LiteRT Next is a new set of APIs that improves upon LiteRT, particularly in
terms of hardware acceleration and performance for on-device ML and AI
applications. The APIs are an alpha release and available in Kotlin and C++.
The LiteRT Next Compiled Model API builds on the TensorFlow Lite Interpreter
API, and simplifies the model loading and execution process for on-device
machine learning. The new APIs provide a new streamlined way to use hardware
acceleration, removing the need to deal with model FlatBuffers, I/O buffer
interoperability, and delegates. The LiteRT Next APIs are not compatible with
the LiteRT APIs. In order to use features from LiteRT Next, see the Get
Started guide.
For example implementations of LiteRT Next, refer to the following demo
applications:
Running inference with the LiteRT Next APIs involves the following key steps:
Load a compatible model.
Allocate the input and output tensor buffers.
Invoke the compiled model.
Read the inferences into an output buffer.
The following code snippets show a basic implementation of the entire process in
Kotlin and C++.
C++
// Load model and initialize runtimeLITERT_ASSIGN_OR_RETURN(automodel,Model::CreateFromFile("mymodel.tflite"));LITERT_ASSIGN_OR_RETURN(autoenv,Environment::Create({}));LITERT_ASSIGN_OR_RETURN(autocompiled_model,CompiledModel::Create(env,model,kLiteRtHwAcceleratorCpu));// Preallocate input/output buffersLITERT_ASSIGN_OR_RETURN(autoinput_buffers,compiled_model.CreateInputBuffers());LITERT_ASSIGN_OR_RETURN(autooutput_buffers,compiled_model.CreateOutputBuffers());// Fill the first inputfloatinput_values[]={/* your data */};input_buffers[0].Write<float>(absl::MakeConstSpan(input_values,/*size*/));// Invokecompiled_model.Run(input_buffers,output_buffers);// Read the outputstd::vector<float>data(output_data_size);output_buffers[0].Read<float>(absl::MakeSpan(data));
Kotlin
// Load model and initialize runtimevalmodel=CompiledModel.create(context.assets,"mymodel.tflite",CompiledModel.Options(Accelerator.CPU))// Preallocate input/output buffersvalinputBuffers=model.createInputBuffers()valoutputBuffers=model.createOutputBuffers()// Fill the first inputinputBuffers[0].writeFloat(FloatArray(data_size){data_value/* your data */})// Invokemodel.run(inputBuffers,outputBuffers)// Read the outputvaloutputFloatArray=outputBuffers[0].readFloat()
LiteRT Next contains the following key benefits and features:
New LiteRT API: Streamline development with automated accelerator
selection, true async execution, and efficient I/O buffer handling.
Best-in-class GPU Performance: Use state-of-the-art GPU acceleration for
on-device ML. The new buffer interoperability enables zero-copy and
minimizes latency across various GPU buffer types.
Superior Generative AI inference: Enable the simplest integration with
the best performance for GenAI models.
Unified NPU Acceleration: Offer seamless access to NPUs from major
chipset providers with a consistent developer experience. LiteRT NPU
acceleration is available through an Early Access
Program.
Key improvements
LiteRT Next (Compiled Model API) contains the following key improvements on
LiteRT (TFLite Interpreter API). For a comprehensive guide to setting up your
application with LiteRT Next, see the Get Started guide.
Accelerator usage: Running models on GPU with LiteRT requires explicit
delegate creation, function calls, and graph modifications. With LiteRT
Next, just specify the accelerator.
Native hardware buffer interoperability: LiteRT does not provide the
option of buffers, and forces all data through CPU memory. With LiteRT Next,
you can pass in Android Hardware Buffers (AHWB), OpenCL buffers, OpenGL
buffers, or other specialized buffers.
Async execution: LiteRT Next comes with a redesigned async API,
providing a true async mechanism based on sync fences. This enables faster
overall execution times through the use of diverse hardware – like CPUs,
GPUs, CPUs, and NPUs – for different tasks.
Model loading: LiteRT Next does not require a separate builder step when
loading a model.
[[["Easy to understand","easyToUnderstand","thumb-up"],["Solved my problem","solvedMyProblem","thumb-up"],["Other","otherUp","thumb-up"]],[["Missing the information I need","missingTheInformationINeed","thumb-down"],["Too complicated / too many steps","tooComplicatedTooManySteps","thumb-down"],["Out of date","outOfDate","thumb-down"],["Samples / code issue","samplesCodeIssue","thumb-down"],["Other","otherDown","thumb-down"]],["Last updated 2025-05-20 UTC."],[],[],null,["# LiteRT Next Overview\n\n| **Experimental:** LiteRT Next is an alpha release and under active development.\n\nLiteRT Next is a new set of APIs that improves upon LiteRT, particularly in\nterms of hardware acceleration and performance for on-device ML and AI\napplications. The APIs are an alpha release and available in Kotlin and C++.\n\nThe LiteRT Next Compiled Model API builds on the TensorFlow Lite Interpreter\nAPI, and simplifies the model loading and execution process for on-device\nmachine learning. The new APIs provide a new streamlined way to use hardware\nacceleration, removing the need to deal with model FlatBuffers, I/O buffer\ninteroperability, and delegates. The LiteRT Next APIs are not compatible with\nthe LiteRT APIs. In order to use features from LiteRT Next, see the [Get\nStarted](./get_started) guide.\n\nFor example implementations of LiteRT Next, refer to the following demo\napplications:\n\n- [Image segmentation with Kotlin](https://github.com/google-ai-edge/LiteRT/tree/main/litert/samples/image_segmentation/kotlin_cpu_gpu/android)\n- [Asynchronous segmentation with C++](https://github.com/google-ai-edge/LiteRT/tree/main/litert/samples/async_segmentation)\n\nQuickstart\n----------\n\nRunning inference with the LiteRT Next APIs involves the following key steps:\n\n1. Load a compatible model.\n2. Allocate the input and output tensor buffers.\n3. Invoke the compiled model.\n4. Read the inferences into an output buffer.\n\nThe following code snippets show a basic implementation of the entire process in\nKotlin and C++. \n\n### C++\n\n // Load model and initialize runtime\n LITERT_ASSIGN_OR_RETURN(auto model, Model::CreateFromFile(\"mymodel.tflite\"));\n LITERT_ASSIGN_OR_RETURN(auto env, Environment::Create({}));\n LITERT_ASSIGN_OR_RETURN(auto compiled_model,\n CompiledModel::Create(env, model, kLiteRtHwAcceleratorCpu));\n\n // Preallocate input/output buffers\n LITERT_ASSIGN_OR_RETURN(auto input_buffers, compiled_model.CreateInputBuffers());\n LITERT_ASSIGN_OR_RETURN(auto output_buffers, compiled_model.CreateOutputBuffers());\n\n // Fill the first input\n float input_values[] = { /* your data */ };\n input_buffers[0].Write\u003cfloat\u003e(absl::MakeConstSpan(input_values, /*size*/));\n\n // Invoke\n compiled_model.Run(input_buffers, output_buffers);\n\n // Read the output\n std::vector\u003cfloat\u003e data(output_data_size);\n output_buffers[0].Read\u003cfloat\u003e(absl::MakeSpan(data));\n\n### Kotlin\n\n // Load model and initialize runtime\n val model =\n CompiledModel.create(\n context.assets,\n \"mymodel.tflite\",\n CompiledModel.Options(Accelerator.CPU)\n )\n\n // Preallocate input/output buffers\n val inputBuffers = model.createInputBuffers()\n val outputBuffers = model.createOutputBuffers()\n\n // Fill the first input\n inputBuffers[0].writeFloat(FloatArray(data_size) { data_value /* your data */ })\n\n // Invoke\n model.run(inputBuffers, outputBuffers)\n\n // Read the output\n val outputFloatArray = outputBuffers[0].readFloat()\n\nFor more information, see the [Get Started with Kotlin](./android_kotlin) and\n[Get Started with C++](./android_cpp) guides.\n\nKey features\n------------\n\nLiteRT Next contains the following key benefits and features:\n\n- **New LiteRT API**: Streamline development with automated accelerator selection, true async execution, and efficient I/O buffer handling.\n- **Best-in-class GPU Performance**: Use state-of-the-art GPU acceleration for on-device ML. The new buffer interoperability enables zero-copy and minimizes latency across various GPU buffer types.\n- **Superior Generative AI inference**: Enable the simplest integration with the best performance for GenAI models.\n- **Unified NPU Acceleration** : Offer seamless access to NPUs from major chipset providers with a consistent developer experience. LiteRT NPU acceleration is available through an [Early Access\n Program](https://forms.gle/CoH4jpLwxiEYvDvF6).\n\nKey improvements\n----------------\n\nLiteRT Next (Compiled Model API) contains the following key improvements on\nLiteRT (TFLite Interpreter API). For a comprehensive guide to setting up your\napplication with LiteRT Next, see the [Get Started](./get_started) guide.\n\n- **Accelerator usage**: Running models on GPU with LiteRT requires explicit delegate creation, function calls, and graph modifications. With LiteRT Next, just specify the accelerator.\n- **Native hardware buffer interoperability**: LiteRT does not provide the option of buffers, and forces all data through CPU memory. With LiteRT Next, you can pass in Android Hardware Buffers (AHWB), OpenCL buffers, OpenGL buffers, or other specialized buffers.\n- **Async execution**: LiteRT Next comes with a redesigned async API, providing a true async mechanism based on sync fences. This enables faster overall execution times through the use of diverse hardware -- like CPUs, GPUs, CPUs, and NPUs -- for different tasks.\n- **Model loading**: LiteRT Next does not require a separate builder step when loading a model."]]