D'accord. Voici une explication du code R que vous avez fourni:
llm_data %>% : il s'agit d'un opérateur pipe. Elle prend la trame de données llm_data et la transmet en tant que premier argument à la fonction suivante.
ggplot(aes(x=Training_Data,y=Params, label=Model)) - Cela crée un objet ggplot. La fonction aes() spécifie les esthétiques du tracé, dans ce cas les variables d'axe des x et des axes des y, ainsi que l'étiquette de chaque point de données.
geom_label() : permet d'ajouter un libellé à chaque point de données.
labs(x="Training Data (billion tokens)", y="Parameters (billions)") : définit les étiquettes pour l'axe des x et l'axe des y.
theme_bw() : applique un thème noir et blanc au tracé.
Le tracé obtenu montre la relation entre la taille des données d'entraînement et le nombre de paramètres pour chaque modèle. Les étiquettes indiqueront le nom de chaque modèle.
J'espère que ces explications vous seront utiles. N'hésitez pas à me contacter si vous avez d'autres questions.
Vous pouvez appeler cette invite à partir de notre API Gemini en intégrant le code suivant dans votre projet.
[[["Facile à comprendre","easyToUnderstand","thumb-up"],["J'ai pu résoudre mon problème","solvedMyProblem","thumb-up"],["Autre","otherUp","thumb-up"]],[["Il n'y a pas l'information dont j'ai besoin","missingTheInformationINeed","thumb-down"],["Trop compliqué/Trop d'étapes","tooComplicatedTooManySteps","thumb-down"],["Obsolète","outOfDate","thumb-down"],["Problème de traduction","translationIssue","thumb-down"],["Mauvais exemple/Erreur de code","samplesCodeIssue","thumb-down"],["Autre","otherDown","thumb-down"]],[],[],[],null,["# R code explainer\n\n[Prompt gallery](/prompt-gallery)\n\nR code explainer\n================\n\nUnderstand an R code snippet \nPrompt type: [subject\nText](/prompt-gallery/?type=text) \nUse case: \nCode Answer \nRelated: \n[Fizzbuzz in python](/prompts/python-fizzbuzz) [Generate questions from fiction](/prompts/questions-from-fiction) [Guess the word](/prompts/guess-the-word)\n[Open in Google AI Studio](https://makersuite.google.com/app/prompts/r-code-explainer) \n\n#### Prompt text\n\nCan you explain the following R code to me:\n\nllm_data %\\\u003e%\nggplot(aes(x=Training_Data,y=Params, label=Model))+\ngeom_label()+\nlabs(\nx= \"Training Data (billion tokens)\",\ny= \"Parameters (billions)\"\n)+\ntheme_bw() \n\n#### Sample responses\n\nSure. Here is an explanation of the R code you provided:\n\n- `llm_data %\u003e%` - This is a pipe operator. It takes the data frame `llm_data` and passes it as the first argument to the next function.\n- `ggplot(aes(x=Training_Data,y=Params, label=Model))` - This creates a ggplot object. The `aes()` function specifies the aesthetics of the plot, in this case the x-axis and y-axis variables, as well as the label for each data point.\n- `geom_label()` - This adds a label to each data point.\n- `labs(x=\"Training Data (billion tokens)\", y=\"Parameters (billions)\")` - This sets the labels for the x-axis and y-axis.\n- `theme_bw()` - This applies a black and white theme to the plot.\n\nThe resulting plot will show the relationship between the training data size and the number of parameters for each model. The labels will show the name of each model.\n\nI hope this explanation is helpful. Let me know if you have any other questions. \n\nGet code\n--------\n\n[Enable API key](https://makersuite.google.com/app/apikey) to develop with the Gemini API\n\nYou can call this prompt from our Gemini API by integrating the following code into your project. \nPython \nJavascript \n1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 \n\"\"\" At the command line, only need to run once to install the package via pip: $ pip install google-generativeai \"\"\" import google.generativeai as genai genai.configure(api_key=\"YOUR API KEY\") defaults = { 'model': 'models/text-bison-001', 'temperature': 0.7, 'candidate_count': 1, 'top_k': 40, 'top_p': 0.95, 'max_output_tokens': 1024, } prompt = \"\"\"Can you explain the following R code to me: llm_data %\\\u003e% ggplot(aes(x=Training_Data,y=Params, label=Model))+ geom_label()+ labs( x= \"Training Data (billion tokens)\", y= \"Parameters (billions)\" )+ theme_bw()\"\"\" response = genai.generate_text( \\*\\*defaults, prompt=prompt ) print(response.result) \n1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 \nconst { TextServiceClient } = require(\"@google-ai/generativelanguage\"); const { GoogleAuth } = require(\"google-auth-library\"); const MODEL_NAME = \"models/text-bison-001\"; const API_KEY = \"YOUR API KEY\"; const client = new TextServiceClient({ authClient: new GoogleAuth().fromAPIKey(API_KEY), }); const promptString = \"Can you explain the following R code to me:nnllm\\\\_data %\\\u003e% n ggplot(aes(x=Training\\\\_Data,y=Params, label=Model))+n geom\\\\_label()+n labs(n x= \"Training Data (billion tokens)\",n y= \"Parameters (billions)\"n )+n theme\\\\_bw()\"; client.generateText({ // required, which model to use to generate the result model: MODEL_NAME, // optional, 0.0 always uses the highest-probability result temperature: 0.7, // optional, how many candidate results to generate candidateCount: 1, // optional, number of most probable tokens to consider for generation top_k: 40, // optional, for nucleus sampling decoding strategy top_p: 0.95, // optional, maximum number of output tokens to generate max_output_tokens: 1024, prompt: { text: promptString, }, }).then(result =\\\u003e { console.log(JSON.stringify(result, null, 2)); }); \ncontent_copy done Copy to clipboard"]]