Afficher sur ai.google.dev | Exécuter dans Google Colab | Ouvrir dans Vertex AI | Consulter le code source sur GitHub |
Présentation
Gemma est une famille de grands modèles de langage ouverts, légers et de pointe, qui s'appuie sur la recherche et la technologie Gemini de Google DeepMind. Ce tutoriel explique comment affiner le modèle Gemma 2B Instruct pour une tâche de traduction anglais-français à l'aide de la bibliothèque gemma
de Google DeepMind, de JAX (une bibliothèque de calcul numérique hautes performances), de Flax (la bibliothèque de réseaux de neurones basés sur JAX), de Chex (une bibliothèque d'utilitaires permettant d'écrire du code JAX fiable), de la bibliothèque de traitement de gradients JAX JAX et de l'ensemble de données de traitement de gradients {MT1 NoyMachine fiable de NoyMachine de Google DeepMind. Bien que le lin ne soit pas utilisé directement dans ce carnet, il a été utilisé pour créer la gemma.
La bibliothèque gemma
a été écrite avec JAX, Flax, Orbax (une bibliothèque basée sur JAX pour les utilitaires d'entraînement tels que la création de points de contrôle) et SentencePiece (une bibliothèque de tokenizer/détokenizer).
Configuration
1. Configurer l'accès à Kaggle pour Gemma
Pour suivre ce tutoriel, vous devez d'abord suivre les instructions de la page Configuration de Gemma, qui expliquent comment effectuer les opérations suivantes:
- Accédez à Gemma sur kaggle.com.
- Sélectionnez un environnement d'exécution Colab disposant de suffisamment de ressources pour exécuter le modèle Gemma.
- Générez et configurez un nom d'utilisateur et une clé API Kaggle.
Une fois la configuration de Gemma terminée, passez à la section suivante, dans laquelle vous allez définir des variables d'environnement pour votre environnement Colab.
2. Définir des variables d'environnement
Définissez les variables d'environnement pour KAGGLE_USERNAME
et KAGGLE_KEY
. Lorsque le message "Accorder l'accès ?" s'affiche, messages, acceptez de fournir un accès secret.
import os
from google.colab import userdata # `userdata` is a Colab API.
os.environ["KAGGLE_USERNAME"] = userdata.get('KAGGLE_USERNAME')
os.environ["KAGGLE_KEY"] = userdata.get('KAGGLE_KEY')
3. Installer la bibliothèque gemma
L'accélération matérielle sans frais de Colab est actuellement insuffisante pour exécuter ce notebook. Si vous utilisez le paiement à l'usage Colab ou Colab Pro, cliquez sur Modifier > Paramètres du notebook > Sélectionnez GPU A100 > Enregistrez pour activer l'accélération matérielle.
Vous devez ensuite installer la bibliothèque Google DeepMind gemma
à partir de github.com/google-deepmind/gemma
. Si vous obtenez une erreur concernant le "résolveur de dépendances de pip", vous pouvez généralement l'ignorer.
pip install -q git+https://github.com/google-deepmind/gemma.git
4. Importer des bibliothèques
Ce notebook utilise Flax (pour les réseaux de neurones), le code JAX de base, SentencePiece (pour la tokenisation), Chex (une bibliothèque d'utilitaires permettant d'écrire du code JAX fiable) et des ensembles de données TensorFlow.
import os
import enum
import re
import string
import chex
import jax
import jax.numpy as jnp
import optax
import tensorflow as tf
import tensorflow_datasets as tfds
from gemma import params as params_lib
from gemma import sampler as sampler_lib
from gemma import transformer as transformer_lib
import sentencepiece as spm
Charger le modèle Gemma
Chargez le modèle Gemma avec kagglehub.model_download
, qui utilise trois arguments:
handle
: le gestionnaire de modèle de Kagglepath
(chaîne facultative) : chemin d'accès localforce_download
: (valeur booléenne facultative) force le téléchargement à nouveau du modèle.
GEMMA_VARIANT = '2b-it' # @param ['2b', '2b-it'] {type:"string"}
import kagglehub
GEMMA_PATH = kagglehub.model_download(f'google/gemma/flax/{GEMMA_VARIANT}')
Downloading from https://www.kaggle.com/api/v1/models/google/gemma/flax/2b-it/2/download... 100%|██████████| 3.67G/3.67G [00:26<00:00, 147MB/s] Extracting model files...
print('GEMMA_PATH:', GEMMA_PATH)
GEMMA_PATH: /root/.cache/kagglehub/models/google/gemma/flax/2b-it/2
Vérifiez l'emplacement des pondérations du modèle et de la fonction de tokenisation, puis définissez les variables de chemin. Le répertoire de tokenisation se trouve dans le répertoire principal dans lequel vous avez téléchargé le modèle, tandis que les pondérations du modèle sont dans un sous-répertoire. Exemple :
- Le fichier
tokenizer.model
se trouvera dans/LOCAL/PATH/TO/gemma/flax/2b-it/2
). - Le point de contrôle du modèle se trouvera dans
/LOCAL/PATH/TO/gemma/flax/2b-it/2/2b-it
).
CKPT_PATH = os.path.join(GEMMA_PATH, GEMMA_VARIANT)
TOKENIZER_PATH = os.path.join(GEMMA_PATH, 'tokenizer.model')
print('CKPT_PATH:', CKPT_PATH)
print('TOKENIZER_PATH:', TOKENIZER_PATH)
CKPT_PATH: /root/.cache/kagglehub/models/google/gemma/flax/2b-it/2/2b-it TOKENIZER_PATH: /root/.cache/kagglehub/models/google/gemma/flax/2b-it/2/tokenizer.model
Charger et préparer le jeu de données MTNT et la fonction de tokenisation Gemma
Vous allez utiliser l'ensemble de données MTNT (Machine Translation of Noisy Text), disponible dans les ensembles de données TensorFlow.
Téléchargez la partie de l'ensemble de données anglais-français de l'ensemble de données MTNT, puis échantillonnez deux exemples. Chaque échantillon de l'ensemble de données contient deux entrées: src
: la phrase en anglais d'origine ; et dst
: la traduction française correspondante.
ds = tfds.load("mtnt/en-fr", split="train")
ds = ds.take(2)
ds = ds.as_numpy_iterator()
for idx, example in enumerate(ds):
print(f'Example {idx}:')
for key, val in example.items():
print(f'{key}: {val}')
print()
Downloading and preparing dataset 35.08 MiB (download: 35.08 MiB, generated: 11.33 MiB, total: 46.41 MiB) to /root/tensorflow_datasets/mtnt/en-fr/1.0.0... Dl Completed...: 0 url [00:00, ? url/s] Dl Size...: 0 MiB [00:00, ? MiB/s] Extraction completed...: 0 file [00:00, ? file/s] Generating splits...: 0%| | 0/3 [00:00<?, ? splits/s] Generating train examples...: 0%| | 0/35692 [00:00<?, ? examples/s] Shuffling /root/tensorflow_datasets/mtnt/en-fr/1.0.0.incomplete6YJMND/mtnt-train.tfrecord*...: 0%| … Generating test examples...: 0%| | 0/1020 [00:00<?, ? examples/s] Shuffling /root/tensorflow_datasets/mtnt/en-fr/1.0.0.incomplete6YJMND/mtnt-test.tfrecord*...: 0%| |… Generating valid examples...: 0%| | 0/811 [00:00<?, ? examples/s] Shuffling /root/tensorflow_datasets/mtnt/en-fr/1.0.0.incomplete6YJMND/mtnt-valid.tfrecord*...: 0%| … Dataset mtnt downloaded and prepared to /root/tensorflow_datasets/mtnt/en-fr/1.0.0. Subsequent calls will reuse this data. Example 0: dst: b'Le groupe de " toutes les \xc3\xa9toiles potentielles de la conf\xc3\xa9rence de l\'Est mais qui ne s\'en sortent pas dans le groupe de l\'Ouest ".' src: b'The group of \xe2\x80\x9ceastern conference potential all stars but not making it in the West\xe2\x80\x9d group.' Example 1: dst: b"Kameron est-elle un peu aigrie de son manque de temps \xc3\xa0 l'\xc3\xa9cran ?" src: b'Is Kameron a Little Salty About Her Lack of Air Time?'
Chargez la fonction de tokenisation Gemma, créée à l'aide de sentencepiece.SentencePieceProcessor
:
vocab = spm.SentencePieceProcessor()
vocab.Load(TOKENIZER_PATH)
True
Personnalisez SentencePieceProcessor
pour la tâche de traduction de l'anglais vers le français. Étant donné que vous allez affiner la partie anglaise du modèle Gemma, vous devez effectuer quelques ajustements, par exemple:
Préfixe d'entrée: l'ajout d'un préfixe commun à chaque entrée signale la tâche de traduction. Par exemple, vous pouvez utiliser une requête avec un préfixe tel que
Translate this into French: [INPUT_SENTENCE]
.Suffixe de début de traduction: l'ajout d'un suffixe à la fin de chaque requête indique au modèle Gemma exactement quand commencer le processus de traduction. Une nouvelle ligne devrait suffire.
Jetons de modèle de langage: les modèles Gemma attendent un "début de séquence" au début de chaque séquence. Par conséquent, l'ajout d'une "fin de séquence" à la fin de chaque exemple d'entraînement devrait suffire.
Créez un wrapper personnalisé pour
SentencePieceProcessor
comme suit:
class GemmaTokenizer:
def __init__(self,
spm_processor: spm.SentencePieceProcessor):
self._spm_processor = spm_processor
@property
def pad_id(self) -> int:
"""Fast access to the pad ID."""
return self._spm_processor.pad_id()
def tokenize(self,
example: str | bytes,
prefix: str = '',
suffix: str = '',
add_eos: bool = True) -> jax.Array:
"""
The tokenization function.
Args:
example: Input string to tokenize.
prefix: Prefix to add to the input string.
suffix: Suffix to add to the input string.
add_eos: If True, add an "end of sentence" token at the end of the output
sequence.
Returns:
Tokens corresponding to the input string.
"""
int_list = [self._spm_processor.bos_id()]
int_list.extend(self._spm_processor.EncodeAsIds(prefix + example + suffix))
if add_eos:
int_list.append(self._spm_processor.eos_id())
return jnp.array(int_list, dtype=jnp.int32)
def tokenize_tf_op(self,
str_tensor: tf.Tensor,
prefix: str = '',
suffix: str = '',
add_eos: bool = True) -> tf.Tensor:
"""A TensorFlow operator for the tokenize function."""
encoded = tf.numpy_function(
self.tokenize,
[str_tensor, prefix, suffix, add_eos],
tf.int32)
encoded.set_shape([None])
return encoded
def to_string(self, tokens: jax.Array) -> str:
"""Convert an array of tokens to a string."""
return self._spm_processor.EncodeIds(tokens.tolist())
Pour l'essayer, instanciez votre nouvelle GemmaTokenizer
personnalisée, puis appliquez-la sur un petit échantillon de l'ensemble de données MTNT:
tokenizer = GemmaTokenizer(vocab)
def tokenize_source(tokenizer, example: tf.Tensor):
return tokenizer.tokenize_tf_op(example,
prefix='Translate this into French:\n',
suffix='\n',
add_eos=False)
def tokenize_destination(tokenizer, example: tf.Tensor):
return tokenizer.tokenize_tf_op(example,
add_eos=True)
ds = tfds.load("mtnt/en-fr",split="train")
ds = ds.take(2)
ds = ds.map(lambda x: {'src': tokenize_source(tokenizer, x['src']),
'dst': tokenize_destination(tokenizer, x['dst'])})
ds = ds.as_numpy_iterator()
for idx, example in enumerate(ds):
print(f'Example {idx}:')
for key, val in example.items():
print(f'{key}: {val}')
print()
Example 0: src: [ 2 49688 736 1280 6987 235292 108 651 2778 576 1080 104745 11982 5736 832 8995 901 780 3547 665 575 573 4589 235369 2778 235265 108] dst: [ 2 2025 29653 581 664 16298 1437 55563 41435 7840 581 683 111452 581 533 235303 9776 4108 2459 679 485 235303 479 6728 579 1806 2499 709 29653 581 533 235303 101323 16054 1] Example 1: src: [ 2 49688 736 1280 6987 235292 108 2437 87150 477 476 11709 230461 8045 3636 40268 576 4252 4897 235336 108] dst: [ 2 213606 477 1455 235290 3510 748 8268 191017 2809 581 2032 69972 581 11495 1305 533 235303 65978 1654 1]
Créez un chargeur de données pour l'intégralité de l'ensemble de données MTNT:
@chex.dataclass(frozen=True)
class TrainingInput:
# Input tokens provided to the model.
input_tokens: jax.Array
# A mask that determines which tokens contribute to the target loss
# calculation.
target_mask: jax.Array
class DatasetSplit(enum.Enum):
TRAIN = 'train'
VALIDATION = 'valid'
class MTNTDatasetBuilder:
"""The dataset builder for the MTNT dataset."""
N_ITEMS = {DatasetSplit.TRAIN: 35_692,
DatasetSplit.VALIDATION: 811}
BUFFER_SIZE_SHUFFLE = 10_000
TRANSLATION_PREFIX = 'Translate this into French:\n'
TRANSLATION_SUFFIX = '\n'
def __init__(self,
tokenizer : GemmaTokenizer,
max_seq_len: int):
"""Constructor.
Args:
tokenizer: Gemma tokenizer to use.
max_seq_len: size of each sequence in a given batch.
"""
self._tokenizer = tokenizer
self._base_data = {
DatasetSplit.TRAIN: tfds.load("mtnt/en-fr",split="train"),
DatasetSplit.VALIDATION: tfds.load("mtnt/en-fr",split="valid"),
}
self._max_seq_len = max_seq_len
def _tokenize_source(self, example: tf.Tensor):
"""Tokenization function for the source."""
return self._tokenizer.tokenize_tf_op(example,
prefix=self.TRANSLATION_PREFIX,
suffix=self.TRANSLATION_SUFFIX,
add_eos=False)
def _tokenize_destination(self, example: tf.Tensor):
"""Tokenization function for the French translation."""
return self._tokenizer.tokenize_tf_op(example,
add_eos=True)
def _pad_up_to_max_len(self,
input_tensor: tf.Tensor,
pad_value: int | bool,
) -> tf.Tensor:
"""Pad the given tensor up to sequence length of a batch."""
seq_len = tf.shape(input_tensor)[0]
to_pad = tf.maximum(self._max_seq_len - seq_len, 0)
return tf.pad(input_tensor,
[[0, to_pad]],
mode='CONSTANT',
constant_values=pad_value,
)
def _to_training_input(self,
src_tokens: jax.Array,
dst_tokens: jax.Array,
) -> TrainingInput:
"""Build a training input from a tuple of source and destination tokens."""
# The input sequence fed to the model is simply the concatenation of the
# source and the destination.
tokens = tf.concat([src_tokens, dst_tokens], axis=0)
# To prevent the model from updating based on the source (input)
# tokens, add a target mask to each input.
q_mask = tf.zeros_like(src_tokens, dtype=tf.bool)
a_mask = tf.ones_like(dst_tokens, dtype=tf.bool)
mask = tf.concat([q_mask, a_mask], axis=0)
# If the output tokens sequence is smaller than the target sequence size,
# then pad it with pad tokens.
tokens = self._pad_up_to_max_len(tokens, self._tokenizer.pad_id)
# Don't want to perform the backward pass on the pad tokens.
mask = self._pad_up_to_max_len(mask, False)
return TrainingInput(input_tokens=tokens, target_mask=mask)
def get_train_dataset(self, batch_size: int, num_epochs: int):
"""Build the training dataset."""
# Tokenize each sample.
ds = self._base_data[DatasetSplit.TRAIN].map(lambda x : (self._tokenize_source(x['src']),
self._tokenize_destination(x['dst'])))
# Convert the samples to training inputs.
ds = ds.map(lambda x, y: self._to_training_input(x, y))
# Remove the samples that are too long.
ds = ds.filter(lambda x: tf.shape(x.input_tokens)[0] <= self._max_seq_len)
# Shuffle the dataset.
ds = ds.shuffle(buffer_size=self.BUFFER_SIZE_SHUFFLE)
# Repeat if necessary.
ds = ds.repeat(num_epochs)
# Build batches.
ds = ds.batch(batch_size, drop_remainder=True)
return ds
def get_validation_dataset(self, batch_size: int):
"""Build the validation dataset."""
# Same steps as in `get_train_dataset`, but without shuffling and no repetition.
ds = self._base_data[DatasetSplit.VALIDATION].map(lambda x : (self._tokenize_source(x['src']),
self._tokenize_destination(x['dst'])))
ds = ds.map(lambda x, y: self._to_training_input(x, y))
ds = ds.filter(lambda x: tf.shape(x.input_tokens)[0] <= self._max_seq_len)
ds = ds.batch(batch_size, drop_remainder=True)
return ds
Testez MTNTDatasetBuilder
en instanciant à nouveau le GemmaTokenizer
personnalisé, puis en l'appliquant à l'ensemble de données MTNT et en échantillonnant deux exemples:
tokenizer = GemmaTokenizer(vocab)
dataset_builder = MTNTDatasetBuilder(tokenizer, max_seq_len=20)
ds = dataset_builder.get_train_dataset(3, 1)
ds = ds.take(2)
ds = ds.as_numpy_iterator()
for idx, example in enumerate(ds):
print(f'Example {idx}:')
for key, val in example.items():
print(f'{key}: {val}')
print()
WARNING:tensorflow:Mapping types may not work well with tf.nest. Prefer using MutableMapping for <class '__main__.TrainingInput'> WARNING:tensorflow:Mapping types may not work well with tf.nest. Prefer using MutableMapping for <class '__main__.TrainingInput'> WARNING:tensorflow:Mapping types may not work well with tf.nest. Prefer using MutableMapping for <class '__main__.TrainingInput'> Example 0: input_tokens: [[ 2 49688 736 1280 6987 235292 108 10924 665 12302 235341 108 2 4397 63011 1437 38696 1241 1 0] [ 2 49688 736 1280 6987 235292 108 13835 1517 235265 108 2 69875 540 19713 235265 1 0 0 0] [ 2 49688 736 1280 6987 235292 108 6956 1586 235297 235265 108 2 78368 1586 235297 235265 1 0 0]] target_mask: [[False False False False False False False False False False False False True True True True True True True False] [False False False False False False False False False False False True True True True True True False False False] [False False False False False False False False False False False False True True True True True True False False]] Example 1: input_tokens: [[ 2 49688 736 1280 6987 235292 108 18874 235341 108 2 115905 6425 1241 1 0 0 0 0 0] [ 2 49688 736 1280 6987 235292 108 7574 3356 235341 108 2 7997 20707 1241 1 0 0 0 0] [ 2 49688 736 1280 6987 235292 108 8703 665 235265 108 2 235338 235303 90006 20133 235265 1 0 0]] target_mask: [[False False False False False False False False False False True True True True True False False False False False] [False False False False False False False False False False False True True True True True False False False False] [False False False False False False False False False False False True True True True True True True False False]]
Configurer le modèle
Avant de commencer à affiner le modèle Gemma, vous devez le configurer.
Tout d'abord, chargez et formatez le point de contrôle du modèle Gemma avec la méthode gemma.params.load_and_format_params
:
params = params_lib.load_and_format_params(CKPT_PATH)
Pour charger automatiquement la configuration appropriée à partir du point de contrôle du modèle Gemma, utilisez gemma.transformer.TransformerConfig
. L'argument cache_size
correspond au nombre de pas de temps dans le cache Transformer
Gemma. Ensuite, instanciez le modèle Gemma en tant que model_2b
avec gemma.transformer.Transformer
(qui hérite de flax.linen.Module
).
config_2b = transformer_lib.TransformerConfig.from_params(
params,
cache_size=30
)
model_2b = transformer_lib.Transformer(config=config_2b)
Affiner le modèle
Dans cette section, vous allez effectuer les tâches suivantes :
- Utilisez la classe
gemma.transformer.Transformer
pour créer la fonction de propagation avant et de perte. - Créer les vecteurs de position et de masque d'attention pour les jetons
- Créer une fonction de pas d'entraînement avec Flax
- Créez l'étape de validation sans rétrogradation.
- Créez la boucle d'entraînement.
- Affiner le modèle Gemma
Définissez la propagation avant et la fonction de perte à l'aide de la classe gemma.transformer.Transformer
. Le Transformer
Gemma hérite de flax.linen.Module
et propose deux méthodes essentielles:
init
: initialise les paramètres du modèle.apply
: exécute la fonction__call__
du modèle à l'aide d'un ensemble de paramètres donné.Comme vous travaillez avec des pondérations Gemma pré-entraînées, vous n'avez pas besoin d'utiliser la fonction
init
.
def forward_and_loss_fn(params,
*,
model: transformer_lib.Transformer,
input_tokens: jax.Array, # Shape [B, L]
input_mask: jax.Array, # Shape [B, L]
positions: jax.Array, # Shape [B, L]
attention_mask: jax.Array, # [B, L, L]
) -> jax.Array:
"""The forward pass and the loss function.
Args:
params: Model's input parameters.
model: The Gemma transformer model to call.
input_tokens: Input tokens sequence, shape [B, L].
input_mask: Tokens to ignore when computing the loss, shape [B, L].
positions: Relative position of each token, shape [B, L].
attention_mask: Input attention mask, shape [B, L].
Returns:
The softmax cross-entropy loss for the next-token prediction task.
"""
# The forward pass on the input data.
# No attention cache is needed here.
logits, _ = model.apply(
params,
input_tokens,
positions,
None, # Attention cache is None.
attention_mask,
)
# Exclude the last step as it does not appear in the targets.
logits = logits[0, :-1]
# Similarly, the first token cannot be predicted.
target_tokens = input_tokens[0, 1:]
target_mask = input_mask[0, 1:]
# Convert the target labels to one-hot encoded vectors.
one_hot = jax.nn.one_hot(target_tokens, logits.shape[-1])
# Don't update on unwanted tokens.
one_hot = one_hot * target_mask.astype(one_hot.dtype)[...,None]
# Define the normalization factor.
norm_factor = 1 / (jnp.sum(target_mask) + 1e-8)
# Return the negative log likelihood (NLL) loss.
return -jnp.sum(jax.nn.log_softmax(logits) * one_hot) * norm_factor
La classe gemma.transformer.Transformer
nécessite un vecteur attention_mask
et un vecteur positions
avec chaque entrée. Vous pouvez les générer en créant une fonction personnalisée qui utilise Transformer.build_positions_from_mask
et Transformer.make_causal_attn_mask
:
def get_attention_mask_and_positions(example: jax.Array,
pad_id : int,
)-> tuple[jax.Array, jax.Array]:
"""Builds the position and attention mask vectors from the given tokens."""
pad_mask = example != pad_id
current_token_position = transformer_lib.build_positions_from_mask(pad_mask)
attention_mask = transformer_lib.make_causal_attn_mask(pad_mask)
return current_token_position, attention_mask
Créez la fonction train_step
qui effectue la rétrogradation et met à jour les paramètres du modèle en conséquence, où:
jax.value_and_grad
permet d'évaluer la fonction de perte et les gradients lors des propagations avant et arrière.optax.apply_updates
permet de mettre à jour les paramètres.
def train_step(model: transformer_lib.Transformer,
params,
optimizer: optax.GradientTransformation,
opt_state: optax.OptState,
pad_id: int,
example: TrainingInput):
"""Train step.
Args:
model: The Gemma transformer model.
params: The model's input parameters.
optimizer: The Optax optimizer to use.
opt_state: The input optimizer's state.
pad_id: ID of the pad token.
example: Input batch.
Returns:
The training loss, the updated parameters, and the updated optimizer state.
"""
# Build the position and attention mask vectors.
positions, attention_mask = get_attention_mask_and_positions(example.input_tokens, pad_id)
# The forward and backward passes.
train_loss, grads = jax.value_and_grad(forward_and_loss_fn)(params,
model=model,
input_tokens=example.input_tokens,
input_mask=example.target_mask,
positions=positions,
attention_mask=attention_mask)
# Update the parameters.
updates, opt_state = optimizer.update(grads, opt_state)
params = optax.apply_updates(params, updates)
return train_loss, params, opt_state
Créez la fonction validation_step
sans rétrogradation:
def validation_step(model: transformer_lib.Transformer,
params,
pad_id: int,
example: TrainingInput,
):
positions, attention_mask = get_attention_mask_and_positions(example.input_tokens, pad_id)
val_loss = forward_and_loss_fn(params,
model=model,
input_tokens=example.input_tokens,
input_mask=example.target_mask,
positions=positions,
attention_mask=attention_mask)
return val_loss
Définissez la boucle d'entraînement à l'aide de optax.sgd
pour l'optimiseur SGD:
@chex.dataclass(frozen=True)
class TrainingConfig:
learning_rate: float
num_epochs: int
eval_every_n: int
batch_size: int
max_steps: int | None = None
def train_loop(
model: transformer_lib.Transformer,
params,
dataset_builder: MTNTDatasetBuilder,
training_cfg: TrainingConfig):
# Apply `jax.jit` on the training step, making the whole loop much more efficient.
compiled_train_step = jax.jit(train_step, static_argnames=['model', 'optimizer'])
# Apply `jax.jit` on the validation step.
compiled_validation_step = jax.jit(validation_step, static_argnames=['model'])
# To save memory, use the SGD optimizer instead of the usual Adam optimizer.
# Note that for this specific example, SGD is more than enough.
optimizer = optax.sgd(training_cfg.learning_rate)
opt_state = optimizer.init(params)
# Build the training dataset.
train_ds = dataset_builder.get_train_dataset(batch_size=training_cfg.batch_size,
num_epochs=training_cfg.num_epochs)
train_ds = train_ds.as_numpy_iterator()
# Build the validation dataset, with a limited number of samples for this demo.
validation_ds = dataset_builder.get_validation_dataset(batch_size=training_cfg.batch_size)
validation_ds = validation_ds.take(50)
n_steps = 0
avg_loss=0
# A first round of the validation loss.
n_steps_eval = 0
eval_loss = 0
val_iterator = validation_ds.as_numpy_iterator()
for val_example in val_iterator:
eval_loss += compiled_validation_step(model,
params,
dataset_builder._tokenizer.pad_id,
val_example)
n_steps_eval += 1
print(f"Start, validation loss: {eval_loss/n_steps_eval}")
for train_example in train_ds:
train_loss, params, opt_state = compiled_train_step(model=model,
params=params,
optimizer=optimizer,
opt_state=opt_state,
pad_id=dataset_builder._tokenizer.pad_id,
example=train_example)
n_steps += 1
avg_loss += train_loss
if n_steps % training_cfg.eval_every_n == 0:
eval_loss = 0
n_steps_eval = 0
val_iterator = validation_ds.as_numpy_iterator()
for val_example in val_iterator:
eval_loss += compiled_validation_step(model,
params,
dataset_builder._tokenizer.pad_id,
val_example)
n_steps_eval +=1
avg_loss /= training_cfg.eval_every_n
eval_loss /= n_steps_eval
print(f"STEP {n_steps} training loss: {avg_loss} - eval loss: {eval_loss}")
avg_loss=0
if training_cfg.max_steps is not None and n_steps > training_cfg.max_steps:
break
return params
Commencez à affiner le modèle Gemma sur un nombre limité d'étapes (SEQ_SIZE
) pour vous assurer que cela tient dans la mémoire:
SEQ_SIZE = 25
tokenizer = GemmaTokenizer(vocab)
dataset_builder= MTNTDatasetBuilder(tokenizer, SEQ_SIZE)
training_cfg = TrainingConfig(learning_rate=1e-4,
num_epochs=1,
eval_every_n=20,
batch_size=1,
max_steps=100)
params = train_loop(model=model_2b,
params={'params': params['transformer']},
dataset_builder=dataset_builder,
training_cfg=training_cfg)
Start, validation loss: 10.647212982177734 STEP 20 training loss: 3.3015992641448975 - eval loss: 2.686880111694336 STEP 40 training loss: 5.375057220458984 - eval loss: 2.6751961708068848 STEP 60 training loss: 2.6599338054656982 - eval loss: 2.663877010345459 STEP 80 training loss: 4.822389125823975 - eval loss: 2.3333375453948975 STEP 100 training loss: 2.0131142139434814 - eval loss: 2.360811948776245
La perte d'entraînement et de validation aurait dû diminuer à chaque pas.
Créez un sampler
avec gemma.sampler.Sampler
. Elle utilise le point de contrôle du modèle Gemma et la fonction de tokenisation.
sampler = sampler_lib.Sampler(
transformer=model_2b,
vocab=vocab,
params=params['params'],
)
Utilisez le sampler
pour vérifier si votre modèle peut effectuer une traduction. L'argument total_generation_steps
dans gemma.sampler.Sampler
correspond au nombre d'étapes effectuées lors de la génération d'une réponse. Pour vous assurer que l'entrée correspond au format d'entraînement, utilisez le préfixe Translate this into French:\n
avec un caractère de retour à la ligne à la fin. Cela indique au modèle de commencer la traduction.
sampler(
["Translate this into French:\nHello, my name is Morgane.\n"],
total_generation_steps=100,
).text
["C'est Bonjour, mon nom est Morgane.C'est Bonjour, mon nom est Morgane."]
En savoir plus
- Pour en savoir plus sur la bibliothèque
gemma
de Google DeepMind sur GitHub, qui contient les docstrings des modules que vous avez utilisés dans ce tutoriel, tels quegemma.params
,gemma.transformer
etgemma.sampler
. - Les bibliothèques suivantes possèdent leurs propres sites de documentation: core JAX, Flax, Chex, Optax et Orbax.
- Pour obtenir de la documentation sur la fonction de tokenisation et de détokenisation
sentencepiece
, consultez le dépôt GitHubsentencepiece
de Google. - Pour obtenir de la documentation sur
kagglehub
, consultezREADME.md
dans le dépôt GitHubkagglehub
de Kaggle. - Découvrez comment utiliser des modèles Gemma avec Google Cloud Vertex AI.
- Si vous utilisez des TPU Google Cloud (versions 3-8 et ultérieures), veillez également à passer au dernier package
jax[tpu]
(!pip install -U jax[tpu] -f https://storage.googleapis.com/jax-releases/libtpu_releases.html
), redémarrez l'environnement d'exécution et vérifiez que les versionsjax
etjaxlib
correspondent (!pip list | grep jax
). Cela peut éviter l'erreurRuntimeError
qui peut se produire en raison de la non-concordance des versionsjaxlib
etjax
. Pour obtenir d'autres instructions d'installation concernant JAX, consultez la documentation JAX.