Instructivo: Comienza a usar la API de Gemini


En este instructivo, se muestra cómo acceder a la API de Gemini directamente desde tu App de Swift con el SDK de Google AI Swift. Puedes usar este SDK si no quieres trabajar directamente con APIs de REST o código del servidor (como Python) para acceder Modelos de Gemini en tu app de Swift.

En este instructivo, aprenderás a hacer lo siguiente:

Además, este instructivo contiene secciones sobre casos de uso avanzados (como tokens de recuento), así como las opciones para controlar la generación de contenido.

Requisitos previos

En este instructivo, suponemos que conoces Xcode para desarrollar Swift de Google Chat.

Para completar este instructivo, asegúrate de que tu entorno de desarrollo y La app de Swift cumple con los siguientes requisitos:

  • Xcode 15.0 o una versión más reciente
  • Tu app de Swift debe orientarse a iOS 15 o versiones posteriores, o macOS 12 o versiones posteriores.

Configura tu proyecto

Antes de llamar a la API de Gemini, debes configurar tu proyecto Xcode, configurar tu clave de API, agregar el paquete del SDK a tu proyecto Xcode, e inicializar el modelo.

Cómo configurar tu clave de API

Para usar la API de Gemini, necesitarás una clave de API. Si aún no tienes uno, crea una clave en Google AI Studio.

Obtén una clave de API.

Protege tu clave de API

Te recomendamos que no incluyas una clave de API en tu versión un sistema de control de calidad. Una alternativa es almacenarlos en un GenerativeAI-Info.plist y, luego, lee la clave de API desde la .plist . Asegúrate de colocar este archivo .plist en la carpeta raíz de tu app y excluirla del control de versión.

También puedes revisar el app de ejemplo para obtener información sobre cómo almacenar tu clave de API en un archivo .plist.

En todos los fragmentos de este instructivo, se supone que accedes a tu clave de API desde este archivo .plist de recurso a pedido.

Agrega el paquete del SDK a tu proyecto

Para usar la API de Gemini en tu propia app de Swift, agrega GoogleGenerativeAI paquete a tu app:

  1. En Xcode, haz clic con el botón derecho en tu proyecto en el navegador de proyectos.

  2. Selecciona Agregar paquetes en el menú contextual.

  3. En el diálogo Add Packages, pega la URL del paquete en la barra de búsqueda:

    https://github.com/google/generative-ai-swift
    
  4. Haz clic en Add Package. Xcode ahora agregará el paquete GoogleGenerativeAI a tu proyecto.

Inicializa el modelo generativo

Antes de realizar llamadas a las APIs, debes inicializar el modelo generativo.

  1. Importa el módulo GoogleGenerativeAI:

    import GoogleGenerativeAI
    
  2. Inicializa el modelo generativo:

    // Access your API key from your on-demand resource .plist file
    // (see "Set up your API key" above)
    // The Gemini 1.5 models are versatile and work with most use cases
    let model = GenerativeModel(name: "gemini-1.5-flash", apiKey: APIKey.default)
    

Cuando especifiques un modelo, ten en cuenta lo siguiente:

  • Usa un modelo que sea específico para tu caso de uso (por ejemplo, gemini-1.5-flash es para entradas multimodales). En esta guía, las instrucciones para cada de implementación, y luego enumerar el modelo recomendado para cada caso de uso.

Implementa casos de uso comunes

Ahora que tu proyecto está configurado, puedes explorar con la API de Gemini para implementar diferentes casos de uso:

Genera texto a partir de entradas de solo texto

Cuando la entrada de la instrucción solo incluya texto, usa un modelo de Gemini 1.5 o Modelo de Gemini 1.0 Pro con generateContent para generar salida de texto:

import GoogleGenerativeAI

// The Gemini 1.5 models are versatile and work with both text-only and multimodal prompts
// Access your API key from your on-demand resource .plist file (see "Set up your API key" above)
let model = GenerativeModel(name: "gemini-1.5-flash", apiKey: APIKey.default)

let prompt = "Write a story about a magic backpack."
let response = try await model.generateContent(prompt)
if let text = response.text {
  print(text)
}

Generar texto a partir de entradas de texto e imágenes (multimodal)

Gemini proporciona varios modelos que pueden controlar entradas multimodales (modelos de Gemini 1.5) para que puedas ingresar tanto texto imágenes. Asegúrate de revisar el requisitos de imágenes para las instrucciones.

Cuando la entrada de instrucciones incluya imágenes y texto, usa un modelo de Gemini 1.5. con el método generateContent para generar una salida de texto:

import GoogleGenerativeAI

// The Gemini 1.5 models are versatile and work with both text-only and multimodal prompts
// Access your API key from your on-demand resource .plist file (see "Set up your API key" above)
let model = GenerativeModel(name: "gemini-1.5-flash", apiKey: APIKey.default)

let image1 = UIImage(...)
let image2 = UIImage(...)

let prompt = "What's different between these pictures?"

let response = try await model.generateContent(prompt, image1, image2)
if let text = response.text {
  print(text)
}

Crea conversaciones de varios turnos (chat)

Con Gemini, puedes entablar conversaciones de formato libre en múltiples turnos. El SDK simplifica el proceso, ya que administra el estado de la conversación, así que, con generateContent, no tienes que almacenar el historial de conversaciones de ti mismo.

Para crear una conversación de varios turnos (como el chat), usa un modelo de Gemini 1.5 o modelo de Gemini 1.0 Pro e inicializar el chat llamando a startChat(). Luego, usa sendMessage() para enviar un nuevo mensaje de usuario, que también agregará el y la respuesta al historial de chat.

Hay dos opciones posibles para role asociado con el contenido de una conversación:

  • user: Es la función que proporciona los mensajes. Este es el valor predeterminado para sendMessage llamada.

  • model: Es la función que proporciona las respuestas. Este rol puede usarse cuando Llamando a startChat() con history existentes

import GoogleGenerativeAI

let config = GenerationConfig(
  maxOutputTokens: 100
)

// The Gemini 1.5 models are versatile and work with multi-turn conversations (like chat)
// Access your API key from your on-demand resource .plist file (see "Set up your API key" above)
let model = GenerativeModel(
  name: "gemini-1.5-flash",
  apiKey: APIKey.default,
  generationConfig: config
)

let history = [
  ModelContent(role: "user", parts: "Hello, I have 2 dogs in my house."),
  ModelContent(role: "model", parts: "Great to meet you. What would you like to know?"),
]

// Initialize the chat
let chat = model.startChat(history: history)
let response = try await chat.sendMessage("How many paws are in my house?")
if let text = response.text {
  print(text)
}

Usa la transmisión para tener interacciones más rápidas

De forma predeterminada, el modelo devuelve una respuesta después de completar toda la generación. el proceso de administración de recursos. Puede lograr interacciones más rápidas si no espera a que todo resultado y, en su lugar, usa la transmisión para manejar resultados parciales.

En el siguiente ejemplo, se muestra cómo implementar la transmisión con el Método generateContentStream para generar texto a partir de una entrada de imagen y texto mensaje.

import GoogleGenerativeAI

// The Gemini 1.5 models are versatile and work with both text-only and multimodal prompts
// Access your API key from your on-demand resource .plist file (see "Set up your API key" above)
let model = GenerativeModel(name: "gemini-1.5-flash", apiKey: APIKey.default)

let image1 = UIImage(named: "")!
let image2 = UIImage(named: "")!

let prompt = "What's different between these pictures?"
var fullResponse = ""
let contentStream = model.generateContentStream(prompt, image1, image2)
for try await chunk in contentStream {
  if let text = chunk.text {
    print(text)
    fullResponse += text
  }
}
print(fullResponse)

Puedes usar un enfoque similar para los casos de uso de entrada de solo texto y chat.

// Use streaming with text-only input
let contentStream = model.generateContentStream(prompt)
// Use streaming with multi-turn conversations (like chat)
let responseStream = chat.sendMessageStream(message)

Implementa casos de uso avanzados

Los casos de uso comunes descritos en la sección anterior de este instructivo ayudan a a que te familiarices con la API de Gemini. En esta sección, se describen algunas que podrían considerarse más avanzados.

Llamada a función

Las llamadas a función facilitan la obtención de resultados de datos estructurados desde generativos. Luego, puedes usar estos resultados para llamar a otras APIs y mostrar los datos de respuesta relevantes para el modelo. En otras palabras, las llamadas a funciones ayudan conecta modelos generativos a sistemas externos para que el contenido generado incluya la información más actualizada y precisa. Obtén más información en el instructivo de llamada a funciones.

Contar tokens

Cuando se usan instrucciones largas, podría ser útil contar los tokens antes de enviar cualquiera contenido al modelo. En los siguientes ejemplos, se muestra cómo usar countTokens() para varios casos de uso:

// For text-only input
let response = try await model.countTokens("Why is the sky blue?")
print(response.totalTokens)
// For text-and-image input (multi-modal)
let response = try await model.countTokens(prompt, image1, image2)
print(response.totalTokens)
// For multi-turn conversations (like chat)
let chat = model.startChat()
let history = chat.history
let message = try ModelContent(role: "user", "Why is the sky blue?")
let contents = history + [message]
let response = try await model.countTokens(contents)
print(response.totalTokens)

Opciones para controlar la generación de contenido

Puedes controlar la generación de contenido a través de la configuración de los parámetros del modelo y el uso configuración de seguridad.

Configura los parámetros del modelo

Cada instrucción que envías al modelo incluye valores de parámetros que controlan cómo el modelo genera una respuesta. El modelo puede generar resultados diferentes para los valores de parámetros diferentes. Obtén más información sobre Parámetros del modelo. La configuración se mantiene durante toda la vida útil de tu instancia de modelo.

let config = GenerationConfig(
  temperature: 0.9,
  topP: 0.1,
  topK: 16,
  maxOutputTokens: 200,
  stopSequences: ["red"]
)

// Access your API key from your on-demand resource .plist file (see "Set up your API key" above)
let model = GenerativeModel(
  // The Gemini 1.5 models are versatile and work with most use cases
  name: "gemini-1.5-flash",
  apiKey: APIKey.default,
  generationConfig: config
)

Usar la configuración de seguridad

Puedes usar la configuración de seguridad para ajustar la probabilidad de recibir respuestas que puede considerarse perjudicial. Según la configuración predeterminada, la configuración de seguridad bloquea el contenido con o una alta probabilidad de ser contenido no seguro en todas las dimensiones. Aprendizaje Obtén más información sobre la configuración de seguridad.

Sigue estos pasos para establecer una configuración de seguridad:

// Access your API key from your on-demand resource .plist file (see "Set up your API key" above)
let model = GenerativeModel(
  // The Gemini 1.5 models are versatile and work with most use cases
  name: "gemini-1.5-flash",
  apiKey: APIKey.default,
  safetySettings: [
    SafetySetting(harmCategory: .harassment, threshold: .blockOnlyHigh)
  ]
)

También puedes establecer más de una configuración de seguridad:

let harassmentSafety = SafetySetting(harmCategory: .harassment, threshold: .blockOnlyHigh)
let hateSpeechSafety = SafetySetting(harmCategory: .hateSpeech, threshold: .blockMediumAndAbove)

// Access your API key from your on-demand resource .plist file (see "Set up your API key" above)
let model = GenerativeModel(
  // The Gemini 1.5 models are versatile and work with most use cases
  name: "gemini-1.5-flash",
  apiKey: APIKey.default,
    safetySettings: [harassmentSafety, hateSpeechSafety]
)

¿Qué sigue?

  • El diseño de instrucciones es el proceso de crear instrucciones que producen la respuesta deseada de los modelos de lenguaje. Escribir instrucciones bien estructuradas es una parte esencial de garantizar respuestas precisas y de alta calidad desde un modelo de lenguaje. Obtén más información sobre las prácticas recomendadas para la redacción de instrucciones.

  • Gemini ofrece diversas variaciones de modelos para satisfacer las necesidades de los distintos usos como tipos de entrada y complejidad, implementaciones para chat u otros las tareas de lenguaje de diálogo y las restricciones de tamaño. Obtén más información sobre los modelos de Gemini disponibles.