Afficher sur ai.google.dev | Essayer un notebook Colab | Afficher le notebook sur GitHub |
Présentation
Dans ce notebook, vous allez apprendre à utiliser les représentations vectorielles continues produites par l'API Gemini pour entraîner un modèle capable de classer différents types de posts de groupes de discussion en fonction du sujet.
Dans ce tutoriel, vous allez entraîner un classificateur pour prédire la classe à laquelle appartient un post de groupe de discussion.
Prérequis
Vous pouvez exécuter ce guide de démarrage rapide dans Google Colab.
Pour suivre ce guide de démarrage rapide dans votre propre environnement de développement, assurez-vous que celui-ci répond aux exigences suivantes:
- Python 3.9 et versions ultérieures
- Une installation de
jupyter
pour exécuter le notebook
Configuration
Commencez par télécharger et installer la bibliothèque Python de l'API Gemini.
pip install -U -q google.generativeai
import re
import tqdm
import keras
import numpy as np
import pandas as pd
import google.generativeai as genai
# Used to securely store your API key
from google.colab import userdata
import seaborn as sns
import matplotlib.pyplot as plt
from keras import layers
from matplotlib.ticker import MaxNLocator
from sklearn.datasets import fetch_20newsgroups
import sklearn.metrics as skmetrics
Obtenir une clé API
Avant de pouvoir utiliser l'API Gemini, vous devez obtenir une clé API. Si vous n'avez pas encore de clé, créez-en une en un clic dans Google AI Studio.
Dans Colab, ajoutez la clé au gestionnaire de secrets sous l'icône " succès" dans le panneau de gauche. Nommez-la API_KEY
.
Une fois que vous disposez de la clé API, transmettez-la au SDK. Pour cela, vous avez le choix entre deux méthodes :
- Placez la clé dans la variable d'environnement
GOOGLE_API_KEY
(le SDK la récupère automatiquement à partir de là). - Transmettre la clé à
genai.configure(api_key=...)
genai.configure(api_key=GOOGLE_API_KEY)
for m in genai.list_models():
if 'embedContent' in m.supported_generation_methods:
print(m.name)
models/embedding-001 models/embedding-001
Ensemble de données
L'ensemble de données texte 20 groupes de discussion contient 18 000 posts de groupes de discussion sur 20 sujets,répartis en ensembles d'entraînement et de test. La répartition entre les ensembles de données d'entraînement et de test est basée sur les messages publiés avant et après une date spécifique. Pour ce tutoriel, vous allez utiliser les sous-ensembles des ensembles de données d'entraînement et de test. Vous allez prétraiter et organiser les données dans des DataFrames Pandas.
newsgroups_train = fetch_20newsgroups(subset='train')
newsgroups_test = fetch_20newsgroups(subset='test')
# View list of class names for dataset
newsgroups_train.target_names
['alt.atheism', 'comp.graphics', 'comp.os.ms-windows.misc', 'comp.sys.ibm.pc.hardware', 'comp.sys.mac.hardware', 'comp.windows.x', 'misc.forsale', 'rec.autos', 'rec.motorcycles', 'rec.sport.baseball', 'rec.sport.hockey', 'sci.crypt', 'sci.electronics', 'sci.med', 'sci.space', 'soc.religion.christian', 'talk.politics.guns', 'talk.politics.mideast', 'talk.politics.misc', 'talk.religion.misc']
Voici un exemple de point de données de l'ensemble d'entraînement.
idx = newsgroups_train.data[0].index('Lines')
print(newsgroups_train.data[0][idx:])
Lines: 15 I was wondering if anyone out there could enlighten me on this car I saw the other day. It was a 2-door sports car, looked to be from the late 60s/ early 70s. It was called a Bricklin. The doors were really small. In addition, the front bumper was separate from the rest of the body. This is all I know. If anyone can tellme a model name, engine specs, years of production, where this car is made, history, or whatever info you have on this funky looking car, please e-mail. Thanks, - IL ---- brought to you by your neighborhood Lerxst ----
Vous allez maintenant commencer à prétraiter les données pour ce tutoriel. Supprimez toutes les informations sensibles telles que les noms, l'adresse e-mail ou les parties redondantes du texte, comme "From: "
et "\nSubject: "
. Organisez les informations dans un DataFrame Pandas pour les rendre plus lisibles.
def preprocess_newsgroup_data(newsgroup_dataset):
# Apply functions to remove names, emails, and extraneous words from data points in newsgroups.data
newsgroup_dataset.data = [re.sub(r'[\w\.-]+@[\w\.-]+', '', d) for d in newsgroup_dataset.data] # Remove email
newsgroup_dataset.data = [re.sub(r"\([^()]*\)", "", d) for d in newsgroup_dataset.data] # Remove names
newsgroup_dataset.data = [d.replace("From: ", "") for d in newsgroup_dataset.data] # Remove "From: "
newsgroup_dataset.data = [d.replace("\nSubject: ", "") for d in newsgroup_dataset.data] # Remove "\nSubject: "
# Cut off each text entry after 5,000 characters
newsgroup_dataset.data = [d[0:5000] if len(d) > 5000 else d for d in newsgroup_dataset.data]
# Put data points into dataframe
df_processed = pd.DataFrame(newsgroup_dataset.data, columns=['Text'])
df_processed['Label'] = newsgroup_dataset.target
# Match label to target name index
df_processed['Class Name'] = ''
for idx, row in df_processed.iterrows():
df_processed.at[idx, 'Class Name'] = newsgroup_dataset.target_names[row['Label']]
return df_processed
# Apply preprocessing function to training and test datasets
df_train = preprocess_newsgroup_data(newsgroups_train)
df_test = preprocess_newsgroup_data(newsgroups_test)
df_train.head()
Vous allez maintenant échantillonner certaines données en sélectionnant 100 points de données dans l'ensemble de données d'entraînement et en supprimant quelques catégories que vous utiliserez dans ce tutoriel. Choisissez les catégories scientifiques à comparer.
def sample_data(df, num_samples, classes_to_keep):
df = df.groupby('Label', as_index = False).apply(lambda x: x.sample(num_samples)).reset_index(drop=True)
df = df[df['Class Name'].str.contains(classes_to_keep)]
# Reset the encoding of the labels after sampling and dropping certain categories
df['Class Name'] = df['Class Name'].astype('category')
df['Encoded Label'] = df['Class Name'].cat.codes
return df
TRAIN_NUM_SAMPLES = 100
TEST_NUM_SAMPLES = 25
CLASSES_TO_KEEP = 'sci' # Class name should contain 'sci' in it to keep science categories
df_train = sample_data(df_train, TRAIN_NUM_SAMPLES, CLASSES_TO_KEEP)
df_test = sample_data(df_test, TEST_NUM_SAMPLES, CLASSES_TO_KEEP)
df_train.value_counts('Class Name')
Class Name sci.crypt 100 sci.electronics 100 sci.med 100 sci.space 100 dtype: int64
df_test.value_counts('Class Name')
Class Name sci.crypt 25 sci.electronics 25 sci.med 25 sci.space 25 dtype: int64
Créer les représentations vectorielles continues
Dans cette section, vous allez apprendre à générer des représentations vectorielles continues pour un texte à l'aide de celles de l'API Gemini. Pour en savoir plus, consultez le guide sur les représentations vectorielles continues.
Modifications apportées à l'API Embeddings Embedding-001 (représentation vectorielle continue)
Le nouveau modèle de représentations vectorielles continues comporte un nouveau paramètre de type de tâche et un titre facultatif (uniquement valide lorsque task_type=RETRIEVAL_DOCUMENT
).
Ces nouveaux paramètres ne s'appliquent qu'aux modèles de représentations vectorielles continues les plus récents.Les types de tâches sont les suivants:
Type de tâche | Description |
---|---|
RETRIEVAL_QUERY | Spécifie que le texte donné est une requête dans un contexte de recherche/récupération. |
RETRIEVAL_DOCUMENT | Spécifie que le texte donné est un document dans un contexte de recherche/récupération. |
SEMANTIC_SIMILARITY | Indique que le texte donné sera utilisé pour la similarité textuelle sémantique (STS). |
CLASSIFICATION | Indique que les représentations vectorielles continues seront utilisées pour la classification. |
CLUSTER | Indique que les représentations vectorielles continues seront utilisées pour le clustering. |
from tqdm.auto import tqdm
tqdm.pandas()
from google.api_core import retry
def make_embed_text_fn(model):
@retry.Retry(timeout=300.0)
def embed_fn(text: str) -> list[float]:
# Set the task_type to CLASSIFICATION.
embedding = genai.embed_content(model=model,
content=text,
task_type="classification")
return embedding['embedding']
return embed_fn
def create_embeddings(model, df):
df['Embeddings'] = df['Text'].progress_apply(make_embed_text_fn(model))
return df
model = 'models/embedding-001'
df_train = create_embeddings(model, df_train)
df_test = create_embeddings(model, df_test)
0%| | 0/400 [00:00<?, ?it/s] 0%| | 0/100 [00:00<?, ?it/s]
df_train.head()
Créer un modèle de classification simple
Ici, vous allez définir un modèle simple comportant une couche cachée et une sortie de probabilité de classe unique. La prédiction correspondra à la probabilité qu'un texte corresponde à une catégorie d'actualités particulière. Lorsque vous créez votre modèle, Keras brasse automatiquement les points de données.
def build_classification_model(input_size: int, num_classes: int) -> keras.Model:
inputs = x = keras.Input(input_size)
x = layers.Dense(input_size, activation='relu')(x)
x = layers.Dense(num_classes, activation='sigmoid')(x)
return keras.Model(inputs=[inputs], outputs=x)
# Derive the embedding size from the first training element.
embedding_size = len(df_train['Embeddings'].iloc[0])
# Give your model a different name, as you have already used the variable name 'model'
classifier = build_classification_model(embedding_size, len(df_train['Class Name'].unique()))
classifier.summary()
classifier.compile(loss = keras.losses.SparseCategoricalCrossentropy(from_logits=True),
optimizer = keras.optimizers.Adam(learning_rate=0.001),
metrics=['accuracy'])
Model: "model" _________________________________________________________________ Layer (type) Output Shape Param # ================================================================= input_1 (InputLayer) [(None, 768)] 0 dense (Dense) (None, 768) 590592 dense_1 (Dense) (None, 4) 3076 ================================================================= Total params: 593668 (2.26 MB) Trainable params: 593668 (2.26 MB) Non-trainable params: 0 (0.00 Byte) _________________________________________________________________
embedding_size
768
Entraîner le modèle à classer des groupes de discussion
Enfin, vous pouvez entraîner un modèle simple. Utilisez un petit nombre d'époques pour éviter le surapprentissage. La première époque prend beaucoup plus de temps que le reste, car les représentations vectorielles continues ne doivent être calculées qu'une seule fois.
NUM_EPOCHS = 20
BATCH_SIZE = 32
# Split the x and y components of the train and validation subsets.
y_train = df_train['Encoded Label']
x_train = np.stack(df_train['Embeddings'])
y_val = df_test['Encoded Label']
x_val = np.stack(df_test['Embeddings'])
# Train the model for the desired number of epochs.
callback = keras.callbacks.EarlyStopping(monitor='accuracy', patience=3)
history = classifier.fit(x=x_train,
y=y_train,
validation_data=(x_val, y_val),
callbacks=[callback],
batch_size=BATCH_SIZE,
epochs=NUM_EPOCHS,)
Epoch 1/20 /usr/local/lib/python3.10/dist-packages/keras/src/backend.py:5729: UserWarning: "`sparse_categorical_crossentropy` received `from_logits=True`, but the `output` argument was produced by a Softmax activation and thus does not represent logits. Was this intended? output, from_logits = _get_logits( 13/13 [==============================] - 1s 30ms/step - loss: 1.2141 - accuracy: 0.6675 - val_loss: 0.9801 - val_accuracy: 0.8800 Epoch 2/20 13/13 [==============================] - 0s 12ms/step - loss: 0.7580 - accuracy: 0.9400 - val_loss: 0.6061 - val_accuracy: 0.9300 Epoch 3/20 13/13 [==============================] - 0s 13ms/step - loss: 0.4249 - accuracy: 0.9525 - val_loss: 0.3902 - val_accuracy: 0.9200 Epoch 4/20 13/13 [==============================] - 0s 13ms/step - loss: 0.2561 - accuracy: 0.9625 - val_loss: 0.2597 - val_accuracy: 0.9400 Epoch 5/20 13/13 [==============================] - 0s 13ms/step - loss: 0.1693 - accuracy: 0.9700 - val_loss: 0.2145 - val_accuracy: 0.9300 Epoch 6/20 13/13 [==============================] - 0s 13ms/step - loss: 0.1240 - accuracy: 0.9850 - val_loss: 0.1801 - val_accuracy: 0.9600 Epoch 7/20 13/13 [==============================] - 0s 21ms/step - loss: 0.0931 - accuracy: 0.9875 - val_loss: 0.1623 - val_accuracy: 0.9400 Epoch 8/20 13/13 [==============================] - 0s 16ms/step - loss: 0.0736 - accuracy: 0.9925 - val_loss: 0.1418 - val_accuracy: 0.9600 Epoch 9/20 13/13 [==============================] - 0s 20ms/step - loss: 0.0613 - accuracy: 0.9925 - val_loss: 0.1315 - val_accuracy: 0.9700 Epoch 10/20 13/13 [==============================] - 0s 20ms/step - loss: 0.0479 - accuracy: 0.9975 - val_loss: 0.1235 - val_accuracy: 0.9600 Epoch 11/20 13/13 [==============================] - 0s 19ms/step - loss: 0.0399 - accuracy: 0.9975 - val_loss: 0.1219 - val_accuracy: 0.9700 Epoch 12/20 13/13 [==============================] - 0s 21ms/step - loss: 0.0326 - accuracy: 0.9975 - val_loss: 0.1158 - val_accuracy: 0.9700 Epoch 13/20 13/13 [==============================] - 0s 19ms/step - loss: 0.0263 - accuracy: 1.0000 - val_loss: 0.1127 - val_accuracy: 0.9700 Epoch 14/20 13/13 [==============================] - 0s 17ms/step - loss: 0.0229 - accuracy: 1.0000 - val_loss: 0.1123 - val_accuracy: 0.9700 Epoch 15/20 13/13 [==============================] - 0s 20ms/step - loss: 0.0195 - accuracy: 1.0000 - val_loss: 0.1063 - val_accuracy: 0.9700 Epoch 16/20 13/13 [==============================] - 0s 17ms/step - loss: 0.0172 - accuracy: 1.0000 - val_loss: 0.1070 - val_accuracy: 0.9700
Évaluer les performances du modèle
Utiliser Keras
Model.evaluate
pour obtenir la perte et la justesse
dans l'ensemble de données de test.
classifier.evaluate(x=x_val, y=y_val, return_dict=True)
4/4 [==============================] - 0s 4ms/step - loss: 0.1070 - accuracy: 0.9700 {'loss': 0.10700511932373047, 'accuracy': 0.9700000286102295}
Pour évaluer les performances de votre modèle, vous pouvez visualiser les performances du classificateur. Utilisez plot_history
pour afficher les tendances de perte et de justesse au fil des époques.
def plot_history(history):
"""
Plotting training and validation learning curves.
Args:
history: model history with all the metric measures
"""
fig, (ax1, ax2) = plt.subplots(1,2)
fig.set_size_inches(20, 8)
# Plot loss
ax1.set_title('Loss')
ax1.plot(history.history['loss'], label = 'train')
ax1.plot(history.history['val_loss'], label = 'test')
ax1.set_ylabel('Loss')
ax1.set_xlabel('Epoch')
ax1.legend(['Train', 'Validation'])
# Plot accuracy
ax2.set_title('Accuracy')
ax2.plot(history.history['accuracy'], label = 'train')
ax2.plot(history.history['val_accuracy'], label = 'test')
ax2.set_ylabel('Accuracy')
ax2.set_xlabel('Epoch')
ax2.legend(['Train', 'Validation'])
plt.show()
plot_history(history)
Au-delà de la mesure de la perte et de la justesse, une autre façon de visualiser les performances du modèle consiste à utiliser une matrice de confusion. La matrice de confusion vous permet d'évaluer les performances du modèle de classification au-delà de la justesse. Vous pouvez voir à quoi correspondent les points mal classés. Pour créer la matrice de confusion de ce problème de classification à classes multiples, obtenez les valeurs réelles de l'ensemble de test et les valeurs prédites.
Commencez par générer la classe prédite pour chaque exemple de l'ensemble de validation à l'aide de Model.predict()
.
y_hat = classifier.predict(x=x_val)
y_hat = np.argmax(y_hat, axis=1)
4/4 [==============================] - 0s 4ms/step
labels_dict = dict(zip(df_test['Class Name'], df_test['Encoded Label']))
labels_dict
{'sci.crypt': 0, 'sci.electronics': 1, 'sci.med': 2, 'sci.space': 3}
cm = skmetrics.confusion_matrix(y_val, y_hat)
disp = skmetrics.ConfusionMatrixDisplay(confusion_matrix=cm,
display_labels=labels_dict.keys())
disp.plot(xticks_rotation='vertical')
plt.title('Confusion matrix for newsgroup test dataset');
plt.grid(False)
Étapes suivantes
Pour en savoir plus sur l'utilisation des représentations vectorielles continues, consultez les tutoriels suivants: