Classificadores Agile: classificadores de política de conteúdo personalizados
Os classificadores ágeis são um método eficiente e flexível
para criar classificadores de políticas de conteúdo personalizados ajustando modelos, como o Gemma,
para atender às suas necessidades. Eles também permitem que você tenha controle total sobre onde e como
são implantados.
O codelab e
tutorial usar LoRA para ajustar um Gemma
para atuar como um classificador de políticas de conteúdo usando o KerasNLP
biblioteca. Usando apenas 200 exemplos do conjunto de dados ETHOS,
classificador atinge uma pontuação F1 de 0,80 e pontuação ROC-AUC
de 0,78, o que se compara favoravelmente ao estado da arte
resultados do placar. Quando treinado com os 800 exemplos,
como os outros classificadores do quadro de liderança, o classificador ágil baseado em Gemma
atinge uma pontuação F1 de 83,74 e uma pontuação ROC-AUC de 88,17. É possível adaptar
instruções do tutorial para refinar ainda mais esse classificador ou criar seu próprio classificador
proteções personalizadas
do classificador de segurança.
[[["Fácil de entender","easyToUnderstand","thumb-up"],["Meu problema foi resolvido","solvedMyProblem","thumb-up"],["Outro","otherUp","thumb-up"]],[["Não contém as informações de que eu preciso","missingTheInformationINeed","thumb-down"],["Muito complicado / etapas demais","tooComplicatedTooManySteps","thumb-down"],["Desatualizado","outOfDate","thumb-down"],["Problema na tradução","translationIssue","thumb-down"],["Problema com as amostras / o código","samplesCodeIssue","thumb-down"],["Outro","otherDown","thumb-down"]],["Última atualização 2024-10-23 UTC."],[],[],null,["# Agile Classifiers: Customized content policy classifiers\n\n\u003cbr /\u003e\n\n[Agile classifiers](https://arxiv.org/pdf/2302.06541.pdf) is an efficient and flexible method\nfor creating custom content policy classifiers by tuning models, such as Gemma,\nto fit your needs. They also allow you complete control over where and how they\nare deployed.\n\n**Gemma Agile Classifier Tutorials**\n\n|---|---------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------|\n| | [Start Codelab](https://codelabs.developers.google.com/codelabs/responsible-ai/agile-classifiers) | [Start Google Colab](https://colab.research.google.com/github/google/generative-ai-docs/blob/main/site/en/gemma/docs/agile_classifiers.ipynb) |\n\n\u003cbr /\u003e\n\nThe [codelab](https://codelabs.developers.google.com/codelabs/responsible-ai/agile-classifiers) and\n[tutorial](/gemma/docs/agile_classifiers) use [LoRA](https://arxiv.org/abs/2106.09685) to fine-tune a Gemma\nmodel to act as a content policy classifier using the [KerasNLP](https://keras.io/keras_nlp/)\nlibrary. Using only 200 examples from the [ETHOS dataset](https://paperswithcode.com/dataset/ethos), this\nclassifier achieves an [F1 score](https://en.wikipedia.org/wiki/F-score) of 0.80 and [ROC-AUC score](https://developers.google.com/machine-learning/crash-course/classification/roc-and-auc#AUC)\nof 0.78, which compares favorably to state of the art\n[leaderboard results](https://paperswithcode.com/sota/hate-speech-detection-on-ethos-binary). When trained on the 800 examples,\nlike the other classifiers on the leaderboard, the Gemma-based agile classifier\nachieves an F1 score of 83.74 and a ROC-AUC score of 88.17. You can adapt the\ntutorial instructions to further refine this classifier, or to create your own\ncustom safety classifier safeguards."]]