Generating content

Gemini API 支持使用图片、音频、代码、工具等生成内容。如需详细了解这些功能中的每项,请继续阅读并查看以任务为中心的示例代码,或阅读全面的指南。

方法:models.generateContent

根据输入 GenerateContentRequest 生成模型回答。如需了解详细用法信息,请参阅文本生成指南。输入功能因模型而异,包括经调参的模型。如需了解详情,请参阅模型指南调整指南

端点

POST https://generativelanguage.googleapis.com/v1beta/{model=models/*}:generateContent

路径参数

model string

必需。用于生成补全的 Model 的名称。

格式:name=models/{model}。其格式为 models/{model}

请求正文

请求正文中包含结构如下的数据:

字段
contents[] object (Content)

必需。与模型的当前对话内容。

对于单轮询问,这是一个实例。对于聊天等多轮对话询问,此字段是重复字段,包含对话记录和最新请求。

tools[] object (Tool)

可选。Model 可能用来生成下一个响应的 Tools 列表。

Tool 是一段代码,可让系统与外部系统进行交互,以在 Model 的知识和范围之外执行操作或一组操作。支持的 ToolFunctioncodeExecution。如需了解详情,请参阅函数调用代码执行指南。

toolConfig object (ToolConfig)

可选。请求中指定的任何 Tool 的工具配置。如需查看用法示例,请参阅函数调用指南

safetySettings[] object (SafetySetting)

可选。用于屏蔽不安全内容的唯一 SafetySetting 实例列表。

这将在 GenerateContentRequest.contentsGenerateContentResponse.candidates 上强制执行。每个 SafetyCategory 类型不应有多个设置。API 会屏蔽未达到这些设置设定的阈值的所有内容和响应。此列表会替换 safetySettings 中指定的每个 SafetyCategory 的默认设置。如果列表中提供的给定 SafetyCategory 没有 SafetySetting,则该 API 将使用该类别的默认安全设置。支持危害类别 HARM_CATEGORY_HATE_SPEECH、HARM_CATEGORY_SEXUALLY_EXPLICIT、HARM_CATEGORY_DANGEROUS_CONTENT、HARM_CATEGORY_HARASSMENT。如需详细了解可用的安全设置,请参阅此指南。此外,请参阅安全指南,了解如何在 AI 应用中纳入安全注意事项。

systemInstruction object (Content)

可选。开发者设置的系统说明。目前仅支持文本。

generationConfig object (GenerationConfig)

可选。模型生成和输出的配置选项。

cachedContent string

可选。缓存的内容的名称,用于作为上下文来提供预测。格式:cachedContents/{cachedContent}

示例请求

文本

Python

model = genai.GenerativeModel("gemini-1.5-flash")
response = model.generate_content("Write a story about a magic backpack.")
print(response.text)

Node.js

// Make sure to include these imports:
// import { GoogleGenerativeAI } from "@google/generative-ai";
const genAI = new GoogleGenerativeAI(process.env.API_KEY);
const model = genAI.getGenerativeModel({ model: "gemini-1.5-flash" });

const prompt = "Write a story about a magic backpack.";

const result = await model.generateContent(prompt);
console.log(result.response.text());

Go

model := client.GenerativeModel("gemini-1.5-flash")
resp, err := model.GenerateContent(ctx, genai.Text("Write a story about a magic backpack."))
if err != nil {
	log.Fatal(err)
}

printResponse(resp)

Shell

curl "https://generativelanguage.googleapis.com/v1beta/models/gemini-1.5-flash:generateContent?key=$GOOGLE_API_KEY" \
    -H 'Content-Type: application/json' \
    -X POST \
    -d '{
      "contents": [{
        "parts":[{"text": "Write a story about a magic backpack."}]
        }]
       }' 2> /dev/null

Kotlin

val generativeModel =
    GenerativeModel(
        // Specify a Gemini model appropriate for your use case
        modelName = "gemini-1.5-flash",
        // Access your API key as a Build Configuration variable (see "Set up your API key" above)
        apiKey = BuildConfig.apiKey)

val prompt = "Write a story about a magic backpack."
val response = generativeModel.generateContent(prompt)
print(response.text)

Swift

let generativeModel =
  GenerativeModel(
    // Specify a Gemini model appropriate for your use case
    name: "gemini-1.5-flash",
    // Access your API key from your on-demand resource .plist file (see "Set up your API key"
    // above)
    apiKey: APIKey.default
  )

let prompt = "Write a story about a magic backpack."
let response = try await generativeModel.generateContent(prompt)
if let text = response.text {
  print(text)
}

Dart

// Make sure to include this import:
// import 'package:google_generative_ai/google_generative_ai.dart';
final model = GenerativeModel(
  model: 'gemini-1.5-flash',
  apiKey: apiKey,
);
final prompt = 'Write a story about a magic backpack.';

final response = await model.generateContent([Content.text(prompt)]);
print(response.text);

Java

// Specify a Gemini model appropriate for your use case
GenerativeModel gm =
    new GenerativeModel(
        /* modelName */ "gemini-1.5-flash",
        // Access your API key as a Build Configuration variable (see "Set up your API key"
        // above)
        /* apiKey */ BuildConfig.apiKey);
GenerativeModelFutures model = GenerativeModelFutures.from(gm);

Content content =
    new Content.Builder().addText("Write a story about a magic backpack.").build();

// For illustrative purposes only. You should use an executor that fits your needs.
Executor executor = Executors.newSingleThreadExecutor();

ListenableFuture<GenerateContentResponse> response = model.generateContent(content);
Futures.addCallback(
    response,
    new FutureCallback<GenerateContentResponse>() {
      @Override
      public void onSuccess(GenerateContentResponse result) {
        String resultText = result.getText();
        System.out.println(resultText);
      }

      @Override
      public void onFailure(Throwable t) {
        t.printStackTrace();
      }
    },
    executor);

Image

Python

import PIL.Image

model = genai.GenerativeModel("gemini-1.5-flash")
organ = PIL.Image.open(media / "organ.jpg")
response = model.generate_content(["Tell me about this instrument", organ])
print(response.text)

Node.js

// Make sure to include these imports:
// import { GoogleGenerativeAI } from "@google/generative-ai";
const genAI = new GoogleGenerativeAI(process.env.API_KEY);
const model = genAI.getGenerativeModel({ model: "gemini-1.5-flash" });

function fileToGenerativePart(path, mimeType) {
  return {
    inlineData: {
      data: Buffer.from(fs.readFileSync(path)).toString("base64"),
      mimeType,
    },
  };
}

const prompt = "Describe how this product might be manufactured.";
// Note: The only accepted mime types are some image types, image/*.
const imagePart = fileToGenerativePart(
  `${mediaPath}/jetpack.jpg`,
  "image/jpeg",
);

const result = await model.generateContent([prompt, imagePart]);
console.log(result.response.text());

Go

model := client.GenerativeModel("gemini-1.5-flash")

imgData, err := os.ReadFile(filepath.Join(testDataDir, "organ.jpg"))
if err != nil {
	log.Fatal(err)
}

resp, err := model.GenerateContent(ctx,
	genai.Text("Tell me about this instrument"),
	genai.ImageData("jpeg", imgData))
if err != nil {
	log.Fatal(err)
}

printResponse(resp)

Shell

curl "https://generativelanguage.googleapis.com/v1beta/models/gemini-1.5-flash:generateContent?key=$GOOGLE_API_KEY" \
    -H 'Content-Type: application/json' \
    -X POST \
    -d '{
      "contents": [{
        "parts":[
            {"text": "Tell me about this instrument"},
            {
              "inline_data": {
                "mime_type":"image/jpeg",
                "data": "'$(base64 $B64FLAGS $IMG_PATH)'"
              }
            }
        ]
        }]
       }' 2> /dev/null

Kotlin

val generativeModel =
    GenerativeModel(
        // Specify a Gemini model appropriate for your use case
        modelName = "gemini-1.5-flash",
        // Access your API key as a Build Configuration variable (see "Set up your API key" above)
        apiKey = BuildConfig.apiKey)

val image: Bitmap = BitmapFactory.decodeResource(context.resources, R.drawable.image)
val inputContent = content {
  image(image)
  text("What's in this picture?")
}

val response = generativeModel.generateContent(inputContent)
print(response.text)

Swift

let generativeModel =
  GenerativeModel(
    // Specify a Gemini model appropriate for your use case
    name: "gemini-1.5-flash",
    // Access your API key from your on-demand resource .plist file (see "Set up your API key"
    // above)
    apiKey: APIKey.default
  )

guard let image = UIImage(systemName: "cloud.sun") else { fatalError() }

let prompt = "What's in this picture?"

let response = try await generativeModel.generateContent(image, prompt)
if let text = response.text {
  print(text)
}

Dart

// Make sure to include this import:
// import 'package:google_generative_ai/google_generative_ai.dart';
final model = GenerativeModel(
  model: 'gemini-1.5-flash',
  apiKey: apiKey,
);

Future<DataPart> fileToPart(String mimeType, String path) async {
  return DataPart(mimeType, await File(path).readAsBytes());
}

final prompt = 'Describe how this product might be manufactured.';
final image = await fileToPart('image/jpeg', 'resources/jetpack.jpg');

final response = await model.generateContent([
  Content.multi([TextPart(prompt), image])
]);
print(response.text);

Java

// Specify a Gemini model appropriate for your use case
GenerativeModel gm =
    new GenerativeModel(
        /* modelName */ "gemini-1.5-flash",
        // Access your API key as a Build Configuration variable (see "Set up your API key"
        // above)
        /* apiKey */ BuildConfig.apiKey);
GenerativeModelFutures model = GenerativeModelFutures.from(gm);

Bitmap image = BitmapFactory.decodeResource(context.getResources(), R.drawable.image);

Content content =
    new Content.Builder()
        .addText("What's different between these pictures?")
        .addImage(image)
        .build();

// For illustrative purposes only. You should use an executor that fits your needs.
Executor executor = Executors.newSingleThreadExecutor();

ListenableFuture<GenerateContentResponse> response = model.generateContent(content);
Futures.addCallback(
    response,
    new FutureCallback<GenerateContentResponse>() {
      @Override
      public void onSuccess(GenerateContentResponse result) {
        String resultText = result.getText();
        System.out.println(resultText);
      }

      @Override
      public void onFailure(Throwable t) {
        t.printStackTrace();
      }
    },
    executor);

音频

Python

model = genai.GenerativeModel("gemini-1.5-flash")
sample_audio = genai.upload_file(media / "sample.mp3")
response = model.generate_content(["Give me a summary of this audio file.", sample_audio])
print(response.text)

Node.js

// Make sure to include these imports:
// import { GoogleGenerativeAI } from "@google/generative-ai";
const genAI = new GoogleGenerativeAI(process.env.API_KEY);
const model = genAI.getGenerativeModel({ model: "gemini-1.5-flash" });

function fileToGenerativePart(path, mimeType) {
  return {
    inlineData: {
      data: Buffer.from(fs.readFileSync(path)).toString("base64"),
      mimeType,
    },
  };
}

const prompt = "Give me a summary of this audio file.";
// Note: The only accepted mime types are some image types, image/*.
const audioPart = fileToGenerativePart(
  `${mediaPath}/samplesmall.mp3`,
  "audio/mp3",
);

const result = await model.generateContent([prompt, audioPart]);
console.log(result.response.text());

Shell

# Use File API to upload audio data to API request.
MIME_TYPE=$(file -b --mime-type "${AUDIO_PATH}")
NUM_BYTES=$(wc -c < "${AUDIO_PATH}")
DISPLAY_NAME=AUDIO

tmp_header_file=upload-header.tmp

# Initial resumable request defining metadata.
# The upload url is in the response headers dump them to a file.
curl "${BASE_URL}/upload/v1beta/files?key=${GOOGLE_API_KEY}" \
  -D upload-header.tmp \
  -H "X-Goog-Upload-Protocol: resumable" \
  -H "X-Goog-Upload-Command: start" \
  -H "X-Goog-Upload-Header-Content-Length: ${NUM_BYTES}" \
  -H "X-Goog-Upload-Header-Content-Type: ${MIME_TYPE}" \
  -H "Content-Type: application/json" \
  -d "{'file': {'display_name': '${DISPLAY_NAME}'}}" 2> /dev/null

upload_url=$(grep -i "x-goog-upload-url: " "${tmp_header_file}" | cut -d" " -f2 | tr -d "\r")
rm "${tmp_header_file}"

# Upload the actual bytes.
curl "${upload_url}" \
  -H "Content-Length: ${NUM_BYTES}" \
  -H "X-Goog-Upload-Offset: 0" \
  -H "X-Goog-Upload-Command: upload, finalize" \
  --data-binary "@${AUDIO_PATH}" 2> /dev/null > file_info.json

file_uri=$(jq ".file.uri" file_info.json)
echo file_uri=$file_uri

curl "https://generativelanguage.googleapis.com/v1beta/models/gemini-1.5-flash:generateContent?key=$GOOGLE_API_KEY" \
    -H 'Content-Type: application/json' \
    -X POST \
    -d '{
      "contents": [{
        "parts":[
          {"text": "Please describe this file."},
          {"file_data":{"mime_type": "audio/mpeg", "file_uri": '$file_uri'}}]
        }]
       }' 2> /dev/null > response.json

cat response.json
echo

jq ".candidates[].content.parts[].text" response.json

视频

Python

import time

# Video clip (CC BY 3.0) from https://peach.blender.org/download/
myfile = genai.upload_file(media / "Big_Buck_Bunny.mp4")
print(f"{myfile=}")

# Videos need to be processed before you can use them.
while myfile.state.name == "PROCESSING":
    print("processing video...")
    time.sleep(5)
    myfile = genai.get_file(myfile.name)

model = genai.GenerativeModel("gemini-1.5-flash")
response = model.generate_content([myfile, "Describe this video clip"])
print(f"{response.text=}")

Node.js

// Make sure to include these imports:
// import { GoogleGenerativeAI } from "@google/generative-ai";
// import { GoogleAIFileManager, FileState } from "@google/generative-ai/server";
const genAI = new GoogleGenerativeAI(process.env.API_KEY);
const model = genAI.getGenerativeModel({ model: "gemini-1.5-flash" });

const fileManager = new GoogleAIFileManager(process.env.API_KEY);

const uploadResult = await fileManager.uploadFile(
  `${mediaPath}/Big_Buck_Bunny.mp4`,
  { mimeType: "video/mp4" },
);

let file = await fileManager.getFile(uploadResult.file.name);
while (file.state === FileState.PROCESSING) {
  process.stdout.write(".");
  // Sleep for 10 seconds
  await new Promise((resolve) => setTimeout(resolve, 10_000));
  // Fetch the file from the API again
  file = await fileManager.getFile(uploadResult.file.name);
}

if (file.state === FileState.FAILED) {
  throw new Error("Video processing failed.");
}

const prompt = "Describe this video clip";
const videoPart = {
  fileData: {
    fileUri: uploadResult.file.uri,
    mimeType: uploadResult.file.mimeType,
  },
};

const result = await model.generateContent([prompt, videoPart]);
console.log(result.response.text());

Go

model := client.GenerativeModel("gemini-1.5-flash")

file, err := client.UploadFileFromPath(ctx, filepath.Join(testDataDir, "earth.mp4"), nil)
if err != nil {
	log.Fatal(err)
}
defer client.DeleteFile(ctx, file.Name)

// Videos need to be processed before you can use them.
for file.State == genai.FileStateProcessing {
	log.Printf("processing %s", file.Name)
	time.Sleep(5 * time.Second)
	var err error
	if file, err = client.GetFile(ctx, file.Name); err != nil {
		log.Fatal(err)
	}
}
if file.State != genai.FileStateActive {
	log.Fatalf("uploaded file has state %s, not active", file.State)
}

resp, err := model.GenerateContent(ctx,
	genai.Text("Describe this video clip"),
	genai.FileData{URI: file.URI})
if err != nil {
	log.Fatal(err)
}

printResponse(resp)

Shell

# Use File API to upload audio data to API request.
MIME_TYPE=$(file -b --mime-type "${VIDEO_PATH}")
NUM_BYTES=$(wc -c < "${VIDEO_PATH}")
DISPLAY_NAME=VIDEO

# Initial resumable request defining metadata.
# The upload url is in the response headers dump them to a file.
curl "${BASE_URL}/upload/v1beta/files?key=${GOOGLE_API_KEY}" \
  -D upload-header.tmp \
  -H "X-Goog-Upload-Protocol: resumable" \
  -H "X-Goog-Upload-Command: start" \
  -H "X-Goog-Upload-Header-Content-Length: ${NUM_BYTES}" \
  -H "X-Goog-Upload-Header-Content-Type: ${MIME_TYPE}" \
  -H "Content-Type: application/json" \
  -d "{'file': {'display_name': '${DISPLAY_NAME}'}}" 2> /dev/null

upload_url=$(grep -i "x-goog-upload-url: " "${tmp_header_file}" | cut -d" " -f2 | tr -d "\r")
rm "${tmp_header_file}"

# Upload the actual bytes.
curl "${upload_url}" \
  -H "Content-Length: ${NUM_BYTES}" \
  -H "X-Goog-Upload-Offset: 0" \
  -H "X-Goog-Upload-Command: upload, finalize" \
  --data-binary "@${VIDEO_PATH}" 2> /dev/null > file_info.json

file_uri=$(jq ".file.uri" file_info.json)
echo file_uri=$file_uri

state=$(jq ".file.state" file_info.json)
echo state=$state

name=$(jq ".file.name" file_info.json)
echo name=$name

while [[ "($state)" = *"PROCESSING"* ]];
do
  echo "Processing video..."
  sleep 5
  # Get the file of interest to check state
  curl https://generativelanguage.googleapis.com/v1beta/files/$name > file_info.json
  state=$(jq ".file.state" file_info.json)
done

curl "https://generativelanguage.googleapis.com/v1beta/models/gemini-1.5-flash:generateContent?key=$GOOGLE_API_KEY" \
    -H 'Content-Type: application/json' \
    -X POST \
    -d '{
      "contents": [{
        "parts":[
          {"text": "Please describe this file."},
          {"file_data":{"mime_type": "video/mp4", "file_uri": '$file_uri'}}]
        }]
       }' 2> /dev/null > response.json

cat response.json
echo

jq ".candidates[].content.parts[].text" response.json

PDF

Python

model = genai.GenerativeModel("gemini-1.5-flash")
sample_pdf = genai.upload_file(media / "test.pdf")
response = model.generate_content(["Give me a summary of this document:", sample_pdf])
print(f"{response.text=}")

Shell

MIME_TYPE=$(file -b --mime-type "${PDF_PATH}")
NUM_BYTES=$(wc -c < "${PDF_PATH}")
DISPLAY_NAME=TEXT


echo $MIME_TYPE
tmp_header_file=upload-header.tmp

# Initial resumable request defining metadata.
# The upload url is in the response headers dump them to a file.
curl "${BASE_URL}/upload/v1beta/files?key=${GOOGLE_API_KEY}" \
  -D upload-header.tmp \
  -H "X-Goog-Upload-Protocol: resumable" \
  -H "X-Goog-Upload-Command: start" \
  -H "X-Goog-Upload-Header-Content-Length: ${NUM_BYTES}" \
  -H "X-Goog-Upload-Header-Content-Type: ${MIME_TYPE}" \
  -H "Content-Type: application/json" \
  -d "{'file': {'display_name': '${DISPLAY_NAME}'}}" 2> /dev/null

upload_url=$(grep -i "x-goog-upload-url: " "${tmp_header_file}" | cut -d" " -f2 | tr -d "\r")
rm "${tmp_header_file}"

# Upload the actual bytes.
curl "${upload_url}" \
  -H "Content-Length: ${NUM_BYTES}" \
  -H "X-Goog-Upload-Offset: 0" \
  -H "X-Goog-Upload-Command: upload, finalize" \
  --data-binary "@${PDF_PATH}" 2> /dev/null > file_info.json

file_uri=$(jq ".file.uri" file_info.json)
echo file_uri=$file_uri

# Now generate content using that file
curl "https://generativelanguage.googleapis.com/v1beta/models/gemini-1.5-flash:generateContent?key=$GOOGLE_API_KEY" \
    -H 'Content-Type: application/json' \
    -X POST \
    -d '{
      "contents": [{
        "parts":[
          {"text": "Can you add a few more lines to this poem?"},
          {"file_data":{"mime_type": "application/pdf", "file_uri": '$file_uri'}}]
        }]
       }' 2> /dev/null > response.json

cat response.json
echo

jq ".candidates[].content.parts[].text" response.json

聊天

Python

model = genai.GenerativeModel("gemini-1.5-flash")
chat = model.start_chat(
    history=[
        {"role": "user", "parts": "Hello"},
        {"role": "model", "parts": "Great to meet you. What would you like to know?"},
    ]
)
response = chat.send_message("I have 2 dogs in my house.")
print(response.text)
response = chat.send_message("How many paws are in my house?")
print(response.text)

Node.js

// Make sure to include these imports:
// import { GoogleGenerativeAI } from "@google/generative-ai";
const genAI = new GoogleGenerativeAI(process.env.API_KEY);
const model = genAI.getGenerativeModel({ model: "gemini-1.5-flash" });
const chat = model.startChat({
  history: [
    {
      role: "user",
      parts: [{ text: "Hello" }],
    },
    {
      role: "model",
      parts: [{ text: "Great to meet you. What would you like to know?" }],
    },
  ],
});
let result = await chat.sendMessage("I have 2 dogs in my house.");
console.log(result.response.text());
result = await chat.sendMessage("How many paws are in my house?");
console.log(result.response.text());

Go

model := client.GenerativeModel("gemini-1.5-flash")
cs := model.StartChat()

cs.History = []*genai.Content{
	{
		Parts: []genai.Part{
			genai.Text("Hello, I have 2 dogs in my house."),
		},
		Role: "user",
	},
	{
		Parts: []genai.Part{
			genai.Text("Great to meet you. What would you like to know?"),
		},
		Role: "model",
	},
}

res, err := cs.SendMessage(ctx, genai.Text("How many paws are in my house?"))
if err != nil {
	log.Fatal(err)
}
printResponse(res)

Shell

curl https://generativelanguage.googleapis.com/v1beta/models/gemini-1.5-flash:generateContent?key=$GOOGLE_API_KEY \
    -H 'Content-Type: application/json' \
    -X POST \
    -d '{
      "contents": [
        {"role":"user",
         "parts":[{
           "text": "Hello"}]},
        {"role": "model",
         "parts":[{
           "text": "Great to meet you. What would you like to know?"}]},
        {"role":"user",
         "parts":[{
           "text": "I have two dogs in my house. How many paws are in my house?"}]},
      ]
    }' 2> /dev/null | grep "text"

Kotlin

val generativeModel =
    GenerativeModel(
        // Specify a Gemini model appropriate for your use case
        modelName = "gemini-1.5-flash",
        // Access your API key as a Build Configuration variable (see "Set up your API key" above)
        apiKey = BuildConfig.apiKey)

val chat =
    generativeModel.startChat(
        history =
            listOf(
                content(role = "user") { text("Hello, I have 2 dogs in my house.") },
                content(role = "model") {
                  text("Great to meet you. What would you like to know?")
                }))

val response = chat.sendMessage("How many paws are in my house?")
print(response.text)

Swift

let generativeModel =
  GenerativeModel(
    // Specify a Gemini model appropriate for your use case
    name: "gemini-1.5-flash",
    // Access your API key from your on-demand resource .plist file (see "Set up your API key"
    // above)
    apiKey: APIKey.default
  )

// Optionally specify existing chat history
let history = [
  ModelContent(role: "user", parts: "Hello, I have 2 dogs in my house."),
  ModelContent(role: "model", parts: "Great to meet you. What would you like to know?"),
]

// Initialize the chat with optional chat history
let chat = generativeModel.startChat(history: history)

// To generate text output, call sendMessage and pass in the message
let response = try await chat.sendMessage("How many paws are in my house?")
if let text = response.text {
  print(text)
}

Dart

// Make sure to include this import:
// import 'package:google_generative_ai/google_generative_ai.dart';
final model = GenerativeModel(
  model: 'gemini-1.5-flash',
  apiKey: apiKey,
);
final chat = model.startChat(history: [
  Content.text('hello'),
  Content.model([TextPart('Great to meet you. What would you like to know?')])
]);
var response =
    await chat.sendMessage(Content.text('I have 2 dogs in my house.'));
print(response.text);
response =
    await chat.sendMessage(Content.text('How many paws are in my house?'));
print(response.text);

Java

// Specify a Gemini model appropriate for your use case
GenerativeModel gm =
    new GenerativeModel(
        /* modelName */ "gemini-1.5-flash",
        // Access your API key as a Build Configuration variable (see "Set up your API key"
        // above)
        /* apiKey */ BuildConfig.apiKey);
GenerativeModelFutures model = GenerativeModelFutures.from(gm);

// (optional) Create previous chat history for context
Content.Builder userContentBuilder = new Content.Builder();
userContentBuilder.setRole("user");
userContentBuilder.addText("Hello, I have 2 dogs in my house.");
Content userContent = userContentBuilder.build();

Content.Builder modelContentBuilder = new Content.Builder();
modelContentBuilder.setRole("model");
modelContentBuilder.addText("Great to meet you. What would you like to know?");
Content modelContent = userContentBuilder.build();

List<Content> history = Arrays.asList(userContent, modelContent);

// Initialize the chat
ChatFutures chat = model.startChat(history);

// Create a new user message
Content.Builder userMessageBuilder = new Content.Builder();
userMessageBuilder.setRole("user");
userMessageBuilder.addText("How many paws are in my house?");
Content userMessage = userMessageBuilder.build();

// For illustrative purposes only. You should use an executor that fits your needs.
Executor executor = Executors.newSingleThreadExecutor();

// Send the message
ListenableFuture<GenerateContentResponse> response = chat.sendMessage(userMessage);

Futures.addCallback(
    response,
    new FutureCallback<GenerateContentResponse>() {
      @Override
      public void onSuccess(GenerateContentResponse result) {
        String resultText = result.getText();
        System.out.println(resultText);
      }

      @Override
      public void onFailure(Throwable t) {
        t.printStackTrace();
      }
    },
    executor);

缓存

Python

document = genai.upload_file(path=media / "a11.txt")
model_name = "gemini-1.5-flash-001"
cache = genai.caching.CachedContent.create(
    model=model_name,
    system_instruction="You are an expert analyzing transcripts.",
    contents=[document],
)
print(cache)

model = genai.GenerativeModel.from_cached_content(cache)
response = model.generate_content("Please summarize this transcript")
print(response.text)

Node.js

// Make sure to include these imports:
// import { GoogleAICacheManager, GoogleAIFileManager } from "@google/generative-ai/server";
// import { GoogleGenerativeAI } from "@google/generative-ai";
const cacheManager = new GoogleAICacheManager(process.env.API_KEY);
const fileManager = new GoogleAIFileManager(process.env.API_KEY);

const uploadResult = await fileManager.uploadFile(`${mediaPath}/a11.txt`, {
  mimeType: "text/plain",
});

const cacheResult = await cacheManager.create({
  model: "models/gemini-1.5-flash-001",
  contents: [
    {
      role: "user",
      parts: [
        {
          fileData: {
            fileUri: uploadResult.file.uri,
            mimeType: uploadResult.file.mimeType,
          },
        },
      ],
    },
  ],
});

console.log(cacheResult);

const genAI = new GoogleGenerativeAI(process.env.API_KEY);
const model = genAI.getGenerativeModelFromCachedContent(cacheResult);
const result = await model.generateContent(
  "Please summarize this transcript.",
);
console.log(result.response.text());

经调优的模型

Python

model = genai.GenerativeModel(model_name="tunedModels/my-increment-model")
result = model.generate_content("III")
print(result.text)  # "IV"

JSON 模式

Python

import typing_extensions as typing

class Recipe(typing.TypedDict):
    recipe_name: str
    ingredients: list[str]

model = genai.GenerativeModel("gemini-1.5-pro-latest")
result = model.generate_content(
    "List a few popular cookie recipes.",
    generation_config=genai.GenerationConfig(
        response_mime_type="application/json", response_schema=list[Recipe]
    ),
)
print(result)

Node.js

// Make sure to include these imports:
// import { GoogleGenerativeAI, SchemaType } from "@google/generative-ai";
const genAI = new GoogleGenerativeAI(process.env.API_KEY);

const schema = {
  description: "List of recipes",
  type: SchemaType.ARRAY,
  items: {
    type: SchemaType.OBJECT,
    properties: {
      recipeName: {
        type: SchemaType.STRING,
        description: "Name of the recipe",
        nullable: false,
      },
    },
    required: ["recipeName"],
  },
};

const model = genAI.getGenerativeModel({
  model: "gemini-1.5-pro",
  generationConfig: {
    responseMimeType: "application/json",
    responseSchema: schema,
  },
});

const result = await model.generateContent(
  "List a few popular cookie recipes.",
);
console.log(result.response.text());

Go

model := client.GenerativeModel("gemini-1.5-pro-latest")
// Ask the model to respond with JSON.
model.ResponseMIMEType = "application/json"
// Specify the schema.
model.ResponseSchema = &genai.Schema{
	Type:  genai.TypeArray,
	Items: &genai.Schema{Type: genai.TypeString},
}
resp, err := model.GenerateContent(ctx, genai.Text("List a few popular cookie recipes using this JSON schema."))
if err != nil {
	log.Fatal(err)
}
for _, part := range resp.Candidates[0].Content.Parts {
	if txt, ok := part.(genai.Text); ok {
		var recipes []string
		if err := json.Unmarshal([]byte(txt), &recipes); err != nil {
			log.Fatal(err)
		}
		fmt.Println(recipes)
	}
}

Shell

curl "https://generativelanguage.googleapis.com/v1beta/models/gemini-1.5-flash:generateContent?key=$GOOGLE_API_KEY" \
-H 'Content-Type: application/json' \
-d '{
    "contents": [{
      "parts":[
        {"text": "List 5 popular cookie recipes"}
        ]
    }],
    "generationConfig": {
        "response_mime_type": "application/json",
        "response_schema": {
          "type": "ARRAY",
          "items": {
            "type": "OBJECT",
            "properties": {
              "recipe_name": {"type":"STRING"},
            }
          }
        }
    }
}' 2> /dev/null | head

Kotlin

val generativeModel =
    GenerativeModel(
        // Specify a Gemini model appropriate for your use case
        modelName = "gemini-1.5-pro",
        // Access your API key as a Build Configuration variable (see "Set up your API key" above)
        apiKey = BuildConfig.apiKey,
        generationConfig = generationConfig {
            responseMimeType = "application/json"
            responseSchema = Schema(
                name = "recipes",
                description = "List of recipes",
                type = FunctionType.ARRAY,
                items = Schema(
                    name = "recipe",
                    description = "A recipe",
                    type = FunctionType.OBJECT,
                    properties = mapOf(
                        "recipeName" to Schema(
                            name = "recipeName",
                            description = "Name of the recipe",
                            type = FunctionType.STRING,
                            nullable = false
                        ),
                    ),
                    required = listOf("recipeName")
                ),
            )
        })

val prompt = "List a few popular cookie recipes."
val response = generativeModel.generateContent(prompt)
print(response.text)

Swift

let jsonSchema = Schema(
  type: .array,
  description: "List of recipes",
  items: Schema(
    type: .object,
    properties: [
      "recipeName": Schema(type: .string, description: "Name of the recipe", nullable: false),
    ],
    requiredProperties: ["recipeName"]
  )
)

let generativeModel = GenerativeModel(
  // Specify a model that supports controlled generation like Gemini 1.5 Pro
  name: "gemini-1.5-pro",
  // Access your API key from your on-demand resource .plist file (see "Set up your API key"
  // above)
  apiKey: APIKey.default,
  generationConfig: GenerationConfig(
    responseMIMEType: "application/json",
    responseSchema: jsonSchema
  )
)

let prompt = "List a few popular cookie recipes."
let response = try await generativeModel.generateContent(prompt)
if let text = response.text {
  print(text)
}

Dart

// Make sure to include this import:
// import 'package:google_generative_ai/google_generative_ai.dart';
final schema = Schema.array(
    description: 'List of recipes',
    items: Schema.object(properties: {
      'recipeName':
          Schema.string(description: 'Name of the recipe.', nullable: false)
    }, requiredProperties: [
      'recipeName'
    ]));

final model = GenerativeModel(
    model: 'gemini-1.5-pro',
    apiKey: apiKey,
    generationConfig: GenerationConfig(
        responseMimeType: 'application/json', responseSchema: schema));

final prompt = 'List a few popular cookie recipes.';
final response = await model.generateContent([Content.text(prompt)]);
print(response.text);

Java

Schema<List<String>> schema =
    new Schema(
        /* name */ "recipes",
        /* description */ "List of recipes",
        /* format */ null,
        /* nullable */ false,
        /* list */ null,
        /* properties */ null,
        /* required */ null,
        /* items */ new Schema(
            /* name */ "recipe",
            /* description */ "A recipe",
            /* format */ null,
            /* nullable */ false,
            /* list */ null,
            /* properties */ Map.of(
                "recipeName",
                new Schema(
                    /* name */ "recipeName",
                    /* description */ "Name of the recipe",
                    /* format */ null,
                    /* nullable */ false,
                    /* list */ null,
                    /* properties */ null,
                    /* required */ null,
                    /* items */ null,
                    /* type */ FunctionType.STRING)),
            /* required */ null,
            /* items */ null,
            /* type */ FunctionType.OBJECT),
        /* type */ FunctionType.ARRAY);

GenerationConfig.Builder configBuilder = new GenerationConfig.Builder();
configBuilder.responseMimeType = "application/json";
configBuilder.responseSchema = schema;

GenerationConfig generationConfig = configBuilder.build();

// Specify a Gemini model appropriate for your use case
GenerativeModel gm =
    new GenerativeModel(
        /* modelName */ "gemini-1.5-pro",
        // Access your API key as a Build Configuration variable (see "Set up your API key"
        // above)
        /* apiKey */ BuildConfig.apiKey,
        /* generationConfig */ generationConfig);
GenerativeModelFutures model = GenerativeModelFutures.from(gm);

Content content = new Content.Builder().addText("List a few popular cookie recipes.").build();

// For illustrative purposes only. You should use an executor that fits your needs.
Executor executor = Executors.newSingleThreadExecutor();

ListenableFuture<GenerateContentResponse> response = model.generateContent(content);
Futures.addCallback(
    response,
    new FutureCallback<GenerateContentResponse>() {
      @Override
      public void onSuccess(GenerateContentResponse result) {
        String resultText = result.getText();
        System.out.println(resultText);
      }

      @Override
      public void onFailure(Throwable t) {
        t.printStackTrace();
      }
    },
    executor);

代码执行

Python

model = genai.GenerativeModel(model_name="gemini-1.5-flash", tools="code_execution")
response = model.generate_content(
    (
        "What is the sum of the first 50 prime numbers? "
        "Generate and run code for the calculation, and make sure you get all 50."
    )
)

# Each `part` either contains `text`, `executable_code` or an `execution_result`
for part in response.candidates[0].content.parts:
    print(part, "\n")

print("-" * 80)
# The `.text` accessor joins the parts into a markdown compatible text representation.
print("\n\n", response.text)

Kotlin


val model = GenerativeModel(
    // Specify a Gemini model appropriate for your use case
    modelName = "gemini-1.5-pro",
    // Access your API key as a Build Configuration variable (see "Set up your API key" above)
    apiKey = BuildConfig.apiKey,
    tools = listOf(Tool.CODE_EXECUTION)
)

val response = model.generateContent("What is the sum of the first 50 prime numbers?")

// Each `part` either contains `text`, `executable_code` or an `execution_result`
println(response.candidates[0].content.parts.joinToString("\n"))

// Alternatively, you can use the `text` accessor which joins the parts into a markdown compatible
// text representation
println(response.text)

Java

// Specify a Gemini model appropriate for your use case
GenerativeModel gm =
        new GenerativeModel(
                /* modelName */ "gemini-1.5-pro",
                // Access your API key as a Build Configuration variable (see "Set up your API key"
                // above)
                /* apiKey */ BuildConfig.apiKey,
                /* generationConfig */ null,
                /* safetySettings */ null,
                /* requestOptions */ new RequestOptions(),
                /* tools */ Collections.singletonList(Tool.CODE_EXECUTION));
GenerativeModelFutures model = GenerativeModelFutures.from(gm);

Content inputContent =
        new Content.Builder().addText("What is the sum of the first 50 prime numbers?").build();

// For illustrative purposes only. You should use an executor that fits your needs.
Executor executor = Executors.newSingleThreadExecutor();

ListenableFuture<GenerateContentResponse> response = model.generateContent(inputContent);
Futures.addCallback(
        response,
        new FutureCallback<GenerateContentResponse>() {
            @Override
            public void onSuccess(GenerateContentResponse result) {
                // Each `part` either contains `text`, `executable_code` or an
                // `execution_result`
                Candidate candidate = result.getCandidates().get(0);
                for (Part part : candidate.getContent().getParts()) {
                    System.out.println(part);
                }

                // Alternatively, you can use the `text` accessor which joins the parts into a
                // markdown compatible text representation
                String resultText = result.getText();
                System.out.println(resultText);
            }

            @Override
            public void onFailure(Throwable t) {
                t.printStackTrace();
            }
        },
        executor);

函数调用

Python

def add(a: float, b: float):
    """returns a + b."""
    return a + b

def subtract(a: float, b: float):
    """returns a - b."""
    return a - b

def multiply(a: float, b: float):
    """returns a * b."""
    return a * b

def divide(a: float, b: float):
    """returns a / b."""
    return a / b

model = genai.GenerativeModel(
    model_name="gemini-1.5-flash", tools=[add, subtract, multiply, divide]
)
chat = model.start_chat(enable_automatic_function_calling=True)
response = chat.send_message(
    "I have 57 cats, each owns 44 mittens, how many mittens is that in total?"
)
print(response.text)

Node.js

// Make sure to include these imports:
// import { GoogleGenerativeAI } from "@google/generative-ai";
async function setLightValues(brightness, colorTemperature) {
  // This mock API returns the requested lighting values
  return {
    brightness,
    colorTemperature,
  };
}

const controlLightFunctionDeclaration = {
  name: "controlLight",
  parameters: {
    type: "OBJECT",
    description: "Set the brightness and color temperature of a room light.",
    properties: {
      brightness: {
        type: "NUMBER",
        description:
          "Light level from 0 to 100. Zero is off and 100 is full brightness.",
      },
      colorTemperature: {
        type: "STRING",
        description:
          "Color temperature of the light fixture which can be `daylight`, `cool` or `warm`.",
      },
    },
    required: ["brightness", "colorTemperature"],
  },
};

// Executable function code. Put it in a map keyed by the function name
// so that you can call it once you get the name string from the model.
const functions = {
  controlLight: ({ brightness, colorTemperature }) => {
    return setLightValues(brightness, colorTemperature);
  },
};

const genAI = new GoogleGenerativeAI(process.env.API_KEY);
const model = genAI.getGenerativeModel({
  model: "gemini-1.5-flash",
  tools: { functionDeclarations: [controlLightFunctionDeclaration] },
});
const chat = model.startChat();
const prompt = "Dim the lights so the room feels cozy and warm.";

// Send the message to the model.
const result = await chat.sendMessage(prompt);

// For simplicity, this uses the first function call found.
const call = result.response.functionCalls()[0];

if (call) {
  // Call the executable function named in the function call
  // with the arguments specified in the function call and
  // let it call the hypothetical API.
  const apiResponse = await functions[call.name](call.args);

  // Send the API response back to the model so it can generate
  // a text response that can be displayed to the user.
  const result2 = await chat.sendMessage([
    {
      functionResponse: {
        name: "controlLight",
        response: apiResponse,
      },
    },
  ]);

  // Log the text response.
  console.log(result2.response.text());
}

Shell


cat > tools.json << EOF
{
  "function_declarations": [
    {
      "name": "enable_lights",
      "description": "Turn on the lighting system.",
      "parameters": { "type": "object" }
    },
    {
      "name": "set_light_color",
      "description": "Set the light color. Lights must be enabled for this to work.",
      "parameters": {
        "type": "object",
        "properties": {
          "rgb_hex": {
            "type": "string",
            "description": "The light color as a 6-digit hex string, e.g. ff0000 for red."
          }
        },
        "required": [
          "rgb_hex"
        ]
      }
    },
    {
      "name": "stop_lights",
      "description": "Turn off the lighting system.",
      "parameters": { "type": "object" }
    }
  ]
} 
EOF

curl "https://generativelanguage.googleapis.com/v1beta/models/gemini-1.5-pro-latest:generateContent?key=$GOOGLE_API_KEY" \
  -H 'Content-Type: application/json' \
  -d @<(echo '
  {
    "system_instruction": {
      "parts": {
        "text": "You are a helpful lighting system bot. You can turn lights on and off, and you can set the color. Do not perform any other tasks."
      }
    },
    "tools": ['$(source "$tools")'],

    "tool_config": {
      "function_calling_config": {"mode": "none"}
    },

    "contents": {
      "role": "user",
      "parts": {
        "text": "What can you do?"
      }
    }
  }
') 2>/dev/null |sed -n '/"content"/,/"finishReason"/p'

Kotlin

fun multiply(a: Double, b: Double) = a * b

val multiplyDefinition = defineFunction(
    name = "multiply",
    description = "returns the product of the provided numbers.",
    parameters = listOf(
    Schema.double("a", "First number"),
    Schema.double("b", "Second number")
    )
)

val usableFunctions = listOf(multiplyDefinition)

val generativeModel =
    GenerativeModel(
        // Specify a Gemini model appropriate for your use case
        modelName = "gemini-1.5-flash",
        // Access your API key as a Build Configuration variable (see "Set up your API key" above)
        apiKey = BuildConfig.apiKey,
        // List the functions definitions you want to make available to the model
        tools = listOf(Tool(usableFunctions))
    )

val chat = generativeModel.startChat()
val prompt = "I have 57 cats, each owns 44 mittens, how many mittens is that in total?"

// Send the message to the generative model
var response = chat.sendMessage(prompt)

// Check if the model responded with a function call
response.functionCalls.first { it.name == "multiply" }.apply {
    val a: String by args
    val b: String by args

    val result = JSONObject(mapOf("result" to multiply(a.toDouble(), b.toDouble())))
    response = chat.sendMessage(
        content(role = "function") {
            part(FunctionResponsePart("multiply", result))
        }
    )
}

// Whenever the model responds with text, show it in the UI
response.text?.let { modelResponse ->
    println(modelResponse)
}

Swift

// Calls a hypothetical API to control a light bulb and returns the values that were set.
func controlLight(brightness: Double, colorTemperature: String) -> JSONObject {
  return ["brightness": .number(brightness), "colorTemperature": .string(colorTemperature)]
}

let generativeModel =
  GenerativeModel(
    // Use a model that supports function calling, like a Gemini 1.5 model
    name: "gemini-1.5-flash",
    // Access your API key from your on-demand resource .plist file (see "Set up your API key"
    // above)
    apiKey: APIKey.default,
    tools: [Tool(functionDeclarations: [
      FunctionDeclaration(
        name: "controlLight",
        description: "Set the brightness and color temperature of a room light.",
        parameters: [
          "brightness": Schema(
            type: .number,
            format: "double",
            description: "Light level from 0 to 100. Zero is off and 100 is full brightness."
          ),
          "colorTemperature": Schema(
            type: .string,
            format: "enum",
            description: "Color temperature of the light fixture.",
            enumValues: ["daylight", "cool", "warm"]
          ),
        ],
        requiredParameters: ["brightness", "colorTemperature"]
      ),
    ])]
  )

let chat = generativeModel.startChat()

let prompt = "Dim the lights so the room feels cozy and warm."

// Send the message to the model.
let response1 = try await chat.sendMessage(prompt)

// Check if the model responded with a function call.
// For simplicity, this sample uses the first function call found.
guard let functionCall = response1.functionCalls.first else {
  fatalError("Model did not respond with a function call.")
}
// Print an error if the returned function was not declared
guard functionCall.name == "controlLight" else {
  fatalError("Unexpected function called: \(functionCall.name)")
}
// Verify that the names and types of the parameters match the declaration
guard case let .number(brightness) = functionCall.args["brightness"] else {
  fatalError("Missing argument: brightness")
}
guard case let .string(colorTemperature) = functionCall.args["colorTemperature"] else {
  fatalError("Missing argument: colorTemperature")
}

// Call the executable function named in the FunctionCall with the arguments specified in the
// FunctionCall and let it call the hypothetical API.
let apiResponse = controlLight(brightness: brightness, colorTemperature: colorTemperature)

// Send the API response back to the model so it can generate a text response that can be
// displayed to the user.
let response2 = try await chat.sendMessage([ModelContent(
  role: "function",
  parts: [.functionResponse(FunctionResponse(name: "controlLight", response: apiResponse))]
)])

if let text = response2.text {
  print(text)
}

Dart

// Make sure to include this import:
// import 'package:google_generative_ai/google_generative_ai.dart';
Map<String, Object?> setLightValues(Map<String, Object?> args) {
  return args;
}

final controlLightFunction = FunctionDeclaration(
    'controlLight',
    'Set the brightness and color temperature of a room light.',
    Schema.object(properties: {
      'brightness': Schema.number(
          description:
              'Light level from 0 to 100. Zero is off and 100 is full brightness.',
          nullable: false),
      'colorTemperatur': Schema.string(
          description:
              'Color temperature of the light fixture which can be `daylight`, `cool`, or `warm`',
          nullable: false),
    }));

final functions = {controlLightFunction.name: setLightValues};
FunctionResponse dispatchFunctionCall(FunctionCall call) {
  final function = functions[call.name]!;
  final result = function(call.args);
  return FunctionResponse(call.name, result);
}

final model = GenerativeModel(
  model: 'gemini-1.5-pro',
  apiKey: apiKey,
  tools: [
    Tool(functionDeclarations: [controlLightFunction])
  ],
);

final prompt = 'Dim the lights so the room feels cozy and warm.';
final content = [Content.text(prompt)];
var response = await model.generateContent(content);

List<FunctionCall> functionCalls;
while ((functionCalls = response.functionCalls.toList()).isNotEmpty) {
  var responses = <FunctionResponse>[
    for (final functionCall in functionCalls)
      dispatchFunctionCall(functionCall)
  ];
  content
    ..add(response.candidates.first.content)
    ..add(Content.functionResponses(responses));
  response = await model.generateContent(content);
}
print('Response: ${response.text}');

Java

FunctionDeclaration multiplyDefinition =
    defineFunction(
        /* name  */ "multiply",
        /* description */ "returns a * b.",
        /* parameters */ Arrays.asList(
            Schema.numDouble("a", "First parameter"),
            Schema.numDouble("b", "Second parameter")),
        /* required */ Arrays.asList("a", "b"));

Tool tool = new Tool(Arrays.asList(multiplyDefinition), null);

// Specify a Gemini model appropriate for your use case
GenerativeModel gm =
    new GenerativeModel(
        /* modelName */ "gemini-1.5-flash",
        // Access your API key as a Build Configuration variable (see "Set up your API key"
        // above)
        /* apiKey */ BuildConfig.apiKey,
        /* generationConfig (optional) */ null,
        /* safetySettings (optional) */ null,
        /* requestOptions (optional) */ new RequestOptions(),
        /* functionDeclarations (optional) */ Arrays.asList(tool));
GenerativeModelFutures model = GenerativeModelFutures.from(gm);

// Create prompt
Content.Builder userContentBuilder = new Content.Builder();
userContentBuilder.setRole("user");
userContentBuilder.addText(
    "I have 57 cats, each owns 44 mittens, how many mittens is that in total?");
Content userMessage = userContentBuilder.build();

// For illustrative purposes only. You should use an executor that fits your needs.
Executor executor = Executors.newSingleThreadExecutor();

// Initialize the chat
ChatFutures chat = model.startChat();

// Send the message
ListenableFuture<GenerateContentResponse> response = chat.sendMessage(userMessage);

Futures.addCallback(
    response,
    new FutureCallback<GenerateContentResponse>() {
      @Override
      public void onSuccess(GenerateContentResponse result) {
        if (!result.getFunctionCalls().isEmpty()) {
          handleFunctionCall(result);
        }
        if (!result.getText().isEmpty()) {
          System.out.println(result.getText());
        }
      }

      @Override
      public void onFailure(Throwable t) {
        t.printStackTrace();
      }

      private void handleFunctionCall(GenerateContentResponse result) {
        FunctionCallPart multiplyFunctionCallPart =
            result.getFunctionCalls().stream()
                .filter(fun -> fun.getName().equals("multiply"))
                .findFirst()
                .get();
        double a = Double.parseDouble(multiplyFunctionCallPart.getArgs().get("a"));
        double b = Double.parseDouble(multiplyFunctionCallPart.getArgs().get("b"));

        try {
          // `multiply(a, b)` is a regular java function defined in another class
          FunctionResponsePart functionResponsePart =
              new FunctionResponsePart(
                  "multiply", new JSONObject().put("result", multiply(a, b)));

          // Create prompt
          Content.Builder functionCallResponse = new Content.Builder();
          userContentBuilder.setRole("user");
          userContentBuilder.addPart(functionResponsePart);
          Content userMessage = userContentBuilder.build();

          chat.sendMessage(userMessage);
        } catch (JSONException e) {
          throw new RuntimeException(e);
        }
      }
    },
    executor);

生成配置

Python

model = genai.GenerativeModel("gemini-1.5-flash")
response = model.generate_content(
    "Tell me a story about a magic backpack.",
    generation_config=genai.types.GenerationConfig(
        # Only one candidate for now.
        candidate_count=1,
        stop_sequences=["x"],
        max_output_tokens=20,
        temperature=1.0,
    ),
)

print(response.text)

Node.js

// Make sure to include these imports:
// import { GoogleGenerativeAI } from "@google/generative-ai";
const genAI = new GoogleGenerativeAI(process.env.API_KEY);
const model = genAI.getGenerativeModel({
  model: "gemini-1.5-flash",
  generationConfig: {
    candidateCount: 1,
    stopSequences: ["x"],
    maxOutputTokens: 20,
    temperature: 1.0,
  },
});

const result = await model.generateContent(
  "Tell me a story about a magic backpack.",
);
console.log(result.response.text());

Go

model := client.GenerativeModel("gemini-1.5-pro-latest")
model.SetTemperature(0.9)
model.SetTopP(0.5)
model.SetTopK(20)
model.SetMaxOutputTokens(100)
model.SystemInstruction = genai.NewUserContent(genai.Text("You are Yoda from Star Wars."))
model.ResponseMIMEType = "application/json"
resp, err := model.GenerateContent(ctx, genai.Text("What is the average size of a swallow?"))
if err != nil {
	log.Fatal(err)
}
printResponse(resp)

Shell

curl https://generativelanguage.googleapis.com/v1beta/models/gemini-1.5-flash:generateContent?key=$GOOGLE_API_KEY \
    -H 'Content-Type: application/json' \
    -X POST \
    -d '{
        "contents": [{
            "parts":[
                {"text": "Write a story about a magic backpack."}
            ]
        }],
        "safetySettings": [
            {
                "category": "HARM_CATEGORY_DANGEROUS_CONTENT",
                "threshold": "BLOCK_ONLY_HIGH"
            }
        ],
        "generationConfig": {
            "stopSequences": [
                "Title"
            ],
            "temperature": 1.0,
            "maxOutputTokens": 800,
            "topP": 0.8,
            "topK": 10
        }
    }'  2> /dev/null | grep "text"

Kotlin

val config = generationConfig {
  temperature = 0.9f
  topK = 16
  topP = 0.1f
  maxOutputTokens = 200
  stopSequences = listOf("red")
}

val generativeModel =
    GenerativeModel(
        // Specify a Gemini model appropriate for your use case
        modelName = "gemini-1.5-flash",
        apiKey = BuildConfig.apiKey,
        generationConfig = config)

Swift

let config = GenerationConfig(
  temperature: 0.9,
  topP: 0.1,
  topK: 16,
  candidateCount: 1,
  maxOutputTokens: 200,
  stopSequences: ["red", "orange"]
)

let generativeModel =
  GenerativeModel(
    // Specify a Gemini model appropriate for your use case
    name: "gemini-1.5-flash",
    // Access your API key from your on-demand resource .plist file (see "Set up your API key"
    // above)
    apiKey: APIKey.default,
    generationConfig: config
  )

Dart

final model = GenerativeModel(
  model: 'gemini-1.5-flash',
  apiKey: apiKey,
);
final prompt = 'Tell me a story about a magic backpack.';

final response = await model.generateContent(
  [Content.text(prompt)],
  generationConfig: GenerationConfig(
    candidateCount: 1,
    stopSequences: ['x'],
    maxOutputTokens: 20,
    temperature: 1.0,
  ),
);
print(response.text);

Java

GenerationConfig.Builder configBuilder = new GenerationConfig.Builder();
configBuilder.temperature = 0.9f;
configBuilder.topK = 16;
configBuilder.topP = 0.1f;
configBuilder.maxOutputTokens = 200;
configBuilder.stopSequences = Arrays.asList("red");

GenerationConfig generationConfig = configBuilder.build();

// Specify a Gemini model appropriate for your use case
GenerativeModel gm =
    new GenerativeModel("gemini-1.5-flash", BuildConfig.apiKey, generationConfig);

GenerativeModelFutures model = GenerativeModelFutures.from(gm);

安全设置

Python

model = genai.GenerativeModel("gemini-1.5-flash")
unsafe_prompt = "I support Martians Soccer Club and I think Jupiterians Football Club sucks! Write a ironic phrase about them."
response = model.generate_content(
    unsafe_prompt,
    safety_settings={
        "HATE": "MEDIUM",
        "HARASSMENT": "BLOCK_ONLY_HIGH",
    },
)
# If you want to set all the safety_settings to the same value you can just pass that value:
response = model.generate_content(unsafe_prompt, safety_settings="MEDIUM")
try:
    print(response.text)
except:
    print("No information generated by the model.")

print(response.candidates[0].safety_ratings)

Node.js

// Make sure to include these imports:
// import { GoogleGenerativeAI, HarmCategory, HarmBlockThreshold } from "@google/generative-ai";
const genAI = new GoogleGenerativeAI(process.env.API_KEY);
const model = genAI.getGenerativeModel({
  model: "gemini-1.5-flash",
  safetySettings: [
    {
      category: HarmCategory.HARM_CATEGORY_HARASSMENT,
      threshold: HarmBlockThreshold.BLOCK_MEDIUM_AND_ABOVE,
    },
    {
      category: HarmCategory.HARM_CATEGORY_HATE_SPEECH,
      threshold: HarmBlockThreshold.BLOCK_LOW_AND_ABOVE,
    },
  ],
});

const unsafePrompt =
  "I support Martians Soccer Club and I think " +
  "Jupiterians Football Club sucks! Write an ironic phrase telling " +
  "them how I feel about them.";

const result = await model.generateContent(unsafePrompt);

try {
  result.response.text();
} catch (e) {
  console.error(e);
  console.log(result.response.candidates[0].safetyRatings);
}

Go

model := client.GenerativeModel("gemini-1.5-flash")
model.SafetySettings = []*genai.SafetySetting{
	{
		Category:  genai.HarmCategoryDangerousContent,
		Threshold: genai.HarmBlockLowAndAbove,
	},
	{
		Category:  genai.HarmCategoryHarassment,
		Threshold: genai.HarmBlockMediumAndAbove,
	},
}
resp, err := model.GenerateContent(ctx, genai.Text("I support Martians Soccer Club and I think Jupiterians Football Club sucks! Write a ironic phrase about them."))
if err != nil {
	log.Fatal(err)
}
printResponse(resp)

Shell

echo '{
    "safetySettings": [
        {"category": "HARM_CATEGORY_HARASSMENT", "threshold": "BLOCK_ONLY_HIGH"},
        {"category": "HARM_CATEGORY_HATE_SPEECH", "threshold": "BLOCK_MEDIUM_AND_ABOVE"}
    ],
    "contents": [{
        "parts":[{
            "text": "'I support Martians Soccer Club and I think Jupiterians Football Club sucks! Write a ironic phrase about them.'"}]}]}' > request.json

curl "https://generativelanguage.googleapis.com/v1beta/models/gemini-1.5-flash:generateContent?key=$GOOGLE_API_KEY" \
    -H 'Content-Type: application/json' \
    -X POST \
    -d @request.json 2> /dev/null

Kotlin

val harassmentSafety = SafetySetting(HarmCategory.HARASSMENT, BlockThreshold.ONLY_HIGH)

val hateSpeechSafety = SafetySetting(HarmCategory.HATE_SPEECH, BlockThreshold.MEDIUM_AND_ABOVE)

val generativeModel =
    GenerativeModel(
        // The Gemini 1.5 models are versatile and work with most use cases
        modelName = "gemini-1.5-flash",
        apiKey = BuildConfig.apiKey,
        safetySettings = listOf(harassmentSafety, hateSpeechSafety))

Swift

let safetySettings = [
  SafetySetting(harmCategory: .dangerousContent, threshold: .blockLowAndAbove),
  SafetySetting(harmCategory: .harassment, threshold: .blockMediumAndAbove),
  SafetySetting(harmCategory: .hateSpeech, threshold: .blockOnlyHigh),
]

let generativeModel =
  GenerativeModel(
    // Specify a Gemini model appropriate for your use case
    name: "gemini-1.5-flash",
    // Access your API key from your on-demand resource .plist file (see "Set up your API key"
    // above)
    apiKey: APIKey.default,
    safetySettings: safetySettings
  )

Dart

// Make sure to include this import:
// import 'package:google_generative_ai/google_generative_ai.dart';
final model = GenerativeModel(
  model: 'gemini-1.5-flash',
  apiKey: apiKey,
);
final prompt = 'I support Martians Soccer Club and I think '
    'Jupiterians Football Club sucks! Write an ironic phrase telling '
    'them how I feel about them.';

final response = await model.generateContent(
  [Content.text(prompt)],
  safetySettings: [
    SafetySetting(HarmCategory.harassment, HarmBlockThreshold.medium),
    SafetySetting(HarmCategory.hateSpeech, HarmBlockThreshold.low),
  ],
);
try {
  print(response.text);
} catch (e) {
  print(e);
  for (final SafetyRating(:category, :probability)
      in response.candidates.first.safetyRatings!) {
    print('Safety Rating: $category - $probability');
  }
}

Java

SafetySetting harassmentSafety =
    new SafetySetting(HarmCategory.HARASSMENT, BlockThreshold.ONLY_HIGH);

SafetySetting hateSpeechSafety =
    new SafetySetting(HarmCategory.HATE_SPEECH, BlockThreshold.MEDIUM_AND_ABOVE);

// Specify a Gemini model appropriate for your use case
GenerativeModel gm =
    new GenerativeModel(
        "gemini-1.5-flash",
        BuildConfig.apiKey,
        null, // generation config is optional
        Arrays.asList(harassmentSafety, hateSpeechSafety));

GenerativeModelFutures model = GenerativeModelFutures.from(gm);

系统指令

Python

model = genai.GenerativeModel(
    "models/gemini-1.5-flash",
    system_instruction="You are a cat. Your name is Neko.",
)
response = model.generate_content("Good morning! How are you?")
print(response.text)

Node.js

// Make sure to include these imports:
// import { GoogleGenerativeAI } from "@google/generative-ai";
const genAI = new GoogleGenerativeAI(process.env.API_KEY);
const model = genAI.getGenerativeModel({
  model: "gemini-1.5-flash",
  systemInstruction: "You are a cat. Your name is Neko.",
});

const prompt = "Good morning! How are you?";

const result = await model.generateContent(prompt);
const response = result.response;
const text = response.text();
console.log(text);

Go

model := client.GenerativeModel("gemini-1.5-flash")
model.SystemInstruction = genai.NewUserContent(genai.Text("You are a cat. Your name is Neko."))
resp, err := model.GenerateContent(ctx, genai.Text("Good morning! How are you?"))
if err != nil {
	log.Fatal(err)
}
printResponse(resp)

Shell

curl "https://generativelanguage.googleapis.com/v1beta/models/gemini-1.5-flash:generateContent?key=$GOOGLE_API_KEY" \
-H 'Content-Type: application/json' \
-d '{ "system_instruction": {
    "parts":
      { "text": "You are a cat. Your name is Neko."}},
    "contents": {
      "parts": {
        "text": "Hello there"}}}'

Kotlin

val generativeModel =
    GenerativeModel(
        // Specify a Gemini model appropriate for your use case
        modelName = "gemini-1.5-flash",
        apiKey = BuildConfig.apiKey,
        systemInstruction = content { text("You are a cat. Your name is Neko.") },
    )

Swift

let generativeModel =
  GenerativeModel(
    // Specify a model that supports system instructions, like a Gemini 1.5 model
    name: "gemini-1.5-flash",
    // Access your API key from your on-demand resource .plist file (see "Set up your API key"
    // above)
    apiKey: APIKey.default,
    systemInstruction: ModelContent(role: "system", parts: "You are a cat. Your name is Neko.")
  )

Dart

// Make sure to include this import:
// import 'package:google_generative_ai/google_generative_ai.dart';
final model = GenerativeModel(
  model: 'gemini-1.5-flash',
  apiKey: apiKey,
  systemInstruction: Content.system('You are a cat. Your name is Neko.'),
);
final prompt = 'Good morning! How are you?';

final response = await model.generateContent([Content.text(prompt)]);
print(response.text);

Java

GenerativeModel model =
    new GenerativeModel(
        // Specify a Gemini model appropriate for your use case
        /* modelName */ "gemini-1.5-flash",
        /* apiKey */ BuildConfig.apiKey,
        /* generationConfig (optional) */ null,
        /* safetySettings (optional) */ null,
        /* requestOptions (optional) */ new RequestOptions(),
        /* tools (optional) */ null,
        /* toolsConfig (optional) */ null,
        /* systemInstruction (optional) */ new Content.Builder()
            .addText("You are a cat. Your name is Neko.")
            .build());

响应正文

如果成功,则响应正文包含一个 GenerateContentResponse 实例。

方法:models.streamGenerateContent

在给定输入 GenerateContentRequest 的情况下,根据模型生成流式响应

端点

POST https://generativelanguage.googleapis.com/v1beta/{model=models/*}:streamGenerateContent

路径参数

model string

必需。用于生成补全的 Model 的名称。

格式:name=models/{model}。其格式为 models/{model}

请求正文

请求正文中包含结构如下的数据:

字段
contents[] object (Content)

必需。与模型的当前对话内容。

对于单轮询问,这是一个实例。对于聊天等多轮对话询问,此字段是重复字段,包含对话记录和最新请求。

tools[] object (Tool)

可选。Model 可用于生成下一个响应的 Tools 列表。

Tool 是一段代码,使系统能够与外部系统交互,以便在 Model 不知情和范围之外执行操作或执行一组操作。支持的 Tool 包括 FunctioncodeExecution。如需了解详情,请参阅函数调用代码执行指南。

toolConfig object (ToolConfig)

可选。请求中指定的任何 Tool 的工具配置。如需查看用法示例,请参阅函数调用指南

safetySettings[] object (SafetySetting)

可选。用于屏蔽不安全内容的唯一 SafetySetting 实例的列表。

这将在 GenerateContentRequest.contentsGenerateContentResponse.candidates 上强制执行。每个 SafetyCategory 类型不应有多个设置。API 会屏蔽未达到这些设置设定的阈值的所有内容和响应。此列表会替换 safetySettings 中指定的每个 SafetyCategory 的默认设置。如果列表中提供的给定 SafetyCategory 没有 SafetySetting,则该 API 将使用该类别的默认安全设置。支持的有害内容类别包括 HARM_CATEGORY_HATE_SPEECH、HARM_CATEGORY_SEXUALLY_EXPLICIT、HARM_CATEGORY_DANGEROUS_CONTENT 和 HARM_CATEGORY_HARASSMENT。如需详细了解可用的安全设置,请参阅指南。此外,请参阅安全指南,了解如何在 AI 应用中纳入安全注意事项。

systemInstruction object (Content)

可选。开发者设置的系统说明。目前仅支持文本。

generationConfig object (GenerationConfig)

可选。模型生成和输出的配置选项。

cachedContent string

可选。缓存的内容的名称,用于作为上下文来提供预测。格式:cachedContents/{cachedContent}

示例请求

文本

Python

model = genai.GenerativeModel("gemini-1.5-flash")
response = model.generate_content("Write a story about a magic backpack.", stream=True)
for chunk in response:
    print(chunk.text)
    print("_" * 80)

Node.js

// Make sure to include these imports:
// import { GoogleGenerativeAI } from "@google/generative-ai";
const genAI = new GoogleGenerativeAI(process.env.API_KEY);
const model = genAI.getGenerativeModel({ model: "gemini-1.5-flash" });

const prompt = "Write a story about a magic backpack.";

const result = await model.generateContentStream(prompt);

// Print text as it comes in.
for await (const chunk of result.stream) {
  const chunkText = chunk.text();
  process.stdout.write(chunkText);
}

Go

model := client.GenerativeModel("gemini-1.5-flash")
iter := model.GenerateContentStream(ctx, genai.Text("Write a story about a magic backpack."))
for {
	resp, err := iter.Next()
	if err == iterator.Done {
		break
	}
	if err != nil {
		log.Fatal(err)
	}
	printResponse(resp)
}

Shell

curl "https://generativelanguage.googleapis.com/v1beta/models/gemini-1.5-flash:streamGenerateContent?alt=sse&key=${GOOGLE_API_KEY}" \
        -H 'Content-Type: application/json' \
        --no-buffer \
        -d '{ "contents":[{"parts":[{"text": "Write a story about a magic backpack."}]}]}'

Kotlin

val generativeModel =
    GenerativeModel(
        // Specify a Gemini model appropriate for your use case
        modelName = "gemini-1.5-flash",
        // Access your API key as a Build Configuration variable (see "Set up your API key" above)
        apiKey = BuildConfig.apiKey)

val prompt = "Write a story about a magic backpack."
// Use streaming with text-only input
generativeModel.generateContentStream(prompt).collect { chunk -> print(chunk.text) }

Swift

let generativeModel =
  GenerativeModel(
    // Specify a Gemini model appropriate for your use case
    name: "gemini-1.5-flash",
    // Access your API key from your on-demand resource .plist file (see "Set up your API key"
    // above)
    apiKey: APIKey.default
  )

let prompt = "Write a story about a magic backpack."
// Use streaming with text-only input
for try await response in generativeModel.generateContentStream(prompt) {
  if let text = response.text {
    print(text)
  }
}

Dart

// Make sure to include this import:
// import 'package:google_generative_ai/google_generative_ai.dart';
final model = GenerativeModel(
  model: 'gemini-1.5-flash',
  apiKey: apiKey,
);
final prompt = 'Write a story about a magic backpack.';

final responses = model.generateContentStream([Content.text(prompt)]);
await for (final response in responses) {
  print(response.text);
}

Java

// Specify a Gemini model appropriate for your use case
GenerativeModel gm =
    new GenerativeModel(
        /* modelName */ "gemini-1.5-flash",
        // Access your API key as a Build Configuration variable (see "Set up your API key"
        // above)
        /* apiKey */ BuildConfig.apiKey);
GenerativeModelFutures model = GenerativeModelFutures.from(gm);

Content content =
    new Content.Builder().addText("Write a story about a magic backpack.").build();

Publisher<GenerateContentResponse> streamingResponse = model.generateContentStream(content);

StringBuilder outputContent = new StringBuilder();

streamingResponse.subscribe(
    new Subscriber<GenerateContentResponse>() {
      @Override
      public void onNext(GenerateContentResponse generateContentResponse) {
        String chunk = generateContentResponse.getText();
        outputContent.append(chunk);
      }

      @Override
      public void onComplete() {
        System.out.println(outputContent);
      }

      @Override
      public void onError(Throwable t) {
        t.printStackTrace();
      }

      @Override
      public void onSubscribe(Subscription s) {
        s.request(Long.MAX_VALUE);
      }
    });

Image

Python

import PIL.Image

model = genai.GenerativeModel("gemini-1.5-flash")
organ = PIL.Image.open(media / "organ.jpg")
response = model.generate_content(["Tell me about this instrument", organ], stream=True)
for chunk in response:
    print(chunk.text)
    print("_" * 80)

Node.js

// Make sure to include these imports:
// import { GoogleGenerativeAI } from "@google/generative-ai";
const genAI = new GoogleGenerativeAI(process.env.API_KEY);
const model = genAI.getGenerativeModel({ model: "gemini-1.5-flash" });

function fileToGenerativePart(path, mimeType) {
  return {
    inlineData: {
      data: Buffer.from(fs.readFileSync(path)).toString("base64"),
      mimeType,
    },
  };
}

const prompt = "Describe how this product might be manufactured.";
// Note: The only accepted mime types are some image types, image/*.
const imagePart = fileToGenerativePart(
  `${mediaPath}/jetpack.jpg`,
  "image/jpeg",
);

const result = await model.generateContentStream([prompt, imagePart]);

// Print text as it comes in.
for await (const chunk of result.stream) {
  const chunkText = chunk.text();
  process.stdout.write(chunkText);
}

Go

model := client.GenerativeModel("gemini-1.5-flash")

imgData, err := os.ReadFile(filepath.Join(testDataDir, "organ.jpg"))
if err != nil {
	log.Fatal(err)
}
iter := model.GenerateContentStream(ctx,
	genai.Text("Tell me about this instrument"),
	genai.ImageData("jpeg", imgData))
for {
	resp, err := iter.Next()
	if err == iterator.Done {
		break
	}
	if err != nil {
		log.Fatal(err)
	}
	printResponse(resp)
}

Shell

curl "https://generativelanguage.googleapis.com/v1beta/models/gemini-1.5-flash:streamGenerateContent?alt=sse&key=$GOOGLE_API_KEY" \
    -H 'Content-Type: application/json' \
    -X POST \
    -d '{
      "contents": [{
        "parts":[
            {"text": "Tell me about this instrument"},
            {
              "inline_data": {
                "mime_type":"image/jpeg",
                "data": "'$(base64 $B64FLAGS $IMG_PATH)'"
              }
            }
        ]
        }]
       }' 2> /dev/null

Kotlin

val generativeModel =
    GenerativeModel(
        // Specify a Gemini model appropriate for your use case
        modelName = "gemini-1.5-flash",
        // Access your API key as a Build Configuration variable (see "Set up your API key" above)
        apiKey = BuildConfig.apiKey)

val image: Bitmap = BitmapFactory.decodeResource(context.resources, R.drawable.image)
val inputContent = content {
  image(image)
  text("What's in this picture?")
}

generativeModel.generateContentStream(inputContent).collect { chunk -> print(chunk.text) }

Swift

let generativeModel =
  GenerativeModel(
    // Specify a Gemini model appropriate for your use case
    name: "gemini-1.5-flash",
    // Access your API key from your on-demand resource .plist file (see "Set up your API key"
    // above)
    apiKey: APIKey.default
  )

guard let image = UIImage(systemName: "cloud.sun") else { fatalError() }

let prompt = "What's in this picture?"

for try await response in generativeModel.generateContentStream(image, prompt) {
  if let text = response.text {
    print(text)
  }
}

Dart

// Make sure to include this import:
// import 'package:google_generative_ai/google_generative_ai.dart';
final model = GenerativeModel(
  model: 'gemini-1.5-flash',
  apiKey: apiKey,
);

Future<DataPart> fileToPart(String mimeType, String path) async {
  return DataPart(mimeType, await File(path).readAsBytes());
}

final prompt = 'Describe how this product might be manufactured.';
final image = await fileToPart('image/jpeg', 'resources/jetpack.jpg');

final responses = model.generateContentStream([
  Content.multi([TextPart(prompt), image])
]);
await for (final response in responses) {
  print(response.text);
}

Java

// Specify a Gemini model appropriate for your use case
GenerativeModel gm =
    new GenerativeModel(
        /* modelName */ "gemini-1.5-flash",
        // Access your API key as a Build Configuration variable (see "Set up your API key"
        // above)
        /* apiKey */ BuildConfig.apiKey);
GenerativeModelFutures model = GenerativeModelFutures.from(gm);

Bitmap image1 = BitmapFactory.decodeResource(context.getResources(), R.drawable.image1);
Bitmap image2 = BitmapFactory.decodeResource(context.getResources(), R.drawable.image2);

Content content =
    new Content.Builder()
        .addText("What's different between these pictures?")
        .addImage(image1)
        .addImage(image2)
        .build();

// For illustrative purposes only. You should use an executor that fits your needs.
Executor executor = Executors.newSingleThreadExecutor();

Publisher<GenerateContentResponse> streamingResponse = model.generateContentStream(content);

StringBuilder outputContent = new StringBuilder();

streamingResponse.subscribe(
    new Subscriber<GenerateContentResponse>() {
      @Override
      public void onNext(GenerateContentResponse generateContentResponse) {
        String chunk = generateContentResponse.getText();
        outputContent.append(chunk);
      }

      @Override
      public void onComplete() {
        System.out.println(outputContent);
      }

      @Override
      public void onError(Throwable t) {
        t.printStackTrace();
      }

      @Override
      public void onSubscribe(Subscription s) {
        s.request(Long.MAX_VALUE);
      }
    });

音频

Python

model = genai.GenerativeModel("gemini-1.5-flash")
sample_audio = genai.upload_file(media / "sample.mp3")
response = model.generate_content(["Give me a summary of this audio file.", sample_audio])

for chunk in response:
    print(chunk.text)
    print("_" * 80)

Shell

# Use File API to upload audio data to API request.
MIME_TYPE=$(file -b --mime-type "${AUDIO_PATH}")
NUM_BYTES=$(wc -c < "${AUDIO_PATH}")
DISPLAY_NAME=AUDIO

tmp_header_file=upload-header.tmp

# Initial resumable request defining metadata.
# The upload url is in the response headers dump them to a file.
curl "${BASE_URL}/upload/v1beta/files?key=${GOOGLE_API_KEY}" \
  -D upload-header.tmp \
  -H "X-Goog-Upload-Protocol: resumable" \
  -H "X-Goog-Upload-Command: start" \
  -H "X-Goog-Upload-Header-Content-Length: ${NUM_BYTES}" \
  -H "X-Goog-Upload-Header-Content-Type: ${MIME_TYPE}" \
  -H "Content-Type: application/json" \
  -d "{'file': {'display_name': '${DISPLAY_NAME}'}}" 2> /dev/null

upload_url=$(grep -i "x-goog-upload-url: " "${tmp_header_file}" | cut -d" " -f2 | tr -d "\r")
rm "${tmp_header_file}"

# Upload the actual bytes.
curl "${upload_url}" \
  -H "Content-Length: ${NUM_BYTES}" \
  -H "X-Goog-Upload-Offset: 0" \
  -H "X-Goog-Upload-Command: upload, finalize" \
  --data-binary "@${AUDIO_PATH}" 2> /dev/null > file_info.json

file_uri=$(jq ".file.uri" file_info.json)
echo file_uri=$file_uri

curl "https://generativelanguage.googleapis.com/v1beta/models/gemini-1.5-flash:streamGenerateContent?alt=sse&key=$GOOGLE_API_KEY" \
    -H 'Content-Type: application/json' \
    -X POST \
    -d '{
      "contents": [{
        "parts":[
          {"text": "Please describe this file."},
          {"file_data":{"mime_type": "audio/mpeg", "file_uri": '$file_uri'}}]
        }]
       }' 2> /dev/null > response.json

cat response.json
echo

视频

Python

import time

# Video clip (CC BY 3.0) from https://peach.blender.org/download/
myfile = genai.upload_file(media / "Big_Buck_Bunny.mp4")
print(f"{myfile=}")

# Videos need to be processed before you can use them.
while myfile.state.name == "PROCESSING":
    print("processing video...")
    time.sleep(5)
    myfile = genai.get_file(myfile.name)

model = genai.GenerativeModel("gemini-1.5-flash")

response = model.generate_content([myfile, "Describe this video clip"])
for chunk in response:
    print(chunk.text)
    print("_" * 80)

Node.js

// Make sure to include these imports:
// import { GoogleGenerativeAI } from "@google/generative-ai";
// import { GoogleAIFileManager, FileState } from "@google/generative-ai/server";
const genAI = new GoogleGenerativeAI(process.env.API_KEY);
const model = genAI.getGenerativeModel({ model: "gemini-1.5-flash" });

const fileManager = new GoogleAIFileManager(process.env.API_KEY);

const uploadResult = await fileManager.uploadFile(
  `${mediaPath}/Big_Buck_Bunny.mp4`,
  { mimeType: "video/mp4" },
);

let file = await fileManager.getFile(uploadResult.file.name);
while (file.state === FileState.PROCESSING) {
  process.stdout.write(".");
  // Sleep for 10 seconds
  await new Promise((resolve) => setTimeout(resolve, 10_000));
  // Fetch the file from the API again
  file = await fileManager.getFile(uploadResult.file.name);
}

if (file.state === FileState.FAILED) {
  throw new Error("Video processing failed.");
}

const prompt = "Describe this video clip";
const videoPart = {
  fileData: {
    fileUri: uploadResult.file.uri,
    mimeType: uploadResult.file.mimeType,
  },
};

const result = await model.generateContentStream([prompt, videoPart]);
// Print text as it comes in.
for await (const chunk of result.stream) {
  const chunkText = chunk.text();
  process.stdout.write(chunkText);
}

Go

model := client.GenerativeModel("gemini-1.5-flash")

file, err := client.UploadFileFromPath(ctx, filepath.Join(testDataDir, "earth.mp4"), nil)
if err != nil {
	log.Fatal(err)
}
defer client.DeleteFile(ctx, file.Name)

iter := model.GenerateContentStream(ctx,
	genai.Text("Describe this video clip"),
	genai.FileData{URI: file.URI})
for {
	resp, err := iter.Next()
	if err == iterator.Done {
		break
	}
	if err != nil {
		log.Fatal(err)
	}
	printResponse(resp)
}

Shell

# Use File API to upload audio data to API request.
MIME_TYPE=$(file -b --mime-type "${VIDEO_PATH}")
NUM_BYTES=$(wc -c < "${VIDEO_PATH}")
DISPLAY_NAME=VIDEO_PATH

# Initial resumable request defining metadata.
# The upload url is in the response headers dump them to a file.
curl "${BASE_URL}/upload/v1beta/files?key=${GOOGLE_API_KEY}" \
  -D upload-header.tmp \
  -H "X-Goog-Upload-Protocol: resumable" \
  -H "X-Goog-Upload-Command: start" \
  -H "X-Goog-Upload-Header-Content-Length: ${NUM_BYTES}" \
  -H "X-Goog-Upload-Header-Content-Type: ${MIME_TYPE}" \
  -H "Content-Type: application/json" \
  -d "{'file': {'display_name': '${DISPLAY_NAME}'}}" 2> /dev/null

upload_url=$(grep -i "x-goog-upload-url: " "${tmp_header_file}" | cut -d" " -f2 | tr -d "\r")
rm "${tmp_header_file}"

# Upload the actual bytes.
curl "${upload_url}" \
  -H "Content-Length: ${NUM_BYTES}" \
  -H "X-Goog-Upload-Offset: 0" \
  -H "X-Goog-Upload-Command: upload, finalize" \
  --data-binary "@${VIDEO_PATH}" 2> /dev/null > file_info.json

file_uri=$(jq ".file.uri" file_info.json)
echo file_uri=$file_uri

state=$(jq ".file.state" file_info.json)
echo state=$state

while [[ "($state)" = *"PROCESSING"* ]];
do
  echo "Processing video..."
  sleep 5
  # Get the file of interest to check state
  curl https://generativelanguage.googleapis.com/v1beta/files/$name > file_info.json
  state=$(jq ".file.state" file_info.json)
done

curl "https://generativelanguage.googleapis.com/v1beta/models/gemini-1.5-flash:streamGenerateContent?alt=sse&key=$GOOGLE_API_KEY" \
    -H 'Content-Type: application/json' \
    -X POST \
    -d '{
      "contents": [{
        "parts":[
          {"text": "Please describe this file."},
          {"file_data":{"mime_type": "video/mp4", "file_uri": '$file_uri'}}]
        }]
       }' 2> /dev/null > response.json

cat response.json
echo

PDF

Python

model = genai.GenerativeModel("gemini-1.5-flash")
sample_pdf = genai.upload_file(media / "test.pdf")
response = model.generate_content(["Give me a summary of this document:", sample_pdf])

for chunk in response:
    print(chunk.text)
    print("_" * 80)

Shell

MIME_TYPE=$(file -b --mime-type "${PDF_PATH}")
NUM_BYTES=$(wc -c < "${PDF_PATH}")
DISPLAY_NAME=TEXT


echo $MIME_TYPE
tmp_header_file=upload-header.tmp

# Initial resumable request defining metadata.
# The upload url is in the response headers dump them to a file.
curl "${BASE_URL}/upload/v1beta/files?key=${GOOGLE_API_KEY}" \
  -D upload-header.tmp \
  -H "X-Goog-Upload-Protocol: resumable" \
  -H "X-Goog-Upload-Command: start" \
  -H "X-Goog-Upload-Header-Content-Length: ${NUM_BYTES}" \
  -H "X-Goog-Upload-Header-Content-Type: ${MIME_TYPE}" \
  -H "Content-Type: application/json" \
  -d "{'file': {'display_name': '${DISPLAY_NAME}'}}" 2> /dev/null

upload_url=$(grep -i "x-goog-upload-url: " "${tmp_header_file}" | cut -d" " -f2 | tr -d "\r")
rm "${tmp_header_file}"

# Upload the actual bytes.
curl "${upload_url}" \
  -H "Content-Length: ${NUM_BYTES}" \
  -H "X-Goog-Upload-Offset: 0" \
  -H "X-Goog-Upload-Command: upload, finalize" \
  --data-binary "@${PDF_PATH}" 2> /dev/null > file_info.json

file_uri=$(jq ".file.uri" file_info.json)
echo file_uri=$file_uri

# Now generate content using that file
curl "https://generativelanguage.googleapis.com/v1beta/models/gemini-1.5-flash:streamGenerateContent?alt=sse&key=$GOOGLE_API_KEY" \
    -H 'Content-Type: application/json' \
    -X POST \
    -d '{
      "contents": [{
        "parts":[
          {"text": "Can you add a few more lines to this poem?"},
          {"file_data":{"mime_type": "application/pdf", "file_uri": '$file_uri'}}]
        }]
       }' 2> /dev/null > response.json

cat response.json
echo

聊天

Python

model = genai.GenerativeModel("gemini-1.5-flash")
chat = model.start_chat(
    history=[
        {"role": "user", "parts": "Hello"},
        {"role": "model", "parts": "Great to meet you. What would you like to know?"},
    ]
)
response = chat.send_message("I have 2 dogs in my house.", stream=True)
for chunk in response:
    print(chunk.text)
    print("_" * 80)
response = chat.send_message("How many paws are in my house?", stream=True)
for chunk in response:
    print(chunk.text)
    print("_" * 80)

print(chat.history)

Node.js

// Make sure to include these imports:
// import { GoogleGenerativeAI } from "@google/generative-ai";
const genAI = new GoogleGenerativeAI(process.env.API_KEY);
const model = genAI.getGenerativeModel({ model: "gemini-1.5-flash" });
const chat = model.startChat({
  history: [
    {
      role: "user",
      parts: [{ text: "Hello" }],
    },
    {
      role: "model",
      parts: [{ text: "Great to meet you. What would you like to know?" }],
    },
  ],
});
let result = await chat.sendMessageStream("I have 2 dogs in my house.");
for await (const chunk of result.stream) {
  const chunkText = chunk.text();
  process.stdout.write(chunkText);
}
result = await chat.sendMessageStream("How many paws are in my house?");
for await (const chunk of result.stream) {
  const chunkText = chunk.text();
  process.stdout.write(chunkText);
}

Go

model := client.GenerativeModel("gemini-1.5-flash")
cs := model.StartChat()

cs.History = []*genai.Content{
	{
		Parts: []genai.Part{
			genai.Text("Hello, I have 2 dogs in my house."),
		},
		Role: "user",
	},
	{
		Parts: []genai.Part{
			genai.Text("Great to meet you. What would you like to know?"),
		},
		Role: "model",
	},
}

iter := cs.SendMessageStream(ctx, genai.Text("How many paws are in my house?"))
for {
	resp, err := iter.Next()
	if err == iterator.Done {
		break
	}
	if err != nil {
		log.Fatal(err)
	}
	printResponse(resp)
}

Shell

curl https://generativelanguage.googleapis.com/v1beta/models/gemini-1.5-flash:streamGenerateContent?alt=sse&key=$GOOGLE_API_KEY \
    -H 'Content-Type: application/json' \
    -X POST \
    -d '{
      "contents": [
        {"role":"user",
         "parts":[{
           "text": "Hello"}]},
        {"role": "model",
         "parts":[{
           "text": "Great to meet you. What would you like to know?"}]},
        {"role":"user",
         "parts":[{
           "text": "I have two dogs in my house. How many paws are in my house?"}]},
      ]
    }' 2> /dev/null | grep "text"

Kotlin

// Use streaming with multi-turn conversations (like chat)
val generativeModel =
    GenerativeModel(
        // Specify a Gemini model appropriate for your use case
        modelName = "gemini-1.5-flash",
        // Access your API key as a Build Configuration variable (see "Set up your API key" above)
        apiKey = BuildConfig.apiKey)

val chat =
    generativeModel.startChat(
        history =
            listOf(
                content(role = "user") { text("Hello, I have 2 dogs in my house.") },
                content(role = "model") {
                  text("Great to meet you. What would you like to know?")
                }))

chat.sendMessageStream("How many paws are in my house?").collect { chunk -> print(chunk.text) }

Swift

let generativeModel =
  GenerativeModel(
    // Specify a Gemini model appropriate for your use case
    name: "gemini-1.5-flash",
    // Access your API key from your on-demand resource .plist file (see "Set up your API key"
    // above)
    apiKey: APIKey.default
  )

// Optionally specify existing chat history
let history = [
  ModelContent(role: "user", parts: "Hello, I have 2 dogs in my house."),
  ModelContent(role: "model", parts: "Great to meet you. What would you like to know?"),
]

// Initialize the chat with optional chat history
let chat = generativeModel.startChat(history: history)

// To stream generated text output, call sendMessageStream and pass in the message
let contentStream = chat.sendMessageStream("How many paws are in my house?")
for try await chunk in contentStream {
  if let text = chunk.text {
    print(text)
  }
}

Dart

// Make sure to include this import:
// import 'package:google_generative_ai/google_generative_ai.dart';
final model = GenerativeModel(
  model: 'gemini-1.5-flash',
  apiKey: apiKey,
);
final chat = model.startChat(history: [
  Content.text('hello'),
  Content.model([TextPart('Great to meet you. What would you like to know?')])
]);
var responses =
    chat.sendMessageStream(Content.text('I have 2 dogs in my house.'));
await for (final response in responses) {
  print(response.text);
  print('_' * 80);
}
responses =
    chat.sendMessageStream(Content.text('How many paws are in my house?'));
await for (final response in responses) {
  print(response.text);
  print('_' * 80);
}

Java

// Specify a Gemini model appropriate for your use case
GenerativeModel gm =
    new GenerativeModel(
        /* modelName */ "gemini-1.5-flash",
        // Access your API key as a Build Configuration variable (see "Set up your API key"
        // above)
        /* apiKey */ BuildConfig.apiKey);
GenerativeModelFutures model = GenerativeModelFutures.from(gm);

// (optional) Create previous chat history for context
Content.Builder userContentBuilder = new Content.Builder();
userContentBuilder.setRole("user");
userContentBuilder.addText("Hello, I have 2 dogs in my house.");
Content userContent = userContentBuilder.build();

Content.Builder modelContentBuilder = new Content.Builder();
modelContentBuilder.setRole("model");
modelContentBuilder.addText("Great to meet you. What would you like to know?");
Content modelContent = userContentBuilder.build();

List<Content> history = Arrays.asList(userContent, modelContent);

// Initialize the chat
ChatFutures chat = model.startChat(history);

// Create a new user message
Content.Builder userMessageBuilder = new Content.Builder();
userMessageBuilder.setRole("user");
userMessageBuilder.addText("How many paws are in my house?");
Content userMessage = userMessageBuilder.build();

// Use streaming with text-only input
Publisher<GenerateContentResponse> streamingResponse = model.generateContentStream(userMessage);

StringBuilder outputContent = new StringBuilder();

streamingResponse.subscribe(
    new Subscriber<GenerateContentResponse>() {
      @Override
      public void onNext(GenerateContentResponse generateContentResponse) {
        String chunk = generateContentResponse.getText();
        outputContent.append(chunk);
      }

      @Override
      public void onComplete() {
        System.out.println(outputContent);
      }

      @Override
      public void onSubscribe(Subscription s) {
        s.request(Long.MAX_VALUE);
      }

      @Override
      public void onError(Throwable t) {}

    });

响应正文

如果成功,响应正文将包含一个 GenerateContentResponse 实例流。

GenerateContentResponse

来自支持多个候选者回答的模型的响应。

系统会针对 GenerateContentResponse.prompt_feedback 中的提示以及 finishReasonsafetyRatings 中的每个候选项报告安全分级和内容过滤。API:- 返回所有请求的候选字词,或者不返回任何候选键;仅当提示存在问题时,才会返回任何候选键(选中 promptFeedback)- 报告 finishReasonsafetyRatings 中每个候选键的反馈。

字段
candidates[] object (Candidate)

来自模型的候选响应。

promptFeedback object (PromptFeedback)

返回与内容过滤器相关的提示反馈。

usageMetadata object (UsageMetadata)

仅限输出。有关生成请求令牌用量的元数据。

JSON 表示法
{
  "candidates": [
    {
      object (Candidate)
    }
  ],
  "promptFeedback": {
    object (PromptFeedback)
  },
  "usageMetadata": {
    object (UsageMetadata)
  }
}

PromptFeedback

GenerateContentRequest.content 中指定的提示的一组反馈元数据。

字段
blockReason enum (BlockReason)

可选。如果已设置,系统会屏蔽提示,且不会返回任何候选字词。改述提示。

safetyRatings[] object (SafetyRating)

问题安全性的评分。每个类别最多只能有一个分级。

JSON 表示法
{
  "blockReason": enum (BlockReason),
  "safetyRatings": [
    {
      object (SafetyRating)
    }
  ]
}

BlockReason

指定提示被屏蔽的原因。

枚举
BLOCK_REASON_UNSPECIFIED 默认值。此值未使用。
SAFETY 出于安全原因,系统屏蔽了此提示。检查 safetyRatings,了解哪个安全类别屏蔽了它。
OTHER 提示因未知原因被屏蔽了。
BLOCKLIST 系统屏蔽了此提示,因为其中包含术语屏蔽名单中包含的术语。
PROHIBITED_CONTENT 由于包含禁止的内容,提示已被屏蔽。

UsageMetadata

有关生成请求令牌用量的元数据。

字段
promptTokenCount integer

提示中的词元数。设置 cachedContent 后,这仍然是有效提示的总大小,这意味着它包括缓存内容中的词元数。

cachedContentTokenCount integer

提示的缓存部分(缓存内容)中的词元数

candidatesTokenCount integer

所有已生成的候选响应中的词元总数。

totalTokenCount integer

生成请求的令牌总数(问题 + 回答候选)。

JSON 表示法
{
  "promptTokenCount": integer,
  "cachedContentTokenCount": integer,
  "candidatesTokenCount": integer,
  "totalTokenCount": integer
}

候选人

模型生成的候选回答。

字段
content object (Content)

仅限输出。模型返回的生成内容。

finishReason enum (FinishReason)

可选。仅限输出。模型停止生成令牌的原因。

如果为空,则模型尚未停止生成词元。

safetyRatings[] object (SafetyRating)

响应候选项安全性的评分列表。

每个类别最多有一个评分。

citationMetadata object (CitationMetadata)

仅限输出。模型生成的候选字词的引用信息。

此字段可填充 content 中包含的任何文本的诵读信息。这些是从基础 LLM 训练数据中的受版权保护的内容中“背诵”下来的段落。

tokenCount integer

仅限输出。此候选项的令牌数。

groundingAttributions[] object (GroundingAttribution)

仅限输出。为生成有依据的回答所参考的来源提供方提供的提供方信息。

系统会针对 GenerateAnswer 调用填充此字段。

groundingMetadata object (GroundingMetadata)

仅限输出。候选实体的基础元数据。

系统会针对 GenerateContent 调用填充此字段。

avgLogprobs number

仅限输出。

logprobsResult object (LogprobsResult)

仅限输出。回答词元和前置词元的对数似然性得分

index integer

仅限输出。候选回复列表中候选字词的索引。

JSON 表示法
{
  "content": {
    object (Content)
  },
  "finishReason": enum (FinishReason),
  "safetyRatings": [
    {
      object (SafetyRating)
    }
  ],
  "citationMetadata": {
    object (CitationMetadata)
  },
  "tokenCount": integer,
  "groundingAttributions": [
    {
      object (GroundingAttribution)
    }
  ],
  "groundingMetadata": {
    object (GroundingMetadata)
  },
  "avgLogprobs": number,
  "logprobsResult": {
    object (LogprobsResult)
  },
  "index": integer
}

FinishReason

定义模型停止生成令牌的原因。

枚举
FINISH_REASON_UNSPECIFIED 默认值。此值未使用。
STOP 模型的自然停止点或提供的停止序列。
MAX_TOKENS 已达到请求中指定的令牌数量上限。
SAFETY 出于安全考虑,系统已标记回复的候选内容。
RECITATION 由于背诵原因,回答候选内容被标记。
LANGUAGE 回答候选内容因使用不受支持的语言而被标记。
OTHER 原因未知。
BLOCKLIST 由于内容包含禁用字词,系统已停止生成令牌。
PROHIBITED_CONTENT 由于可能包含禁止的内容,因此词元生成操作已停止。
SPII 由于内容可能包含敏感的个人身份信息 (SPII),因此词元生成操作已停止。
MALFORMED_FUNCTION_CALL 模型生成的函数调用无效。

GroundingAttribution

对为回答做出贡献的来源的归因。

字段
sourceId object (AttributionSourceId)

仅限输出。对此归因做出贡献的来源的标识符。

content object (Content)

构成此归因的来源内容。

JSON 表示法
{
  "sourceId": {
    object (AttributionSourceId)
  },
  "content": {
    object (Content)
  }
}

AttributionSourceId

对此归因做出贡献的来源的标识符。

字段

联合字段 source

source 只能是下列其中一项:

groundingPassage object (GroundingPassageId)

内嵌段落的标识符。

semanticRetrieverChunk object (SemanticRetrieverChunk)

通过 Semantic Retriever 提取的 Chunk 的标识符。

JSON 表示法
{

  // Union field source can be only one of the following:
  "groundingPassage": {
    object (GroundingPassageId)
  },
  "semanticRetrieverChunk": {
    object (SemanticRetrieverChunk)
  }
  // End of list of possible types for union field source.
}

GroundingPassageId

GroundingPassage 中部分的标识符。

字段
passageId string

仅限输出。与 GenerateAnswerRequestGroundingPassage.id 匹配的段落的 ID。

partIndex integer

仅限输出。GenerateAnswerRequestGroundingPassage.content 中的部分的索引。

JSON 表示法
{
  "passageId": string,
  "partIndex": integer
}

SemanticRetrieverChunk

使用 SemanticRetrieverConfigGenerateAnswerRequest 中指定的通过语义检索器检索的 Chunk 的标识符。

字段
source string

仅限输出。与请求的 SemanticRetrieverConfig.source 匹配的来源的名称。示例:corpora/123corpora/123/documents/abc

chunk string

仅限输出。包含归因文本的 Chunk 的名称。示例:corpora/123/documents/abc/chunks/xyz

JSON 表示法
{
  "source": string,
  "chunk": string
}

GroundingMetadata

启用接地时返回给客户端的元数据。

字段
groundingChunks[] object (GroundingChunk)

从指定的接地源检索到的支持参考文献列表。

groundingSupports[] object (GroundingSupport)

接地支持列表。

webSearchQueries[] string

用于后续网页搜索的网页搜索查询。

searchEntryPoint object (SearchEntryPoint)

可选。后续网页搜索的 Google 搜索条目。

retrievalMetadata object (RetrievalMetadata)

与基准流程中检索相关的元数据。

JSON 表示法
{
  "groundingChunks": [
    {
      object (GroundingChunk)
    }
  ],
  "groundingSupports": [
    {
      object (GroundingSupport)
    }
  ],
  "webSearchQueries": [
    string
  ],
  "searchEntryPoint": {
    object (SearchEntryPoint)
  },
  "retrievalMetadata": {
    object (RetrievalMetadata)
  }
}

SearchEntryPoint

Google 搜索入口点。

字段
renderedContent string

可选。可嵌入到网页或应用 WebView 中的 Web 内容摘要。

sdkBlob string (bytes format)

可选。表示 <search term, search url> 元组数组的 base64 编码 JSON。

使用 base64 编码的字符串。

JSON 表示法
{
  "renderedContent": string,
  "sdkBlob": string
}

GroundingChunk

接地块。

字段
联合字段 chunk_type。分块类型。chunk_type 只能是下列其中一项:
web object (Web)

来自网络的“Grounding chunk”。

JSON 表示法
{

  // Union field chunk_type can be only one of the following:
  "web": {
    object (Web)
  }
  // End of list of possible types for union field chunk_type.
}

Web

来自网络的文件块。

字段
uri string

分块的 URI 引用。

title string

数据块的标题。

JSON 表示法
{
  "uri": string,
  "title": string
}

GroundingSupport

依据支持。

字段
groundingChunkIndices[] integer

一系列索引(属于“grounding_块”),用于指定与声明相关联的引用。例如,[1,3,4] 表示 grounding_chunk[1]、grounding_chunk[3]、grounding_chunk[4] 是归因于该版权主张的检索内容。

confidenceScores[] number

支持参考文档的置信度分数。范围为 0 到 1。1 表示最有信心。此列表的大小必须与 groundingChunkIndices 相同。

segment object (Segment)

此支持所属的内容片段。

JSON 表示法
{
  "groundingChunkIndices": [
    integer
  ],
  "confidenceScores": [
    number
  ],
  "segment": {
    object (Segment)
  }
}

Segment

内容的片段。

字段
partIndex integer

仅限输出。Part 对象在其父级 Content 对象中的索引。

startIndex integer

仅限输出。给定部分的起始索引(以字节为单位)。相对于部分起始位置的偏移量(含边界值),从零开始。

endIndex integer

仅限输出。给定分块中的结束索引,以字节为单位。到部分起始位置的偏移量(不含),从零开始。

text string

仅限输出。与响应中的片段对应的文本。

JSON 表示法
{
  "partIndex": integer,
  "startIndex": integer,
  "endIndex": integer,
  "text": string
}

RetrievalMetadata

与标准流程中的检索相关的元数据。

字段
googleSearchDynamicRetrievalScore number

可选。一个得分,表示 Google 搜索中的信息有多大可能有助于回答问题。得分介于 [0, 1] 范围内,其中 0 表示可能性最低,1 表示可能性最高。只有在启用 Google 搜索着陆页和动态检索后,系统才会填充此得分。系统会将该阈值与阈值进行比较,以确定是否触发 Google 搜索。

JSON 表示法
{
  "googleSearchDynamicRetrievalScore": number
}

LogprobsResult

Logprobs 结果

字段
topCandidates[] object (TopCandidates)

长度 = 解码步骤总数。

chosenCandidates[] object (Candidate)

长度 = 解码步骤总数。所选候选词元不一定在 topCandidates 中。

JSON 表示法
{
  "topCandidates": [
    {
      object (TopCandidates)
    }
  ],
  "chosenCandidates": [
    {
      object (Candidate)
    }
  ]
}

TopCandidates

每个解码步骤中对数概率最高的候选项。

字段
candidates[] object (Candidate)

按对数概率降序排序。

JSON 表示法
{
  "candidates": [
    {
      object (Candidate)
    }
  ]
}

候选人

logprobs 词元和得分的候选对象。

字段
token string

候选广告的令牌字符串值。

tokenId integer

候选人的令牌 ID 值。

logProbability number

候选人的对数概率。

JSON 表示法
{
  "token": string,
  "tokenId": integer,
  "logProbability": number
}

CitationMetadata

一段内容的来源提供方说明集合。

字段
citationSources[] object (CitationSource)

特定回答的来源引用。

JSON 表示法
{
  "citationSources": [
    {
      object (CitationSource)
    }
  ]
}

CitationSource

特定回答中某部分内容的来源引用。

字段
startIndex integer

可选。归因于此来源的响应的开头部分。

索引表示相应片段的起始位置,以字节为单位。

endIndex integer

可选。归因细分的时间段结束时间(不含)。

uri string

可选。被归因为文本部分来源的 URI。

license string

可选。被归因为片段来源的 GitHub 项目的许可。

代码引用需要提供许可信息。

JSON 表示法
{
  "startIndex": integer,
  "endIndex": integer,
  "uri": string,
  "license": string
}

GenerationConfig

模型生成和输出的配置选项。并非所有参数都适用于每种模型。

字段
stopSequences[] string

可选。用于停止生成输出的字符序列集(最多 5 个)。如果已指定,API 将在 stop_sequence 首次出现时停止。停止序列不会包含在回答中。

responseMimeType string

可选。生成的候选文本的 MIME 类型。支持的 MIME 类型包括:text/plain:(默认)文本输出。application/json:响应候选项中的 JSON 响应。text/x.enum:ENUM,作为候选响应中的字符串响应。如需查看所有受支持的文本 MIME 类型的列表,请参阅文档

responseSchema object (Schema)

可选。生成的候选文本的输出架构。架构必须是 OpenAPI 架构的子集,并且可以是对象、基元或数组。

如果设置了此值,则还必须设置兼容的 responseMimeType。兼容的 MIME 类型:application/json:JSON 响应的架构。如需了解详情,请参阅 JSON 文本生成指南

candidateCount integer

可选。要返回的生成的回答数量。

目前,此值只能设置为 1。如果未设置,则默认为 1。

maxOutputTokens integer

可选。候选回复中可包含的词元数量上限。

注意:默认值因型号而异,请参阅从 getModel 函数返回的 ModelModel.output_token_limit 属性。

temperature number

可选。控制输出的随机性。

注意:默认值因型号而异,请参阅从 getModel 函数返回的 ModelModel.temperature 属性。

值的范围为 [0.0, 2.0]。

topP number

可选。采样时要考虑的词元累计概率上限。

该模型使用组合 Top-k 和 Top-p(核)抽样。

系统会根据分配的概率对令牌进行排序,以便仅考虑概率最高的令牌。Top-k 采样会直接限制要考虑的 token 数量上限,而 Nucleus 采样会根据累积概率限制 token 数量。

注意:默认值因 Model 而异,由 getModel 函数返回的 Model.top_p 属性指定。空的 topK 属性表示模型不会应用前 k 个样本抽样,也不允许对请求设置 topK

topK integer

可选。抽样时要考虑的令牌数量上限。

Gemini 模型使用 Top-p(核)采样或 Top-k 和核采样的组合。Top-k 采样会考虑概率最高的 topK 个词元。使用核采样运行的模型不允许设置 topK。

注意:默认值因 Model 而异,由 getModel 函数返回的 Model.top_p 属性指定。空的 topK 属性表示模型不会应用前 k 个样本抽样,也不允许对请求设置 topK

presencePenalty number

可选。如果下一个令牌已在响应中出现,则对其 logprobs 应用存在性惩罚。

此惩罚是二进制开/关,不取决于令牌的使用次数(首次使用后)。使用 frequencyPenalty 会使惩罚因每次使用而增加。

正惩罚会阻止使用在回答中已使用的令牌,从而增加词汇量。

如果给出负惩罚,则会鼓励使用响应中已经用过的词元,从而减少词汇量。

frequencyPenalty number

可选。应用于下一个令牌的 logprobs 的频率惩罚,乘以每个令牌在回答中出现的次数。

正惩罚会阻止使用已使用的令牌,惩罚强度与令牌的使用次数成正比:令牌使用次数越多,模型再次使用该令牌的难度就越大,从而增加了回答的词汇量。

注意:惩罚会鼓励模型根据令牌的使用次数重复使用令牌。较小的负值会减少回答的词汇量。负值越大,模型就会开始重复一个常用令牌,直到达到 maxOutputTokens 上限:“...the the the the the...”。

responseLogprobs boolean

可选。如果为 true,则在响应中导出 logprobs 结果。

logprobs integer

可选。仅在 responseLogprobs=True 的情况下有效。这会设置 Candidate.logprobs_result 中每个解码步骤要返回的顶部 logprob 的数量。

JSON 表示法
{
  "stopSequences": [
    string
  ],
  "responseMimeType": string,
  "responseSchema": {
    object (Schema)
  },
  "candidateCount": integer,
  "maxOutputTokens": integer,
  "temperature": number,
  "topP": number,
  "topK": integer,
  "presencePenalty": number,
  "frequencyPenalty": number,
  "responseLogprobs": boolean,
  "logprobs": integer
}

HarmCategory

评分的类别。

这些类别涵盖了开发者可能希望调整的各种类型的危害。

枚举
HARM_CATEGORY_UNSPECIFIED 类别未指定。
HARM_CATEGORY_DEROGATORY PaLM - 针对身份和/或受保护属性的负面或有害评论。
HARM_CATEGORY_TOXICITY PaLM - 粗鲁、无礼或亵渎性的内容。
HARM_CATEGORY_VIOLENCE PaLM - 描述描绘针对个人或团体的暴力行为的场景,或一般性血腥描述。
HARM_CATEGORY_SEXUAL PaLM - 包含提及性行为或其他淫秽内容。
HARM_CATEGORY_MEDICAL PaLM - 宣传未经核实的医疗建议。
HARM_CATEGORY_DANGEROUS PaLM - 危险内容会宣扬、助长或鼓励有害行为。
HARM_CATEGORY_HARASSMENT Gemini - 骚扰内容。
HARM_CATEGORY_HATE_SPEECH Gemini - 仇恨言论和内容。
HARM_CATEGORY_SEXUALLY_EXPLICIT Gemini - 露骨色情内容。
HARM_CATEGORY_DANGEROUS_CONTENT Gemini - 危险内容。
HARM_CATEGORY_CIVIC_INTEGRITY Gemini - 可能被用来损害公民诚信的内容。

SafetyRating

一段内容的安全分级。

安全评级包含内容的危害类别以及该类别中的危害概率级别。系统会根据多种危害类别对内容进行安全分类,并在此处提供内容属于危害分类的概率。

字段
category enum (HarmCategory)

必需。相应评分的类别。

probability enum (HarmProbability)

必需。此内容的有害概率。

blocked boolean

此内容是否因此分级而被屏蔽?

JSON 表示法
{
  "category": enum (HarmCategory),
  "probability": enum (HarmProbability),
  "blocked": boolean
}

HarmProbability

内容有害的概率。

分类系统会提供内容不安全的概率。这并不表示内容造成的伤害程度。

枚举
HARM_PROBABILITY_UNSPECIFIED 概率未指定。
NEGLIGIBLE 内容不安全的可能性微乎其微。
LOW 内容不安全的概率较低。
MEDIUM 内容不安全的概率为中等。
HIGH 内容不安全的概率较高。

SafetySetting

安全设置,影响安全拦截行为。

为某个类别传递安全设置会更改内容被屏蔽的允许概率。

字段
category enum (HarmCategory)

必需。此设置的类别。

threshold enum (HarmBlockThreshold)

必需。控制屏蔽有害内容的概率阈值。

JSON 表示法
{
  "category": enum (HarmCategory),
  "threshold": enum (HarmBlockThreshold)
}

HarmBlockThreshold

在达到指定的有害概率时屏蔽。

枚举
HARM_BLOCK_THRESHOLD_UNSPECIFIED 未指定阈值。
BLOCK_LOW_AND_ABOVE 系统将允许显示值为“NEGIBLE”的内容。
BLOCK_MEDIUM_AND_ABOVE 我们会允许发布评分为 NEGLIGIBLE 和 LOW 的内容。
BLOCK_ONLY_HIGH 我们允许发布“NEGLIGIBLE”“LOW”和“MEDIUM”级别的内容。
BLOCK_NONE 允许所有内容。
OFF 关闭安全过滤器。