
:
params = recurrentgemma.load_parameters(CKPT_PATH, "single_device")
Aby automatycznie wczytywać prawidłową konfigurację z punktu kontrolnego modelu RecurrentGemma, użyj narzędzia recurrentgemma.GriffinConfig.from_flax_params_or_variables
:
config = recurrentgemma.GriffinConfig.from_flax_params_or_variables(params)
Utwórz instancję modelu Griffin za pomocą recurrentgemma.jax.Griffin
:
model = recurrentgemma.Griffin(config)
Utwórz obiekt sampler
z recurrentgemma.jax.Sampler
, dodając do punktu kontrolnego/wagi modelu RecurrentGemma i tokenizatora, aby sprawdzić, czy model może wykonać tłumaczenie:
sampler = recurrentgemma.Sampler(model=model, vocab=vocab, params=params)
Dostrój model
W tej sekcji:
- Użyj klasy
gemma.transformer.Transformer
, aby utworzyć funkcję przekazywania dalej i utraty. - Utwórz wektory maski pozycji i uwagi dla tokenów
- Utwórz funkcję kroku trenowania za pomocą narzędzia Flax.
- Utwórz krok weryfikacji bez przebiegu wstecznego.
- Utwórz pętlę trenowania.
- Dostrój model Gemma.
Zdefiniuj przejście do przodu i funkcję utraty za pomocą interfejsu recurrentgemma.jax.griffin.Griffin
zajęcia. Element RecurrentGemma Griffin
dziedziczy z flax.linen.Module
i udostępnia 2 podstawowe metody:
init
: inicjuje parametry modelu.apply
: wykonuje funkcję__call__
modelu, korzystając z podanego zbioru parametrów.
Ponieważ używasz już wytrenowanych wag Gemma, nie musisz korzystać z funkcji init
.
def forward_and_loss_fn(
params,
*,
model: recurrentgemma.Griffin,
input_tokens: jax.Array, # Shape [B, L]
input_mask: jax.Array, # Shape [B, L]
positions: jax.Array, # Shape [B, L]
) -> jax.Array:
"""Forward pass and loss function.
Args:
params: model's input parameters.
model: Griffin model to call.
input_tokens: input tokens sequence, shape [B, L].
input_mask: tokens to ignore when computing the loss, shape [B, L].
positions: relative position of each token, shape [B, L].
Returns:
Softmax cross-entropy loss for the next-token prediction task.
"""
batch_size = input_tokens.shape[0]
# Forward pass on the input data.
# No attention cache is needed here.
# Exclude the last step as it does not appear in the targets.
logits, _ = model.apply(
{"params": params},
tokens=input_tokens[:, :-1],
segment_pos=positions[:, :-1],
cache=None,
)
# Similarly, the first token cannot be predicteds.
target_tokens = input_tokens[:, 1:]
target_mask = input_mask[:, 1:]
# Convert the target labels into one-hot encoded vectors.
one_hot = jax.nn.one_hot(target_tokens, logits.shape[-1])
# Don't update on unwanted tokens.
one_hot = one_hot * target_mask.astype(one_hot.dtype)[...,None]
# Normalization factor.
norm_factor = batch_size * (jnp.sum(target_mask) + 1e-8)
# Return the negative log-likelihood loss (NLL) function.
return -jnp.sum(jax.nn.log_softmax(logits) * one_hot) / norm_factor
Utwórz funkcję train_step
, która wykonuje przekazywanie wsteczne i odpowiednio aktualizuje parametry modelu, gdzie:
- Narzędzie
jax.value_and_grad
służy do oceny funkcji straty i gradientów podczas przechodzenia do przodu i do tyłu. optax.apply_updates
służy do aktualizowania parametrów.
Params = Mapping[str, Any]
def get_positions(example: jax.Array, pad_id : int) -> jax.Array:
"""Builds the position vector from the given tokens."""
pad_mask = example != pad_id
positions = jnp.cumsum(pad_mask, axis=-1)
# Subtract one for all positions from the first valid one as they are
# 0-indexed
positions = positions - (positions >= 1)
return positions
@functools.partial(
jax.jit,
static_argnames=['model', 'optimizer'],
donate_argnames=['params', 'opt_state'],
)
def train_step(
model: recurrentgemma.Griffin,
params: Params,
optimizer: optax.GradientTransformation,
opt_state: optax.OptState,
pad_id: int,
example: TrainingInput,
) -> tuple[jax.Array, Params, optax.OptState]:
"""The train step.
Args:
model: The RecurrentGemma (Griffin) model.
params: The model's input parameters.
optimizer: The Optax optimizer to use.
opt_state: The input optimizer's state.
pad_id: The ID of the pad token.
example: The input batch.
Returns:
Training loss, updated parameters, updated optimizer state.
"""
positions = get_positions(example.input_tokens, pad_id)
# Forward and backward passes.
train_loss, grads = jax.value_and_grad(forward_and_loss_fn)(
params,
model=model,
input_tokens=example.input_tokens,
input_mask=example.target_mask,
positions=positions,
)
# Update the parameters.
updates, opt_state = optimizer.update(grads, opt_state, params)
params = optax.apply_updates(params, updates)
return train_loss, params, opt_state
Utwórz funkcję validation_step
bez przekierowania wstecznego:
@functools.partial(jax.jit, static_argnames=['model'])
def validation_step(
model: recurrentgemma.Griffin,
params: Params,
pad_id: int,
example: TrainingInput,
) -> jax.Array:
return forward_and_loss_fn(
params,
model=model,
input_tokens=example.input_tokens,
input_mask=example.target_mask,
positions=get_positions(example.input_tokens, pad_id),
)
Zdefiniuj pętlę trenowania:
def train_loop(
model: recurrentgemma.Griffin,
params: Params,
optimizer: optax.GradientTransformation,
train_ds: Iterator[TrainingInput],
validation_ds: Iterator[TrainingInput],
num_steps: int | None = None,
eval_every_n: int = 20,
):
opt_state = jax.jit(optimizer.init)(params)
step_counter = 0
avg_loss=0
# The first round of the validation loss.
n_steps_eval = 0
eval_loss = 0
for val_example in validation_ds.as_numpy_iterator():
eval_loss += validation_step(
model, params, dataset_builder._tokenizer.pad_id, val_example
)
n_steps_eval += 1
print(f"Start, validation loss: {eval_loss/n_steps_eval}")
for train_example in train_ds:
train_loss, params, opt_state = train_step(
model=model,
params=params,
optimizer=optimizer,
opt_state=opt_state,
pad_id=dataset_builder._tokenizer.pad_id,
example=train_example,
)
step_counter += 1
avg_loss += train_loss
if step_counter % eval_every_n == 0:
eval_loss = 0
n_steps_eval = 0
val_iterator = validation_ds.as_numpy_iterator()
for val_example in val_iterator:
eval_loss += validation_step(
model,
params,
dataset_builder._tokenizer.pad_id,
val_example,
)
n_steps_eval +=1
avg_loss /= eval_every_n
eval_loss /= n_steps_eval
print(f"STEP {step_counter} training loss: {avg_loss} - eval loss: {eval_loss}")
avg_loss=0
if num_steps is not None and step_counter > num_steps:
break
return params
W tym miejscu należy wybrać optymalizatora (Optax). W przypadku urządzeń z mniejszą pamięcią zalecamy używanie SGD, ponieważ mają one znacznie mniej pamięci. Aby uzyskać najlepszą wydajność dostrajania, wypróbuj Adam-W. W tym przykładzie przedstawiono optymalne hiperparametry dla każdego optymalizatora do określonego zadania w tym notatniku dla punktu kontrolnego 2b-it
.
def griffin_weight_decay_mask(params_like: optax.Params) -> Any:
# Don't put weight decay on the RGLRU, the embeddings and any biases
def enable_weight_decay(path: list[Any], _: Any) -> bool:
# Parameters in the LRU and embedder
path = [dict_key.key for dict_key in path]
if 'rg_lru' in path or 'embedder' in path:
return False
# All biases and scales
if path[-1] in ('b', 'scale'):
return False
return True
return jax.tree_util.tree_map_with_path(enable_weight_decay, params_like)
optimizer_choice = "sgd"
if optimizer_choice == "sgd":
optimizer = optax.sgd(learning_rate=1e-3)
num_steps = 300
elif optimizer_choice == "adamw":
optimizer = optax.adamw(
learning_rate=1e-4,
b2=0.96,
eps=1e-8,
weight_decay=0.1,
mask=griffin_weight_decay_mask,
)
num_steps = 100
else:
raise ValueError(f"Unknown optimizer: {optimizer_choice}")
Przygotuj zbiory danych do trenowania i weryfikacji:
# Choose a small sequence length size, so that everything fits in memory.
num_epochs = 1
batch_size = 1
sequence_length = 32
# Make the dataset builder.
tokenizer = GriffinTokenizer(vocab)
dataset_builder= MTNTDatasetBuilder(tokenizer, sequence_length + 1)
# Build the training dataset.
train_ds = dataset_builder.get_train_dataset(
batch_size=batch_size,
num_epochs=num_epochs,
).as_numpy_iterator()
# Build the validation dataset, with a limited number of samples for this demo.
validation_ds = dataset_builder.get_validation_dataset(
batch_size=batch_size,
).take(50)
Rozpocznij dostrajanie modelu RecurrentGemma (Griffin) w ograniczonej liczbie kroków (num_steps
):
trained_params = train_loop(
model=model,
params=params,
optimizer=optimizer,
train_ds=train_ds,
validation_ds=validation_ds,
num_steps=num_steps,
)
Start, validation loss: 7.894117832183838 /usr/local/lib/python3.10/dist-packages/jax/_src/interpreters/mlir.py:920: UserWarning: Some donated buffers were not usable: ShapedArray(int32[1,33]), ShapedArray(bool[1,33]), ShapedArray(int32[], weak_type=True). See an explanation at https://jax.readthedocs.io/en/latest/faq.html#buffer_donation. warnings.warn("Some donated buffers were not usable:" STEP 20 training loss: 4.592616081237793 - eval loss: 2.847407102584839 STEP 40 training loss: 2.7537424564361572 - eval loss: 2.9258534908294678 STEP 60 training loss: 2.835618257522583 - eval loss: 2.4382340908050537 STEP 80 training loss: 2.6322107315063477 - eval loss: 2.3696839809417725 STEP 100 training loss: 1.8703256845474243 - eval loss: 2.355681896209717 STEP 120 training loss: 2.7280433177948 - eval loss: 2.4059958457946777 STEP 140 training loss: 2.3047447204589844 - eval loss: 2.083082914352417 STEP 160 training loss: 2.3432137966156006 - eval loss: 2.095074415206909 STEP 180 training loss: 2.1081202030181885 - eval loss: 2.006460189819336 STEP 200 training loss: 2.5359647274017334 - eval loss: 1.9667452573776245 STEP 220 training loss: 2.202195644378662 - eval loss: 1.9440618753433228 STEP 240 training loss: 2.756615400314331 - eval loss: 2.1073737144470215 STEP 260 training loss: 2.5128934383392334 - eval loss: 2.117241859436035 STEP 280 training loss: 2.73045015335083 - eval loss: 1.9159646034240723 STEP 300 training loss: 2.0918595790863037 - eval loss: 1.9742532968521118
Zarówno utrata trenowania, jak i utrata walidacji powinny zmaleć z każdą liczbą kroków.
Aby dane wejściowe były zgodne z formatem trenowania, pamiętaj o użyciu prefiksu Translate this into French:\n
i znaku nowego wiersza na końcu. To sygnalizuje modelowi rozpoczęcie translacji.
sampler.params = trained_params
output = sampler(
["Translate this into French:\nHello, my name is Morgane.\n"],
total_generation_steps=100,
)
print(output.text[0])
/usr/local/lib/python3.10/dist-packages/jax/_src/interpreters/mlir.py:920: UserWarning: Some donated buffers were not usable: ShapedArray(int32[1,16]). See an explanation at https://jax.readthedocs.io/en/latest/faq.html#buffer_donation. warnings.warn("Some donated buffers were not usable:" Mais je m'appelle Morgane.
Więcej informacji
- Więcej informacji o bibliotece
recurrentgemma
Google DeepMind znajdziesz na GitHubie, która zawiera ciągi dokumentów z metodami i modułami użytymi w tym samouczku, między innymirecurrentgemma.jax.load_parameters
,recurrentgemma.jax.Griffin
irecurrentgemma.jax.Sampler
. - Te biblioteki mają własne witryny z dokumentacją: core JAX, Flax, Chex, Optax i Orbax.
- Dokumentację tokenizacji i detokenizatora usługi
sentencepiece
znajdziesz w repozytorium Google na GitHubiesentencepiece
. - Dokumentację usługi
kagglehub
znajdziesz w witrynieREADME.md
w repozytorium GitHubkagglehub
firmy Kaggle. - Dowiedz się, jak używać modeli Gemma w Vertex AI Google Cloud.
- Jeśli używasz jednostek Google Cloud TPU (wersja 3-8 lub nowsza), zaktualizuj też pakiet
jax[tpu]
do najnowszej wersji (!pip install -U jax[tpu] -f https://storage.googleapis.com/jax-releases/libtpu_releases.html
), uruchom ponownie środowisko wykonawcze i sprawdź, czy wersjejax
ijaxlib
są zgodne (!pip list | grep jax
). Może to zapobiec powstawaniu błędów typuRuntimeError
z powodu niezgodności wersjijaxlib
ijax
. Więcej instrukcji instalacji języka JAX znajdziesz w dokumentacji JAX. - Obejrzyj film RecurrentGemma: Transfer Transformers raportu Google DeepMind dotyczącego Efficient Open Language Models.
- Przeczytaj artykuł Griffin: miksowanie powtarzanych powtarzanych utworów z Dokument „Local Attention for Efficient Language Models” przygotowany przez Google DeepMind, aby dowiedzieć się więcej o architekturze modelu wykorzystywanej przez firmę RecurrentGemma.