Eğitim: Gemini API'yi kullanmaya başlama


Bu eğiticide, Android için Google AI istemci SDK'sını kullanarak Gemini API'ye doğrudan Android uygulamanızdan nasıl erişileceği gösterilmektedir. Android uygulamanızda Gemini modellerine erişmek için doğrudan REST API'leriyle veya sunucu tarafı kodla (Python gibi) çalışmak istemiyorsanız bu istemci SDK'sını kullanabilirsiniz.

Bu eğiticide aşağıdakileri nasıl yapacağınızı öğreneceksiniz:

Ayrıca bu eğitim, gelişmiş kullanım alanları (ör. jetonları sayma) ve içerik oluşturmayı denetleme seçenekleri hakkında bölümler içerir.

Gemini'a cihazdan erişmeyi düşünün

Bu eğiticide açıklanan Android için istemci SDK'sı, Google'ın sunucularında çalışan Gemini Pro modellerine erişmenizi sağlar. Hassas verilerin işlenmesi ve çevrimdışı kullanılabilirliğin yer aldığı kullanım alanları ya da sık kullanılan kullanıcı akışları için maliyet tasarrufu gibi kullanım alanları için cihaz üzerinde çalışan Gemini Nano'ya erişmeyi düşünebilirsiniz. Daha ayrıntılı bilgi için Android (cihaz üzerinde) eğitimine bakın.

Ön koşullar

Bu eğiticiye başlamadan önce, Android Studio'yu kullanarak Android uygulamaları geliştirme konusunda bilgi sahibi olduğunuz varsayılmaktadır.

Bu eğiticiyi tamamlamak için geliştirme ortamınızın ve Android uygulamanızın aşağıdaki gereksinimleri karşıladığından emin olun:

  • Android Studio (en son sürüm)
  • Android uygulamanız API düzeyi 21 veya üstünü hedeflemelidir.

Projenizi oluşturun

Gemini API'yi çağırmadan önce Android projenizi ayarlamanız gerekir. Bu aşamaya API anahtarınızı oluşturma, SDK bağımlılıklarını Android projenize ekleme ve modeli başlatma dahildir.

API anahtarınızı oluşturma

Gemini API'yi kullanmak için API anahtarı gerekir. Anahtarınız yoksa Google AI Studio'da bir anahtar oluşturun.

API anahtarı alma

API anahtarınızın güvenliğini sağlama

Sürüm kontrol sisteminizde bir API anahtarını kontrol etmemeniz kesinlikle önerilir. Bunun yerine, bunu bir local.properties dosyasında depolamanız (projenizin kök dizininde bulunur ancak sürüm denetiminde yer alır) ve ardından API anahtarınızı Derleme Yapılandırması değişkeni olarak okumak için Android için Secrets Gradle eklentisini kullanmanız gerekir.

Kotlin

// Access your API key as a Build Configuration variable
val apiKey = BuildConfig.apiKey

Java

// Access your API key as a Build Configuration variable
String apiKey = BuildConfig.apiKey;

Bu eğitimdeki tüm snippet'ler bu en iyi uygulamayı kullanır. Ayrıca, Secrets Gradle eklentisinin nasıl kullanıldığını görmek isterseniz bu SDK için örnek uygulamayı inceleyebilir veya Android Studio Iguana'nın Gemini API Starter şablonuna (başlamanızı sağlayacak local.properties dosyasını içerir) sahip en son önizlemesini kullanabilirsiniz.

SDK bağımlılığını projenize ekleyin

  1. Modül (uygulama düzeyi) Gradle yapılandırma dosyanıza (ör. <project>/<app-module>/build.gradle.kts) Android için Google AI SDK'sının bağımlılığını ekleyin:

    Kotlin

    dependencies {
      // ... other androidx dependencies
    
      // add the dependency for the Google AI client SDK for Android
      implementation("com.google.ai.client.generativeai:generativeai:0.6.0")
    }
    

    Java

    Java için iki ek kitaplık eklemeniz gerekir.

    dependencies {
        // ... other androidx dependencies
    
        // add the dependency for the Google AI client SDK for Android
        implementation("com.google.ai.client.generativeai:generativeai:0.6.0")
    
        // Required for one-shot operations (to use `ListenableFuture` from Guava Android)
        implementation("com.google.guava:guava:31.0.1-android")
    
        // Required for streaming operations (to use `Publisher` from Reactive Streams)
        implementation("org.reactivestreams:reactive-streams:1.0.4")
    }
    
  2. Android projenizi Gradle dosyalarıyla senkronize edin.

Üretken modeli ilk kullanıma hazırlama

API çağrısı yapabilmek için üretici modeli ilk kullanıma hazırlamanız gerekir:

Kotlin

val generativeModel = GenerativeModel(
    // The Gemini 1.5 models are versatile and work with most use cases
    modelName = "gemini-1.5-flash",
    // Access your API key as a Build Configuration variable (see "Set up your API key" above)
    apiKey = BuildConfig.apiKey
)

Java

Java için GenerativeModelFutures nesnesini başlatmanız da gerekir.

// Use a model that's applicable for your use case
// The Gemini 1.5 models are versatile and work with most use cases
GenerativeModel gm = new GenerativeModel(/* modelName */ "gemini-1.5-flash",
// Access your API key as a Build Configuration variable (see "Set up your API key" above)
    /* apiKey */ BuildConfig.apiKey);

// Use the GenerativeModelFutures Java compatibility layer which offers
// support for ListenableFuture and Publisher APIs
GenerativeModelFutures model = GenerativeModelFutures.from(gm);

Bir model belirtirken aşağıdakilere dikkat edin:

  • Kullanım alanınıza özel bir model kullanın (örneğin, gemini-pro-vision çok modlu giriş içindir). Bu kılavuzda, her uygulamaya ilişkin talimatlarda, her kullanım alanı için önerilen model listelenmiştir.

Yaygın kullanım alanlarından yararlanın

Projeniz hazır olduğuna göre farklı kullanım alanları uygulamak için Gemini API'yi nasıl kullanabileceğinizi keşfedebilirsiniz:

Yalnızca metin girişinden metin oluştur

İstem girişi yalnızca metin içeriyorsa metin çıkışı oluşturmak için generateContent ile Gemini 1.5 modelini veya Gemini 1.0 Pro modelini kullanın:

Kotlin

generateContent() işlevinin bir askıya alma işlevi olduğunu ve Coroutine kapsamından çağrılması gerektiğini unutmayın. Coroutines hakkında bilginiz yoksa Android'de Kotlin Coroutines makalesini okuyun.

val generativeModel = GenerativeModel(
    // The Gemini 1.5 models are versatile and work with both text-only and multimodal prompts
    modelName = "gemini-1.5-flash",
    // Access your API key as a Build Configuration variable (see "Set up your API key" above)
    apiKey = BuildConfig.apiKey
)

val prompt = "Write a story about a magic backpack."
val response = generativeModel.generateContent(prompt)
print(response.text)

Java

generateContent() işlevinin bir ListenableFuture döndürdüğünü unutmayın. Bu API hakkında bilginiz yoksa ListenableFuture kullanma hakkındaki Android belgelerine bakın.

// The Gemini 1.5 models are versatile and work with both text-only and multimodal prompts
GenerativeModel gm = new GenerativeModel(/* modelName */ "gemini-1.5-flash",
// Access your API key as a Build Configuration variable (see "Set up your API key" above)
    /* apiKey */ BuildConfig.apiKey);
GenerativeModelFutures model = GenerativeModelFutures.from(gm);

Content content = new Content.Builder()
    .addText("Write a story about a magic backpack.")
    .build();

Executor executor = // ...

ListenableFuture<GenerateContentResponse> response = model.generateContent(content);
Futures.addCallback(response, new FutureCallback<GenerateContentResponse>() {
    @Override
    public void onSuccess(GenerateContentResponse result) {
        String resultText = result.getText();
        System.out.println(resultText);
    }

    @Override
    public void onFailure(Throwable t) {
        t.printStackTrace();
    }
}, executor);

Metin ve resim girişinden metin oluşturma (çok modlu)

Gemini, çok modlu girişleri (Gemini 1.5 modelleri ve Gemini 1.0 Pro Vision) işleyebilen çeşitli modeller sunar. Böylece hem metin hem de resim girebilirsiniz. İstemler için resim gereksinimlerini incelediğinizden emin olun.

İstem girişi hem metin hem de resim içeriyorsa metin çıkışı oluşturmak için generateContent ile Gemini 1.5 modelini veya Gemini 1.0 Pro Vision modelini kullanın:

Kotlin

generateContent() işlevinin bir askıya alma işlevi olduğunu ve Coroutine kapsamından çağrılması gerektiğini unutmayın. Coroutines hakkında bilginiz yoksa Android'de Kotlin Coroutines makalesini okuyun.

val generativeModel = GenerativeModel(
    // The Gemini 1.5 models are versatile and work with both text-only and multimodal prompts
    modelName = "gemini-1.5-flash",
    // Access your API key as a Build Configuration variable (see "Set up your API key" above)
    apiKey = BuildConfig.apiKey
)

val image1: Bitmap = // ...
val image2: Bitmap = // ...

val inputContent = content {
    image(image1)
    image(image2)
    text("What's different between these pictures?")
}

val response = generativeModel.generateContent(inputContent)
print(response.text)

Java

generateContent() işlevinin bir ListenableFuture döndürdüğünü unutmayın. Bu API hakkında bilginiz yoksa ListenableFuture kullanma hakkındaki Android belgelerine bakın.

// The Gemini 1.5 models are versatile and work with both text-only and multimodal prompts
GenerativeModel gm = new GenerativeModel(/* modelName */ "gemini-1.5-flash",
// Access your API key as a Build Configuration variable (see "Set up your API key" above)
    /* apiKey */ BuildConfig.apiKey);
GenerativeModelFutures model = GenerativeModelFutures.from(gm);

Bitmap image1 = // ...
Bitmap image2 = // ...

Content content = new Content.Builder()
    .addText("What's different between these pictures?")
    .addImage(image1)
    .addImage(image2)
    .build();

Executor executor = // ...

ListenableFuture<GenerateContentResponse> response = model.generateContent(content);
Futures.addCallback(response, new FutureCallback<GenerateContentResponse>() {
    @Override
    public void onSuccess(GenerateContentResponse result) {
        String resultText = result.getText();
        System.out.println(resultText);
    }

    @Override
    public void onFailure(Throwable t) {
        t.printStackTrace();
    }
}, executor);

Çok dönüşlü görüşmeler yapma (sohbet)

Gemini'ı kullanarak birden fazla dönüş için serbest biçimli konuşmalar oluşturabilirsiniz. SDK, görüşmenin durumunu yöneterek süreci basitleştirir. Böylece, generateContent'den farklı olarak sohbet geçmişini sizin saklamanız gerekmez.

Çok dönüşlü bir görüşme (ör. sohbet) oluşturmak için Gemini 1.5 veya Gemini 1.0 Pro modelini kullanın ve startChat() yöntemini çağırarak sohbeti başlatın. Ardından, yeni bir kullanıcı mesajı göndermek için sendMessage() kullanın. Bu işlem, mesajı ve yanıtı da sohbet geçmişine ekler.

Bir görüşmedeki içerikle ilişkili role için iki olası seçenek vardır:

  • user: İstemleri sağlayan rol. Bu değer, sendMessage çağrıları için varsayılan değerdir.

  • model: Yanıtları sağlayan rol. Bu rol, mevcut history ile startChat() çağrılırken kullanılabilir.

Kotlin

generateContent() işlevinin bir askıya alma işlevi olduğunu ve Coroutine kapsamından çağrılması gerektiğini unutmayın. Coroutines hakkında bilginiz yoksa Android'de Kotlin Coroutines makalesini okuyun.

val generativeModel = GenerativeModel(
    // The Gemini 1.5 models are versatile and work with multi-turn conversations (like chat)
    modelName = "gemini-1.5-flash",
    // Access your API key as a Build Configuration variable (see "Set up your API key" above)
    apiKey = BuildConfig.apiKey
)

val chat = generativeModel.startChat(
    history = listOf(
        content(role = "user") { text("Hello, I have 2 dogs in my house.") },
        content(role = "model") { text("Great to meet you. What would you like to know?") }
    )
)

chat.sendMessage("How many paws are in my house?")

Java

generateContent() işlevinin bir ListenableFuture döndürdüğünü unutmayın. Bu API hakkında bilginiz yoksa ListenableFuture kullanma hakkındaki Android belgelerine bakın.

// The Gemini 1.5 models are versatile and work with multi-turn conversations (like chat)
GenerativeModel gm = new GenerativeModel(/* modelName */ "gemini-1.5-flash",
// Access your API key as a Build Configuration variable (see "Set up your API key" above)
    /* apiKey */ BuildConfig.apiKey);
GenerativeModelFutures model = GenerativeModelFutures.from(gm);

// (optional) Create previous chat history for context
Content.Builder userContentBuilder = new Content.Builder();
userContentBuilder.setRole("user");
userContentBuilder.addText("Hello, I have 2 dogs in my house.");
Content userContent = userContentBuilder.build();

Content.Builder modelContentBuilder = new Content.Builder();
modelContentBuilder.setRole("model");
modelContentBuilder.addText("Great to meet you. What would you like to know?");
Content modelContent = userContentBuilder.build();

List<Content> history = Arrays.asList(userContent, modelContent);

// Initialize the chat
ChatFutures chat = model.startChat(history);

// Create a new user message
Content userMessage = new Content.Builder()
    .setRole("user")
    .addText("How many paws are in my house?")
    .build();

Executor executor = // ...

// Send the message
ListenableFuture<GenerateContentResponse> response = chat.sendMessage(userMessage);

Futures.addCallback(response, new FutureCallback<GenerateContentResponse>() {
    @Override
    public void onSuccess(GenerateContentResponse result) {
        String resultText = result.getText();
        System.out.println(resultText);
    }

    @Override
    public void onFailure(Throwable t) {
        t.printStackTrace();
    }
}, executor);

Daha hızlı etkileşimler için akış özelliğini kullanın

Varsayılan olarak model, tüm oluşturma işlemini tamamladıktan sonra bir yanıt döndürür. Tüm sonucu beklemeyip bunun yerine kısmi sonuçları işlemek için akışı kullanarak daha hızlı etkileşimler gerçekleştirebilirsiniz.

Aşağıdaki örnekte, metin ve resim giriş isteminden metin oluşturmak için generateContentStream ile akışın nasıl uygulanacağı gösterilmektedir.

Kotlin

generateContentStream() işlevinin bir askıya alma işlevi olduğunu ve Coroutine kapsamından çağrılması gerektiğini unutmayın. Coroutines hakkında bilginiz yoksa Android'de Kotlin Coroutines makalesini okuyun.

val generativeModel = GenerativeModel(
    // The Gemini 1.5 models are versatile and work with both text-only and multimodal prompts
    modelName = "gemini-1.5-flash",
    // Access your API key as a Build Configuration variable (see "Set up your API key" above)
    apiKey = BuildConfig.apiKey
)

val image1: Bitmap = // ...
val image2: Bitmap = // ...

val inputContent = content {
    image(image1)
    image(image2)
    text("What's the difference between these pictures?")
}

var fullResponse = ""
generativeModel.generateContentStream(inputContent).collect { chunk ->
    print(chunk.text)
    fullResponse += chunk.text
}

Java

Bu SDK'daki Java akış yöntemleri, Reactive Streams kitaplığından bir Publisher türü döndürür.

// The Gemini 1.5 models are versatile and work with both text-only and multimodal prompts
GenerativeModel gm = new GenerativeModel(/* modelName */ "gemini-1.5-flash",
// Access your API key as a Build Configuration variable (see "Set up your API key" above)
    /* apiKey */ BuildConfig.apiKey);
GenerativeModelFutures model = GenerativeModelFutures.from(gm);

Bitmap image1 = // ...
Bitmap image2 = // ...

Content content = new Content.Builder()
    .addText("What's different between these pictures?")
    .addImage(image1)
    .addImage(image2)
    .build();

Publisher<GenerateContentResponse> streamingResponse =
    model.generateContentStream(content);

final String[] fullResponse = {""};

streamingResponse.subscribe(new Subscriber<GenerateContentResponse>() {
    @Override
    public void onNext(GenerateContentResponse generateContentResponse) {
        String chunk = generateContentResponse.getText();
        fullResponse[0] += chunk;
    }

    @Override
    public void onComplete() {
        System.out.println(fullResponse[0]);
    }

    @Override
    public void onError(Throwable t) {
        t.printStackTrace();
    }

    @Override
    public void onSubscribe(Subscription s) { }
});

Yalnızca metin girişi ve sohbet kullanım alanları için benzer bir yaklaşım kullanabilirsiniz:

Kotlin

generateContentStream() işlevinin bir askıya alma işlevi olduğunu ve Coroutine kapsamından çağrılması gerektiğini unutmayın. Coroutines hakkında bilginiz yoksa Android'de Kotlin Coroutines makalesini okuyun.

// Use streaming with text-only input
generativeModel.generateContentStream(inputContent).collect { chunk ->
    print(chunk.text)
}
// Use streaming with multi-turn conversations (like chat)
val chat = generativeModel.startChat()
chat.sendMessageStream(inputContent).collect { chunk ->
    print(chunk.text)
}

Java

Bu SDK'daki Java akış yöntemleri, Reactive Streams kitaplığından bir Publisher türü döndürür.

// Use streaming with text-only input
Publisher<GenerateContentResponse> streamingResponse =
    model.generateContentStream(inputContent);

final String[] fullResponse = {""};

streamingResponse.subscribe(new Subscriber<GenerateContentResponse>() {
    @Override
    public void onNext(GenerateContentResponse generateContentResponse) {
        String chunk = generateContentResponse.getText();
        fullResponse[0] += chunk;
    }

    @Override
    public void onComplete() {
        System.out.println(fullResponse[0]);
    }

    // ... other methods omitted for brevity
});
// Use streaming with multi-turn conversations (like chat)
ChatFutures chat = model.startChat(history);

Publisher<GenerateContentResponse> streamingResponse =
    chat.sendMessageStream(inputContent);

final String[] fullResponse = {""};

streamingResponse.subscribe(new Subscriber<GenerateContentResponse>() {
    @Override
    public void onNext(GenerateContentResponse generateContentResponse) {
        String chunk = generateContentResponse.getText();
        fullResponse[0] += chunk;
    }

    @Override
    public void onComplete() {
        System.out.println(fullResponse[0]);
    }

    // ... other methods omitted for brevity
});

Gelişmiş kullanım alanları

Bu eğiticinin önceki bölümünde açıklanan yaygın kullanım alanları, Gemini API'yi kullanmaya alışmanıza yardımcı olur. Bu bölümde, daha ileri düzey olarak değerlendirilebilecek bazı kullanım alanları açıklanmaktadır.

İşlev çağrısı

İşlev çağrısı, üretici modellerden yapılandırılmış veri çıkışları almanızı kolaylaştırır. Daha sonra bu çıkışları kullanarak diğer API'leri çağırabilir ve ilgili yanıt verilerini modele döndürebilirsiniz. Başka bir deyişle, işlev çağrısı, üretken modelleri harici sistemlere bağlamanıza yardımcı olarak oluşturulan içeriğin en güncel ve doğru bilgileri içermesini sağlar. İşlev çağrısı eğiticisinde daha fazla bilgi edinebilirsiniz.

Jetonları say

Uzun istemler kullanırken, modele içerik göndermeden önce jetonların sayılması yararlı olabilir. Aşağıdaki örneklerde countTokens() öğesinin çeşitli kullanım alanlarında nasıl kullanılacağı gösterilmektedir:

Kotlin

countTokens() işlevinin bir askıya alma işlevi olduğunu ve Coroutine kapsamından çağrılması gerektiğini unutmayın. Coroutines hakkında bilginiz yoksa Android'de Kotlin Coroutines makalesini okuyun.

// For text-only input
val (totalTokens) = generativeModel.countTokens("Write a story about a magic backpack.")

// For text-and-image input (multi-modal)
val multiModalContent = content {
    image(image1)
    image(image2)
    text("What's the difference between these pictures?")
}

val (totalTokens) = generativeModel.countTokens(multiModalContent)

// For multi-turn conversations (like chat)
val history = chat.history
val messageContent = content { text("This is the message I intend to send")}
val (totalTokens) = generativeModel.countTokens(*history.toTypedArray(), messageContent)

Java

countTokens() işlevinin bir ListenableFuture döndürdüğünü unutmayın. Bu API hakkında bilginiz yoksa ListenableFuture kullanma hakkındaki Android belgelerine bakın.

Content text = new Content.Builder()
    .addText("Write a story about a magic backpack.")
    .build();

Executor executor = // ...

// For text-only input
ListenableFuture<CountTokensResponse> countTokensResponse = model.countTokens(text);

Futures.addCallback(countTokensResponse, new FutureCallback<CountTokensResponse>() {
    @Override
    public void onSuccess(CountTokensResponse result) {
        int totalTokens = result.getTotalTokens();
        System.out.println("TotalTokens = " + totalTokens);
    }

    @Override
    public void onFailure(Throwable t) {
        t.printStackTrace();
    }
}, executor);

// For text-and-image input
Bitmap image1 = // ...
Bitmap image2 = // ...

Content multiModalContent = new Content.Builder()
    .addImage(image1)
    .addImage(image2)
    .addText("What's different between these pictures?")
    .build();

ListenableFuture<CountTokensResponse> countTokensResponse = model.countTokens(multiModalContent);

// For multi-turn conversations (like chat)
List<Content> history = chat.getChat().getHistory();

Content messageContent = new Content.Builder()
    .addText("This is the message I intend to send")
    .build();

Collections.addAll(history, messageContent);

ListenableFuture<CountTokensResponse> countTokensResponse = model.countTokens(history.toArray(new Content[0]));

İçerik oluşturmayı denetleme seçenekleri

Model parametrelerini yapılandırarak ve güvenlik ayarlarını kullanarak içerik oluşturmayı kontrol edebilirsiniz.

Model parametrelerini yapılandırma

Modele gönderdiğiniz her istem, modelin nasıl yanıt oluşturacağını kontrol eden parametre değerleri içerir. Model, farklı parametre değerleri için farklı sonuçlar oluşturabilir. Model parametreleri hakkında daha fazla bilgi edinin.

Kotlin

val config = generationConfig {
    temperature = 0.9f
    topK = 16
    topP = 0.1f
    maxOutputTokens = 200
    stopSequences = listOf("red")
}

val generativeModel = GenerativeModel(
    // The Gemini 1.5 models are versatile and work with most use cases
    modelName = "gemini-1.5-flash",
    apiKey = BuildConfig.apiKey,
    generationConfig = config
)

Java

GenerationConfig.Builder configBuilder = new GenerationConfig.Builder();
configBuilder.temperature = 0.9f;
configBuilder.topK = 16;
configBuilder.topP = 0.1f;
configBuilder.maxOutputTokens = 200;
configBuilder.stopSequences = Arrays.asList("red");

GenerationConfig generationConfig = configBuilder.build();

// The Gemini 1.5 models are versatile and work with most use cases
GenerativeModel gm = new GenerativeModel(
    "gemini-1.5-flash",
    BuildConfig.apiKey,
    generationConfig
);

GenerativeModelFutures model = GenerativeModelFutures.from(gm);

Güvenlik ayarlarını kullan

Zararlı olarak değerlendirilebilecek yanıtlar alma olasılığını ayarlamak için güvenlik ayarlarını kullanabilirsiniz. Güvenlik ayarları, varsayılan olarak güvenli olmayan içerik olması orta ve/veya yüksek olasılıklı tüm içerikleri tüm boyutlarda engeller. Güvenlik ayarları hakkında daha fazla bilgi edinin.

Aşağıda, bir güvenlik ayarını nasıl belirleyeceğiniz açıklanmıştır:

Kotlin

val generativeModel = GenerativeModel(
    // The Gemini 1.5 models are versatile and work with most use cases
    modelName = "gemini-1.5-flash",
    apiKey = BuildConfig.apiKey,
    safetySettings = listOf(
        SafetySetting(HarmCategory.HARASSMENT, BlockThreshold.ONLY_HIGH)
    )
)

Java

SafetySetting harassmentSafety = new SafetySetting(HarmCategory.HARASSMENT,
    BlockThreshold.ONLY_HIGH);

// The Gemini 1.5 models are versatile and work with most use cases
GenerativeModel gm = new GenerativeModel(
    "gemini-1.5-flash",
    BuildConfig.apiKey,
    null, // generation config is optional
    Collections.singletonList(harassmentSafety)
);

GenerativeModelFutures model = GenerativeModelFutures.from(gm);

Birden fazla güvenlik ayarı da belirleyebilirsiniz:

Kotlin

val harassmentSafety = SafetySetting(HarmCategory.HARASSMENT, BlockThreshold.ONLY_HIGH)

val hateSpeechSafety = SafetySetting(HarmCategory.HATE_SPEECH, BlockThreshold.MEDIUM_AND_ABOVE)

val generativeModel = GenerativeModel(
    // The Gemini 1.5 models are versatile and work with most use cases
    modelName = "gemini-1.5-flash",
    apiKey = BuildConfig.apiKey,
    safetySettings = listOf(harassmentSafety, hateSpeechSafety)
)

Java

SafetySetting harassmentSafety = new SafetySetting(HarmCategory.HARASSMENT,
    BlockThreshold.ONLY_HIGH);

SafetySetting hateSpeechSafety = new SafetySetting(HarmCategory.HATE_SPEECH,
    BlockThreshold.MEDIUM_AND_ABOVE);

// The Gemini 1.5 models are versatile and work with most use cases
GenerativeModel gm = new GenerativeModel(
    "gemini-1.5-flash",
    BuildConfig.apiKey,
    null, // generation config is optional
    Arrays.asList(harassmentSafety, hateSpeechSafety)
);

GenerativeModelFutures model = GenerativeModelFutures.from(gm);

Sırada ne var?

  • İstem tasarımı, dil modellerinden istenen yanıtı alan istemler oluşturma sürecidir. İyi yapılandırılmış istemler yazmak, bir dil modelinden doğru, yüksek kaliteli yanıtlar almanın önemli bir parçasıdır. İstem yazmayla ilgili en iyi uygulamalar hakkında bilgi edinin.

  • Gemini, giriş türleri ve karmaşıklık, sohbet veya diğer iletişim dili görevlerine yönelik uygulamalar ve boyut kısıtlamaları gibi farklı kullanım alanlarının ihtiyaçlarını karşılamak için çeşitli model varyasyonları sunuyor. Kullanılabilir Gemini modelleri hakkında bilgi edinin.

  • Gemini, hız sınırının artırılmasını isteme seçeneği sunar. Gemini Pro modelleri için hız sınırı dakikada 60 istektir (BGBG).

  • Bu eğiticide açıklanan Android için istemci SDK'sı, Google'ın sunucularında çalışan Gemini Pro modellerine erişmenizi sağlar. Hassas verilerin işlenmesi ve çevrimdışı kullanılabilirliğin yer aldığı kullanım alanları ya da sık kullanılan kullanıcı akışları için maliyet tasarrufu gibi kullanım alanları için cihaz üzerinde çalışan Gemini Nano'ya erişmeyi düşünebilirsiniz. Daha ayrıntılı bilgi için Android (cihaz üzerinde) eğitimine bakın.