Gemini API 可根據各種輸入內容 (包括文字、圖片、影片和音訊) 產生文字輸出內容。本指南說明如何使用文字和圖片輸入內容來產生文字。也涵蓋串流、聊天和系統指示。
文字輸入法
使用 Gemini API 產生文字最簡單的方法,就是為模型提供單一純文字輸入內容,如以下範例所示:
Python
from google import genai
client = genai.Client(api_key="GEMINI_API_KEY")
response = client.models.generate_content(
model="gemini-2.0-flash",
contents=["How does AI work?"]
)
print(response.text)
JavaScript
import { GoogleGenerativeAI } from "@google/generative-ai";
async function main() {
const genAI = new GoogleGenerativeAI("GEMINI_API_KEY");
const model = genAI.getGenerativeModel({ model: "gemini-2.0-flash" });
const prompt = "How does AI work?";
const result = await model.generateContent(prompt);
console.log(result.response.text());
}
main();
Go
// import packages here
func main() {
ctx := context.Background()
client, err := genai.NewClient(ctx, option.WithAPIKey(os.Getenv("GEMINI_API_KEY")))
if err != nil {
log.Fatal(err)
}
defer client.Close()
model := client.GenerativeModel("gemini-2.0-flash")
resp, err := model.GenerateContent(ctx, genai.Text("How does AI work?"))
if err != nil {
log.Fatal(err)
}
printResponse(resp) // helper function for printing content parts
}
REST
curl "https://generativelanguage.googleapis.com/v1beta/models/gemini-2.0-flash:generateContent?key=$GEMINI_API_KEY" \
-H 'Content-Type: application/json' \
-X POST \
-d '{
"contents": [{
"parts":[{"text": "How does AI work?"}]
}]
}' 2> /dev/null
圖片輸入
Gemini API 支援結合文字和媒體檔案的多模態輸入內容。以下範例說明如何根據文字和圖片輸入內容產生文字:
Python
from PIL import Image
from google import genai
client = genai.Client(api_key="GEMINI_API_KEY")
image = Image.open("/path/to/organ.png")
response = client.models.generate_content(
model="gemini-2.0-flash",
contents=[image, "Tell me about this instrument"]
)
print(response.text)
JavaScript
import { GoogleGenerativeAI } from "@google/generative-ai";
import * as fs from 'node:fs';
const genAI = new GoogleGenerativeAI("GEMINI_API_KEY");
const model = genAI.getGenerativeModel({ model: "gemini-2.0-flash" });
function fileToGenerativePart(path, mimeType) {
return {
inlineData: {
data: Buffer.from(fs.readFileSync(path)).toString("base64"),
mimeType,
},
};
}
const prompt = "Describe how this product might be manufactured.";
const imagePart = fileToGenerativePart("/path/to/image.png", "image/png");
const result = await model.generateContent([prompt, imagePart]);
console.log(result.response.text());
Go
model := client.GenerativeModel("gemini-2.0-flash")
imgData, err := os.ReadFile(filepath.Join(testDataDir, "organ.jpg"))
if err != nil {
log.Fatal(err)
}
resp, err := model.GenerateContent(ctx,
genai.Text("Tell me about this instrument"),
genai.ImageData("jpeg", imgData))
if err != nil {
log.Fatal(err)
}
printResponse(resp)
REST
# Use a temporary file to hold the base64 encoded image data
TEMP_B64=$(mktemp)
trap 'rm -f "$TEMP_B64"' EXIT
base64 $B64FLAGS $IMG_PATH > "$TEMP_B64"
# Use a temporary file to hold the JSON payload
TEMP_JSON=$(mktemp)
trap 'rm -f "$TEMP_JSON"' EXIT
cat > "$TEMP_JSON" << EOF
{
"contents": [{
"parts":[
{"text": "Tell me about this instrument"},
{
"inline_data": {
"mime_type":"image/jpeg",
"data": "$(cat "$TEMP_B64")"
}
}
]
}]
}
EOF
curl "https://generativelanguage.googleapis.com/v1beta/models/gemini-2.0-flash:generateContent?key=$GEMINI_API_KEY" \
-H 'Content-Type: application/json' \
-X POST \
-d "@$TEMP_JSON" 2> /dev/null
串流輸出
根據預設,模型會在完成整個文字產生程序後傳回回應。您可以使用串流功能,在 GenerateContentResponse
產生時傳回其例項,以便加快互動速度。
Python
from google import genai
client = genai.Client(api_key="GEMINI_API_KEY")
response = client.models.generate_content_stream(
model="gemini-2.0-flash",
contents=["Explain how AI works"]
)
for chunk in response:
print(chunk.text, end="")
JavaScript
import { GoogleGenerativeAI } from "@google/generative-ai";
const genAI = new GoogleGenerativeAI("GEMINI_API_KEY");
const model = genAI.getGenerativeModel({ model: "gemini-1.5-flash" });
const prompt = "Explain how AI works";
const result = await model.generateContentStream(prompt);
for await (const chunk of result.stream) {
const chunkText = chunk.text();
process.stdout.write(chunkText);
}
Go
model := client.GenerativeModel("gemini-1.5-flash")
iter := model.GenerateContentStream(ctx, genai.Text("Write a story about a magic backpack."))
for {
resp, err := iter.Next()
if err == iterator.Done {
break
}
if err != nil {
log.Fatal(err)
}
printResponse(resp)
}
REST
curl "https://generativelanguage.googleapis.com/v1beta/models/gemini-2.0-flash:streamGenerateContent?alt=sse&key=${GEMINI_API_KEY}" \
-H 'Content-Type: application/json' \
--no-buffer \
-d '{ "contents":[{"parts":[{"text": "Write a story about a magic backpack."}]}]}'
多轉折對話
您可以使用 Gemini SDK 將多輪問題和回覆收集到聊天室中。使用者可透過即時通訊格式逐步取得答案,並獲得多重問題的協助。這個即時通訊 SDK 實作會提供介面,用於追蹤對話記錄,但在幕後,它會使用相同的 generateContent
方法建立回應。
以下程式碼範例顯示基本即時通訊實作方式:
Python
from google import genai
client = genai.Client(api_key="GEMINI_API_KEY")
chat = client.chats.create(model="gemini-2.0-flash")
response = chat.send_message("I have 2 dogs in my house.")
print(response.text)
response = chat.send_message("How many paws are in my house?")
print(response.text)
for message in chat.get_history():
print(f'role - {message.role}',end=": ")
print(message.parts[0].text)
JavaScript
import { GoogleGenerativeAI } from "@google/generative-ai";
const genAI = new GoogleGenerativeAI("GEMINI_API_KEY");
const model = genAI.getGenerativeModel({ model: "gemini-1.5-flash" });
const chat = model.startChat({
history: [
{
role: "user",
parts: [{ text: "Hello" }],
},
{
role: "model",
parts: [{ text: "Great to meet you. What would you like to know?" }],
},
],
});
let result = await chat.sendMessage("I have 2 dogs in my house.");
console.log(result.response.text());
let result2 = await chat.sendMessage("How many paws are in my house?");
console.log(result2.response.text());
Go
model := client.GenerativeModel("gemini-1.5-flash")
cs := model.StartChat()
cs.History = []*genai.Content{
{
Parts: []genai.Part{
genai.Text("Hello, I have 2 dogs in my house."),
},
Role: "user",
},
{
Parts: []genai.Part{
genai.Text("Great to meet you. What would you like to know?"),
},
Role: "model",
},
}
res, err := cs.SendMessage(ctx, genai.Text("How many paws are in my house?"))
if err != nil {
log.Fatal(err)
}
printResponse(res)
REST
curl https://generativelanguage.googleapis.com/v1beta/models/gemini-2.0-flash:generateContent?key=$GEMINI_API_KEY \
-H 'Content-Type: application/json' \
-X POST \
-d '{
"contents": [
{"role":"user",
"parts":[{
"text": "Hello"}]},
{"role": "model",
"parts":[{
"text": "Great to meet you. What would you like to know?"}]},
{"role":"user",
"parts":[{
"text": "I have two dogs in my house. How many paws are in my house?"}]},
]
}' 2> /dev/null | grep "text"
你也可以使用串流直播搭配即時通訊,如以下範例所示:
Python
from google import genai
client = genai.Client(api_key="GEMINI_API_KEY")
chat = client.chats.create(model="gemini-2.0-flash")
response = chat.send_message_stream("I have 2 dogs in my house.")
for chunk in response:
print(chunk.text, end="")
response = chat.send_message_stream("How many paws are in my house?")
for chunk in response:
print(chunk.text, end="")
for message in chat.get_history():
print(f'role - {message.role}', end=": ")
print(message.parts[0].text)
JavaScript
import { GoogleGenerativeAI } from "@google/generative-ai";
const genAI = new GoogleGenerativeAI("GEMINI_API_KEY");
const model = genAI.getGenerativeModel({ model: "gemini-1.5-flash" });
const chat = model.startChat({
history: [
{
role: "user",
parts: [{ text: "Hello" }],
},
{
role: "model",
parts: [{ text: "Great to meet you. What would you like to know?" }],
},
],
});
let result = await chat.sendMessageStream("I have 2 dogs in my house.");
for await (const chunk of result.stream) {
const chunkText = chunk.text();
process.stdout.write(chunkText);
}
let result2 = await chat.sendMessageStream("How many paws are in my house?");
for await (const chunk of result2.stream) {
const chunkText = chunk.text();
process.stdout.write(chunkText);
}
Go
model := client.GenerativeModel("gemini-1.5-flash")
cs := model.StartChat()
cs.History = []*genai.Content{
{
Parts: []genai.Part{
genai.Text("Hello, I have 2 dogs in my house."),
},
Role: "user",
},
{
Parts: []genai.Part{
genai.Text("Great to meet you. What would you like to know?"),
},
Role: "model",
},
}
iter := cs.SendMessageStream(ctx, genai.Text("How many paws are in my house?"))
for {
resp, err := iter.Next()
if err == iterator.Done {
break
}
if err != nil {
log.Fatal(err)
}
printResponse(resp)
}
REST
curl https://generativelanguage.googleapis.com/v1beta/models/gemini-2.0-flash:streamGenerateContent?alt=sse&key=$GEMINI_API_KEY \
-H 'Content-Type: application/json' \
-X POST \
-d '{
"contents": [
{"role":"user",
"parts":[{
"text": "Hello"}]},
{"role": "model",
"parts":[{
"text": "Great to meet you. What would you like to know?"}]},
{"role":"user",
"parts":[{
"text": "I have two dogs in my house. How many paws are in my house?"}]},
]
}' 2> /dev/null | grep "text"
設定參數
您傳送至模型的每個提示都含有參數,用來控制模型生成回覆的方式,您可以設定這些參數,也可以讓模型使用預設選項。
以下範例說明如何設定模型參數:
Python
from google import genai
from google.genai import types
client = genai.Client(api_key="GEMINI_API_KEY")
response = client.models.generate_content(
model="gemini-2.0-flash",
contents=["Explain how AI works"],
config=types.GenerateContentConfig(
max_output_tokens=500,
temperature=0.1
)
)
print(response.text)
JavaScript
import { GoogleGenerativeAI } from "@google/generative-ai";
const genAI = new GoogleGenerativeAI("GEMINI_API_KEY");
const model = genAI.getGenerativeModel({ model: "gemini-1.5-flash" });
const result = await model.generateContent({
contents: [
{
role: 'user',
parts: [
{
text: "Explain how AI works",
}
],
}
],
generationConfig: {
maxOutputTokens: 1000,
temperature: 0.1,
}
});
console.log(result.response.text());
Go
model := client.GenerativeModel("gemini-1.5-pro-latest")
model.SetTemperature(0.9)
model.SetTopP(0.5)
model.SetTopK(20)
model.SetMaxOutputTokens(100)
model.SystemInstruction = genai.NewUserContent(genai.Text("You are Yoda from Star Wars."))
model.ResponseMIMEType = "application/json"
resp, err := model.GenerateContent(ctx, genai.Text("What is the average size of a swallow?"))
if err != nil {
log.Fatal(err)
}
printResponse(resp)
REST
curl https://generativelanguage.googleapis.com/v1beta/models/gemini-2.0-flash:generateContent?key=$GEMINI_API_KEY \
-H 'Content-Type: application/json' \
-X POST \
-d '{
"contents": [{
"parts":[
{"text": "Explain how AI works"}
]
}],
"generationConfig": {
"stopSequences": [
"Title"
],
"temperature": 1.0,
"maxOutputTokens": 800,
"topP": 0.8,
"topK": 10
}
}' 2> /dev/null | grep "text"
以下列舉一些可設定的模型參數。(命名慣例會因程式設計語言而異)。
stopSequences
:指定會停止產生輸出的字元序列集合 (最多 5 個)。如果指定,API 會在stop_sequence
首次出現時停止。這個停止序列不會包含在回應中。temperature
:控制輸出的隨機性。如要取得更有創意的回覆,請使用較高的值;如要取得較確定的回覆,請使用較低的值。值的範圍為 [0.0, 2.0]。maxOutputTokens
:設定候選項中可納入的符記數量上限。topP
:變更模型選取輸出符記的方式。模型會按照可能性最高到最低的順序選取符記,直到所選符記的機率總和等於topP
值。預設的topP
值為 0.95。topK
:變更模型選取輸出符記的方式。如果topK
設為 1,代表所選詞元是模型詞彙表的所有詞元中可能性最高者。如果topK
設為 3,則代表模型會依據溫度參數,從可能性最高的 3 個詞元中選取下一個詞元。接著進一步根據topP
篩選符記,最後依 temperature 選出最終符記。
系統指示
系統指令可讓您根據特定用途調整模型的行為。提供系統指示時,您會向模型提供額外脈絡資訊,協助模型瞭解任務並生成更符合需求的回覆。模型應在與使用者互動時全程遵守系統指示,讓您能單獨指定產品層級行為,不受使用者提供的提示影響。
您可以在初始化模型時設定系統指令:
Python
from google import genai
from google.genai import types
client = genai.Client(api_key="GEMINI_API_KEY")
response = client.models.generate_content(
model="gemini-2.0-flash",
config=types.GenerateContentConfig(
system_instruction="You are a cat. Your name is Neko."),
contents="Hello there"
)
print(response.text)
JavaScript
import { GoogleGenerativeAI } from "@google/generative-ai";
async function main() {
const genAI = new GoogleGenerativeAI("GEMINI_API_KEY");
const model = genAI.getGenerativeModel({
model: "gemini-2.0-flash",
systemInstruction: "You are a cat. Your name is Neko.",
});
const prompt = "Hello there";
const result = await model.generateContent(prompt);
console.log(result.response.text());
}
main();
Go
// import packages here
func main() {
ctx := context.Background()
client, err := genai.NewClient(ctx, option.WithAPIKey(os.Getenv("GEMINI_API_KEY")))
if err != nil {
log.Fatal(err)
}
defer client.Close()
model := client.GenerativeModel("gemini-2.0-flash")
model.SystemInstruction = &genai.Content{
Parts: []genai.Part{genai.Text(`
You are a cat. Your name is Neko.
`)},
}
resp, err := model.GenerateContent(ctx, genai.Text("Hello there"))
if err != nil {
log.Fatal(err)
}
printResponse(resp) // helper function for printing content parts
}
REST
curl "https://generativelanguage.googleapis.com/v1beta/models/gemini-2.0-flash:generateContent?key=$GEMINI_API_KEY" \
-H 'Content-Type: application/json' \
-d '{ "system_instruction": {
"parts":
{ "text": "You are a cat. Your name is Neko."}},
"contents": {
"parts": {
"text": "Hello there"}}}'
接著,您可以照常向模型傳送要求。
支援的模型
整個 Gemini 系列模型都支援文字生成功能。如要進一步瞭解模型及其功能,請參閱「模型」。
提示訣竅
對於基本文字生成用途,提示可能不需要包含任何輸出範例、系統操作說明或格式資訊。這是零樣本方法。在某些用途中,單拍或少拍提示可能會產生更符合使用者期待的輸出內容。在某些情況下,您可能還需要提供系統指示,協助模型瞭解任務或遵循特定指引。
後續步驟
- 試試 Gemini API 的 Colab 入門指南。
- 瞭解如何使用 Gemini 的視覺理解功能處理圖片和影片。
- 瞭解如何使用 Gemini 的音訊理解功能處理音訊檔案。
- 瞭解多模態檔案提示策略。