Optimiser Gemma avec JAX et Flax

Afficher sur ai.google.dev Exécuter dans Google Colab Ouvrir dans Vertex AI Consulter le code source sur GitHub

Présentation

Gemma est une famille de grands modèles de langage ouverts, légers et de pointe, qui s'appuie sur la recherche et la technologie Gemini de Google DeepMind. Ce tutoriel explique comment affiner le modèle Gemma 2B Instruct pour une tâche de traduction anglais-français à l'aide de la bibliothèque gemma de Google DeepMind, de JAX (une bibliothèque de calcul numérique hautes performances), de Flax (la bibliothèque de réseaux de neurones basés sur JAX), de Chex (une bibliothèque d'utilitaires permettant d'écrire du code JAX fiable), de la bibliothèque de traitement de gradients JAX JAX et de l'ensemble de données de traitement de gradients {MT1 NoyMachine fiable de NoyMachine de Google DeepMind. Bien que le lin ne soit pas utilisé directement dans ce carnet, il a été utilisé pour créer la gemma.

La bibliothèque gemma a été écrite avec JAX, Flax, Orbax (une bibliothèque basée sur JAX pour les utilitaires d'entraînement tels que la création de points de contrôle) et SentencePiece (une bibliothèque de tokenizer/détokenizer).

Configuration

1. Configurer l'accès à Kaggle pour Gemma

Pour suivre ce tutoriel, vous devez d'abord suivre les instructions de la page Configuration de Gemma, qui expliquent comment effectuer les opérations suivantes:

  • Accédez à Gemma sur kaggle.com.
  • Sélectionnez un environnement d'exécution Colab disposant de suffisamment de ressources pour exécuter le modèle Gemma.
  • Générez et configurez un nom d'utilisateur et une clé API Kaggle.

Une fois la configuration de Gemma terminée, passez à la section suivante, dans laquelle vous allez définir des variables d'environnement pour votre environnement Colab.

2. Définir des variables d'environnement

Définissez les variables d'environnement pour KAGGLE_USERNAME et KAGGLE_KEY. Lorsque le message "Accorder l'accès ?" s'affiche, messages, acceptez de fournir un accès secret.

import os
from google.colab import userdata # `userdata` is a Colab API.

os.environ["KAGGLE_USERNAME"] = userdata.get('KAGGLE_USERNAME')
os.environ["KAGGLE_KEY"] = userdata.get('KAGGLE_KEY')

3. Installer la bibliothèque gemma

L'accélération matérielle sans frais de Colab est actuellement insuffisante pour exécuter ce notebook. Si vous utilisez le paiement à l'usage Colab ou Colab Pro, cliquez sur Modifier > Paramètres du notebook > Sélectionnez GPU A100 > Enregistrez pour activer l'accélération matérielle.

Vous devez ensuite installer la bibliothèque Google DeepMind gemma à partir de github.com/google-deepmind/gemma. Si vous obtenez une erreur concernant le "résolveur de dépendances de pip", vous pouvez généralement l'ignorer.

pip install -q git+https://github.com/google-deepmind/gemma.git

4. Importer des bibliothèques

Ce notebook utilise Flax (pour les réseaux de neurones), le code JAX de base, SentencePiece (pour la tokenisation), Chex (une bibliothèque d'utilitaires permettant d'écrire du code JAX fiable) et des ensembles de données TensorFlow.

import os
import enum
import re
import string

import chex
import jax
import jax.numpy as jnp
import optax

import tensorflow as tf
import tensorflow_datasets as tfds

from gemma import params as params_lib
from gemma import sampler as sampler_lib
from gemma import transformer as transformer_lib
import sentencepiece as spm

Charger le modèle Gemma

Chargez le modèle Gemma avec kagglehub.model_download, qui utilise trois arguments:

  • handle: le gestionnaire de modèle de Kaggle
  • path (chaîne facultative) : chemin d'accès local
  • force_download: (valeur booléenne facultative) force le téléchargement à nouveau du modèle.
GEMMA_VARIANT = '2b-it' # @param ['2b', '2b-it'] {type:"string"}
import kagglehub

GEMMA_PATH = kagglehub.model_download(f'google/gemma/flax/{GEMMA_VARIANT}')
Downloading from https://www.kaggle.com/api/v1/models/google/gemma/flax/2b-it/2/download...
100%|██████████| 3.67G/3.67G [00:26<00:00, 147MB/s]
Extracting model files...
print('GEMMA_PATH:', GEMMA_PATH)
GEMMA_PATH: /root/.cache/kagglehub/models/google/gemma/flax/2b-it/2

Vérifiez l'emplacement des pondérations du modèle et de la fonction de tokenisation, puis définissez les variables de chemin. Le répertoire de tokenisation se trouve dans le répertoire principal dans lequel vous avez téléchargé le modèle, tandis que les pondérations du modèle sont dans un sous-répertoire. Exemple :

  • Le fichier tokenizer.model se trouvera dans /LOCAL/PATH/TO/gemma/flax/2b-it/2).
  • Le point de contrôle du modèle se trouvera dans /LOCAL/PATH/TO/gemma/flax/2b-it/2/2b-it).
CKPT_PATH = os.path.join(GEMMA_PATH, GEMMA_VARIANT)
TOKENIZER_PATH = os.path.join(GEMMA_PATH, 'tokenizer.model')
print('CKPT_PATH:', CKPT_PATH)
print('TOKENIZER_PATH:', TOKENIZER_PATH)
CKPT_PATH: /root/.cache/kagglehub/models/google/gemma/flax/2b-it/2/2b-it
TOKENIZER_PATH: /root/.cache/kagglehub/models/google/gemma/flax/2b-it/2/tokenizer.model

Charger et préparer le jeu de données MTNT et la fonction de tokenisation Gemma

Vous allez utiliser l'ensemble de données MTNT (Machine Translation of Noisy Text), disponible dans les ensembles de données TensorFlow.

Téléchargez la partie de l'ensemble de données anglais-français de l'ensemble de données MTNT, puis échantillonnez deux exemples. Chaque échantillon de l'ensemble de données contient deux entrées: src: la phrase en anglais d'origine ; et dst: la traduction française correspondante.

ds = tfds.load("mtnt/en-fr", split="train")

ds = ds.take(2)
ds = ds.as_numpy_iterator()

for idx, example in enumerate(ds):
  print(f'Example {idx}:')
  for key, val in example.items():
    print(f'{key}: {val}')
  print()
Downloading and preparing dataset 35.08 MiB (download: 35.08 MiB, generated: 11.33 MiB, total: 46.41 MiB) to /root/tensorflow_datasets/mtnt/en-fr/1.0.0...
Dl Completed...: 0 url [00:00, ? url/s]
Dl Size...: 0 MiB [00:00, ? MiB/s]
Extraction completed...: 0 file [00:00, ? file/s]
Generating splits...:   0%|          | 0/3 [00:00<?, ? splits/s]
Generating train examples...:   0%|          | 0/35692 [00:00<?, ? examples/s]
Shuffling /root/tensorflow_datasets/mtnt/en-fr/1.0.0.incomplete6YJMND/mtnt-train.tfrecord*...:   0%|          …
Generating test examples...:   0%|          | 0/1020 [00:00<?, ? examples/s]
Shuffling /root/tensorflow_datasets/mtnt/en-fr/1.0.0.incomplete6YJMND/mtnt-test.tfrecord*...:   0%|          |…
Generating valid examples...:   0%|          | 0/811 [00:00<?, ? examples/s]
Shuffling /root/tensorflow_datasets/mtnt/en-fr/1.0.0.incomplete6YJMND/mtnt-valid.tfrecord*...:   0%|          …
Dataset mtnt downloaded and prepared to /root/tensorflow_datasets/mtnt/en-fr/1.0.0. Subsequent calls will reuse this data.
Example 0:
dst: b'Le groupe de " toutes les \xc3\xa9toiles potentielles de la conf\xc3\xa9rence de l\'Est mais qui ne s\'en sortent pas dans le groupe de l\'Ouest ".'
src: b'The group of \xe2\x80\x9ceastern conference potential all stars but not making it in the West\xe2\x80\x9d group.'

Example 1:
dst: b"Kameron est-elle un peu aigrie de son manque de temps \xc3\xa0 l'\xc3\xa9cran ?"
src: b'Is Kameron a Little Salty About Her Lack of Air Time?'

Chargez la fonction de tokenisation Gemma, créée à l'aide de sentencepiece.SentencePieceProcessor:

vocab = spm.SentencePieceProcessor()
vocab.Load(TOKENIZER_PATH)
True

Personnalisez SentencePieceProcessor pour la tâche de traduction de l'anglais vers le français. Étant donné que vous allez affiner la partie anglaise du modèle Gemma, vous devez effectuer quelques ajustements, par exemple:

  • Préfixe d'entrée: l'ajout d'un préfixe commun à chaque entrée signale la tâche de traduction. Par exemple, vous pouvez utiliser une requête avec un préfixe tel que Translate this into French: [INPUT_SENTENCE].

  • Suffixe de début de traduction: l'ajout d'un suffixe à la fin de chaque requête indique au modèle Gemma exactement quand commencer le processus de traduction. Une nouvelle ligne devrait suffire.

  • Jetons de modèle de langage: les modèles Gemma attendent un "début de séquence" au début de chaque séquence. Par conséquent, l'ajout d'une "fin de séquence" à la fin de chaque exemple d'entraînement devrait suffire.

    Créez un wrapper personnalisé pour SentencePieceProcessor comme suit:

class GemmaTokenizer:

  def __init__(self,
               spm_processor: spm.SentencePieceProcessor):
    self._spm_processor = spm_processor

  @property
  def pad_id(self) -> int:
    """Fast access to the pad ID."""
    return self._spm_processor.pad_id()

  def tokenize(self,
               example: str | bytes,
               prefix: str = '',
               suffix: str = '',
               add_eos: bool = True) -> jax.Array:
    """
    The tokenization function.

    Args:
      example: Input string to tokenize.
      prefix:  Prefix to add to the input string.
      suffix:  Suffix to add to the input string.
      add_eos: If True, add an "end of sentence" token at the end of the output
               sequence.
    Returns:
      Tokens corresponding to the input string.
    """
    int_list = [self._spm_processor.bos_id()]
    int_list.extend(self._spm_processor.EncodeAsIds(prefix + example + suffix))
    if add_eos:
      int_list.append(self._spm_processor.eos_id())

    return jnp.array(int_list, dtype=jnp.int32)

  def tokenize_tf_op(self,
                     str_tensor: tf.Tensor,
                     prefix: str = '',
                     suffix: str = '',
                     add_eos: bool = True) -> tf.Tensor:
    """A TensorFlow operator for the tokenize function."""
    encoded = tf.numpy_function(
        self.tokenize,
        [str_tensor, prefix, suffix, add_eos],
        tf.int32)
    encoded.set_shape([None])
    return encoded

  def to_string(self, tokens: jax.Array) -> str:
    """Convert an array of tokens to a string."""
    return self._spm_processor.EncodeIds(tokens.tolist())

Pour l'essayer, instanciez votre nouvelle GemmaTokenizer personnalisée, puis appliquez-la sur un petit échantillon de l'ensemble de données MTNT:

tokenizer = GemmaTokenizer(vocab)

def tokenize_source(tokenizer, example: tf.Tensor):
  return tokenizer.tokenize_tf_op(example,
                                  prefix='Translate this into French:\n',
                                  suffix='\n',
                                  add_eos=False)
def tokenize_destination(tokenizer, example: tf.Tensor):
  return tokenizer.tokenize_tf_op(example,
                                  add_eos=True)

ds = tfds.load("mtnt/en-fr",split="train")
ds = ds.take(2)
ds = ds.map(lambda x: {'src': tokenize_source(tokenizer, x['src']),
                       'dst': tokenize_destination(tokenizer, x['dst'])})
ds = ds.as_numpy_iterator()

for idx, example in enumerate(ds):
  print(f'Example {idx}:')
  for key, val in example.items():
    print(f'{key}: {val}')
  print()
Example 0:
src: [     2  49688    736   1280   6987 235292    108    651   2778    576
   1080 104745  11982   5736    832   8995    901    780   3547    665
    575    573   4589 235369   2778 235265    108]
dst: [     2   2025  29653    581    664  16298   1437  55563  41435   7840
    581    683 111452    581    533 235303   9776   4108   2459    679
    485 235303    479   6728    579   1806   2499    709  29653    581
    533 235303 101323  16054      1]

Example 1:
src: [     2  49688    736   1280   6987 235292    108   2437  87150    477
    476  11709 230461   8045   3636  40268    576   4252   4897 235336
    108]
dst: [     2 213606    477   1455 235290   3510    748   8268 191017   2809
    581   2032  69972    581  11495   1305    533 235303  65978   1654
      1]

Créez un chargeur de données pour l'intégralité de l'ensemble de données MTNT:

@chex.dataclass(frozen=True)
class TrainingInput:
  # Input tokens provided to the model.
  input_tokens: jax.Array

  # A mask that determines which tokens contribute to the target loss
  # calculation.
  target_mask: jax.Array

class DatasetSplit(enum.Enum):
  TRAIN = 'train'
  VALIDATION = 'valid'

class MTNTDatasetBuilder:
  """The dataset builder for the MTNT dataset."""

  N_ITEMS = {DatasetSplit.TRAIN: 35_692,
             DatasetSplit.VALIDATION: 811}

  BUFFER_SIZE_SHUFFLE = 10_000
  TRANSLATION_PREFIX = 'Translate this into French:\n'
  TRANSLATION_SUFFIX = '\n'

  def __init__(self,
               tokenizer : GemmaTokenizer,
               max_seq_len: int):
    """Constructor.

    Args:
      tokenizer: Gemma tokenizer to use.
      max_seq_len: size of each sequence in a given batch.
    """
    self._tokenizer = tokenizer
    self._base_data = {
        DatasetSplit.TRAIN: tfds.load("mtnt/en-fr",split="train"),
        DatasetSplit.VALIDATION: tfds.load("mtnt/en-fr",split="valid"),
    }
    self._max_seq_len = max_seq_len

  def _tokenize_source(self, example: tf.Tensor):
    """Tokenization function for the source."""
    return self._tokenizer.tokenize_tf_op(example,
                                          prefix=self.TRANSLATION_PREFIX,
                                          suffix=self.TRANSLATION_SUFFIX,
                                          add_eos=False)

  def _tokenize_destination(self, example: tf.Tensor):
    """Tokenization function for the French translation."""
    return self._tokenizer.tokenize_tf_op(example,
                                          add_eos=True)

  def _pad_up_to_max_len(self,
                         input_tensor: tf.Tensor,
                         pad_value: int | bool,
                         ) -> tf.Tensor:
    """Pad the given tensor up to sequence length of a batch."""
    seq_len = tf.shape(input_tensor)[0]
    to_pad = tf.maximum(self._max_seq_len - seq_len, 0)
    return tf.pad(input_tensor,
                  [[0, to_pad]],
                  mode='CONSTANT',
                  constant_values=pad_value,
                  )

  def _to_training_input(self,
                         src_tokens: jax.Array,
                         dst_tokens: jax.Array,
                         ) -> TrainingInput:
    """Build a training input from a tuple of source and destination tokens."""

    # The input sequence fed to the model is simply the concatenation of the
    # source and the destination.
    tokens = tf.concat([src_tokens, dst_tokens], axis=0)

    # To prevent the model from updating based on the source (input)
    # tokens, add a target mask to each input.
    q_mask = tf.zeros_like(src_tokens, dtype=tf.bool)
    a_mask = tf.ones_like(dst_tokens, dtype=tf.bool)
    mask = tf.concat([q_mask, a_mask], axis=0)

    # If the output tokens sequence is smaller than the target sequence size,
    # then pad it with pad tokens.
    tokens = self._pad_up_to_max_len(tokens, self._tokenizer.pad_id)

    # Don't want to perform the backward pass on the pad tokens.
    mask = self._pad_up_to_max_len(mask, False)

    return TrainingInput(input_tokens=tokens, target_mask=mask)


  def get_train_dataset(self, batch_size: int, num_epochs: int):
    """Build the training dataset."""

    # Tokenize each sample.
    ds = self._base_data[DatasetSplit.TRAIN].map(lambda x : (self._tokenize_source(x['src']),
                                                             self._tokenize_destination(x['dst'])))

    # Convert the samples to training inputs.
    ds = ds.map(lambda x, y: self._to_training_input(x, y))

    # Remove the samples that are too long.
    ds = ds.filter(lambda x: tf.shape(x.input_tokens)[0] <= self._max_seq_len)

    # Shuffle the dataset.
    ds = ds.shuffle(buffer_size=self.BUFFER_SIZE_SHUFFLE)

    # Repeat if necessary.
    ds = ds.repeat(num_epochs)

    # Build batches.
    ds = ds.batch(batch_size, drop_remainder=True)
    return ds

  def get_validation_dataset(self, batch_size: int):
    """Build the validation dataset."""

    # Same steps as in `get_train_dataset`, but without shuffling and no repetition.
    ds = self._base_data[DatasetSplit.VALIDATION].map(lambda x : (self._tokenize_source(x['src']),
                                                                  self._tokenize_destination(x['dst'])))
    ds = ds.map(lambda x, y: self._to_training_input(x, y))
    ds = ds.filter(lambda x: tf.shape(x.input_tokens)[0] <= self._max_seq_len)
    ds = ds.batch(batch_size, drop_remainder=True)
    return ds

Testez MTNTDatasetBuilder en instanciant à nouveau le GemmaTokenizer personnalisé, puis en l'appliquant à l'ensemble de données MTNT et en échantillonnant deux exemples:

tokenizer = GemmaTokenizer(vocab)

dataset_builder = MTNTDatasetBuilder(tokenizer, max_seq_len=20)
ds = dataset_builder.get_train_dataset(3, 1)
ds = ds.take(2)
ds = ds.as_numpy_iterator()

for idx, example in enumerate(ds):
  print(f'Example {idx}:')
  for key, val in example.items():
    print(f'{key}: {val}')
  print()
WARNING:tensorflow:Mapping types may not work well with tf.nest. Prefer using MutableMapping for <class '__main__.TrainingInput'>
WARNING:tensorflow:Mapping types may not work well with tf.nest. Prefer using MutableMapping for <class '__main__.TrainingInput'>
WARNING:tensorflow:Mapping types may not work well with tf.nest. Prefer using MutableMapping for <class '__main__.TrainingInput'>
Example 0:
input_tokens: [[     2  49688    736   1280   6987 235292    108  10924    665  12302
  235341    108      2   4397  63011   1437  38696   1241      1      0]
 [     2  49688    736   1280   6987 235292    108  13835   1517 235265
     108      2  69875    540  19713 235265      1      0      0      0]
 [     2  49688    736   1280   6987 235292    108   6956   1586 235297
  235265    108      2  78368   1586 235297 235265      1      0      0]]
target_mask: [[False False False False False False False False False False False False
   True  True  True  True  True  True  True False]
 [False False False False False False False False False False False  True
   True  True  True  True  True False False False]
 [False False False False False False False False False False False False
   True  True  True  True  True  True False False]]

Example 1:
input_tokens: [[     2  49688    736   1280   6987 235292    108  18874 235341    108
       2 115905   6425   1241      1      0      0      0      0      0]
 [     2  49688    736   1280   6987 235292    108   7574   3356 235341
     108      2   7997  20707   1241      1      0      0      0      0]
 [     2  49688    736   1280   6987 235292    108   8703    665 235265
     108      2 235338 235303  90006  20133 235265      1      0      0]]
target_mask: [[False False False False False False False False False False  True  True
   True  True  True False False False False False]
 [False False False False False False False False False False False  True
   True  True  True  True False False False False]
 [False False False False False False False False False False False  True
   True  True  True  True  True  True False False]]

Configurer le modèle

Avant de commencer à affiner le modèle Gemma, vous devez le configurer.

Tout d'abord, chargez et formatez le point de contrôle du modèle Gemma avec la méthode gemma.params.load_and_format_params:

params = params_lib.load_and_format_params(CKPT_PATH)

Pour charger automatiquement la configuration appropriée à partir du point de contrôle du modèle Gemma, utilisez gemma.transformer.TransformerConfig. L'argument cache_size correspond au nombre de pas de temps dans le cache Transformer Gemma. Ensuite, instanciez le modèle Gemma en tant que model_2b avec gemma.transformer.Transformer (qui hérite de flax.linen.Module).

config_2b = transformer_lib.TransformerConfig.from_params(
    params,
    cache_size=30
)

model_2b = transformer_lib.Transformer(config=config_2b)

Affiner le modèle

Dans cette section, vous allez effectuer les tâches suivantes :

  • Utilisez la classe gemma.transformer.Transformer pour créer la fonction de propagation avant et de perte.
  • Créer les vecteurs de position et de masque d'attention pour les jetons
  • Créer une fonction de pas d'entraînement avec Flax
  • Créez l'étape de validation sans rétrogradation.
  • Créez la boucle d'entraînement.
  • Affiner le modèle Gemma

Définissez la propagation avant et la fonction de perte à l'aide de la classe gemma.transformer.Transformer. Le Transformer Gemma hérite de flax.linen.Module et propose deux méthodes essentielles:

  • init: initialise les paramètres du modèle.
  • apply: exécute la fonction __call__ du modèle à l'aide d'un ensemble de paramètres donné.

    Comme vous travaillez avec des pondérations Gemma pré-entraînées, vous n'avez pas besoin d'utiliser la fonction init.

def forward_and_loss_fn(params,
                        *,
                        model: transformer_lib.Transformer,
                        input_tokens: jax.Array,            # Shape [B, L]
                        input_mask: jax.Array,              # Shape [B, L]
                        positions: jax.Array,               # Shape [B, L]
                        attention_mask: jax.Array,          # [B, L, L]
                        ) -> jax.Array:
  """The forward pass and the loss function.

  Args:
    params: Model's input parameters.
    model: The Gemma transformer model to call.
    input_tokens: Input tokens sequence, shape [B, L].
    input_mask: Tokens to ignore when computing the loss, shape [B, L].
    positions: Relative position of each token, shape [B, L].
    attention_mask: Input attention mask, shape [B, L].

  Returns:
    The softmax cross-entropy loss for the next-token prediction task.
  """

  # The forward pass on the input data.
  # No attention cache is needed here.
  logits, _ = model.apply(
        params,
        input_tokens,
        positions,
        None,              # Attention cache is None.
        attention_mask,
    )

  # Exclude the last step as it does not appear in the targets.
  logits = logits[0, :-1]

  # Similarly, the first token cannot be predicted.
  target_tokens = input_tokens[0, 1:]
  target_mask = input_mask[0, 1:]

  # Convert the target labels to one-hot encoded vectors.
  one_hot = jax.nn.one_hot(target_tokens, logits.shape[-1])

  # Don't update on unwanted tokens.
  one_hot = one_hot * target_mask.astype(one_hot.dtype)[...,None]

  # Define the normalization factor.
  norm_factor = 1 / (jnp.sum(target_mask) + 1e-8)

  # Return the negative log likelihood (NLL) loss.
  return -jnp.sum(jax.nn.log_softmax(logits) * one_hot) * norm_factor

La classe gemma.transformer.Transformer nécessite un vecteur attention_mask et un vecteur positions avec chaque entrée. Vous pouvez les générer en créant une fonction personnalisée qui utilise Transformer.build_positions_from_mask et Transformer.make_causal_attn_mask:

def get_attention_mask_and_positions(example: jax.Array,
                                     pad_id : int,
                                     )-> tuple[jax.Array, jax.Array]:
  """Builds the position and attention mask vectors from the given tokens."""
  pad_mask = example != pad_id
  current_token_position = transformer_lib.build_positions_from_mask(pad_mask)
  attention_mask = transformer_lib.make_causal_attn_mask(pad_mask)
  return current_token_position, attention_mask

Créez la fonction train_step qui effectue la rétrogradation et met à jour les paramètres du modèle en conséquence, où:

def train_step(model: transformer_lib.Transformer,
               params,
               optimizer: optax.GradientTransformation,
               opt_state: optax.OptState,
               pad_id: int,
               example: TrainingInput):
  """Train step.

  Args:
    model: The Gemma transformer model.
    params: The model's input parameters.
    optimizer: The Optax optimizer to use.
    opt_state: The input optimizer's state.
    pad_id: ID of the pad token.
    example: Input batch.

  Returns:
    The training loss, the updated parameters, and the updated optimizer state.
  """

  # Build the position and attention mask vectors.
  positions, attention_mask = get_attention_mask_and_positions(example.input_tokens, pad_id)

  # The forward and backward passes.
  train_loss, grads = jax.value_and_grad(forward_and_loss_fn)(params,
                                                             model=model,
                                                             input_tokens=example.input_tokens,
                                                             input_mask=example.target_mask,
                                                             positions=positions,
                                                             attention_mask=attention_mask)
  # Update the parameters.
  updates, opt_state = optimizer.update(grads, opt_state)
  params = optax.apply_updates(params, updates)

  return train_loss, params, opt_state

Créez la fonction validation_step sans rétrogradation:

def validation_step(model: transformer_lib.Transformer,
                    params,
                    pad_id: int,
                    example: TrainingInput,
                    ):
  positions, attention_mask = get_attention_mask_and_positions(example.input_tokens, pad_id)
  val_loss = forward_and_loss_fn(params,
                                 model=model,
                                 input_tokens=example.input_tokens,
                                 input_mask=example.target_mask,
                                 positions=positions,
                                 attention_mask=attention_mask)
  return val_loss

Définissez la boucle d'entraînement à l'aide de optax.sgd pour l'optimiseur SGD:

@chex.dataclass(frozen=True)
class TrainingConfig:
  learning_rate: float
  num_epochs: int
  eval_every_n: int
  batch_size: int
  max_steps: int | None = None

def train_loop(
    model: transformer_lib.Transformer,
    params,
    dataset_builder: MTNTDatasetBuilder,
    training_cfg: TrainingConfig):

  # Apply `jax.jit` on the training step, making the whole loop much more efficient.
  compiled_train_step = jax.jit(train_step, static_argnames=['model', 'optimizer'])

  # Apply `jax.jit` on the validation step.
  compiled_validation_step = jax.jit(validation_step, static_argnames=['model'])

  # To save memory, use the SGD optimizer instead of the usual Adam optimizer.
  # Note that for this specific example, SGD is more than enough.
  optimizer = optax.sgd(training_cfg.learning_rate)
  opt_state = optimizer.init(params)

  # Build the training dataset.
  train_ds = dataset_builder.get_train_dataset(batch_size=training_cfg.batch_size,
                                               num_epochs=training_cfg.num_epochs)
  train_ds = train_ds.as_numpy_iterator()

  # Build the validation dataset, with a limited number of samples for this demo.
  validation_ds = dataset_builder.get_validation_dataset(batch_size=training_cfg.batch_size)
  validation_ds = validation_ds.take(50)

  n_steps = 0
  avg_loss=0

  # A first round of the validation loss.
  n_steps_eval = 0
  eval_loss = 0
  val_iterator = validation_ds.as_numpy_iterator()
  for val_example in val_iterator:
    eval_loss += compiled_validation_step(model,
                                          params,
                                          dataset_builder._tokenizer.pad_id,
                                          val_example)
    n_steps_eval += 1
  print(f"Start, validation loss: {eval_loss/n_steps_eval}")

  for train_example in train_ds:
    train_loss, params, opt_state = compiled_train_step(model=model,
                                                        params=params,
                                                        optimizer=optimizer,
                                                        opt_state=opt_state,
                                                        pad_id=dataset_builder._tokenizer.pad_id,
                                                        example=train_example)
    n_steps += 1
    avg_loss += train_loss
    if n_steps % training_cfg.eval_every_n == 0:
      eval_loss = 0

      n_steps_eval = 0
      val_iterator = validation_ds.as_numpy_iterator()
      for val_example in val_iterator:
        eval_loss += compiled_validation_step(model,
                                              params,
                                              dataset_builder._tokenizer.pad_id,
                                              val_example)
        n_steps_eval +=1
      avg_loss /= training_cfg.eval_every_n
      eval_loss /= n_steps_eval
      print(f"STEP {n_steps} training loss: {avg_loss} - eval loss: {eval_loss}")
      avg_loss=0
    if training_cfg.max_steps is not None and n_steps > training_cfg.max_steps:
      break
  return params

Commencez à affiner le modèle Gemma sur un nombre limité d'étapes (SEQ_SIZE) pour vous assurer que cela tient dans la mémoire:

SEQ_SIZE = 25
tokenizer = GemmaTokenizer(vocab)
dataset_builder= MTNTDatasetBuilder(tokenizer, SEQ_SIZE)
training_cfg = TrainingConfig(learning_rate=1e-4,
                              num_epochs=1,
                              eval_every_n=20,
                              batch_size=1,
                              max_steps=100)

params = train_loop(model=model_2b,
                    params={'params': params['transformer']},
                    dataset_builder=dataset_builder,
                    training_cfg=training_cfg)
Start, validation loss: 10.647212982177734
STEP 20 training loss: 3.3015992641448975 - eval loss: 2.686880111694336
STEP 40 training loss: 5.375057220458984 - eval loss: 2.6751961708068848
STEP 60 training loss: 2.6599338054656982 - eval loss: 2.663877010345459
STEP 80 training loss: 4.822389125823975 - eval loss: 2.3333375453948975
STEP 100 training loss: 2.0131142139434814 - eval loss: 2.360811948776245

La perte d'entraînement et de validation aurait dû diminuer à chaque pas.

Créez un sampler avec gemma.sampler.Sampler. Elle utilise le point de contrôle du modèle Gemma et la fonction de tokenisation.

sampler = sampler_lib.Sampler(
    transformer=model_2b,
    vocab=vocab,
    params=params['params'],
)

Utilisez le sampler pour vérifier si votre modèle peut effectuer une traduction. L'argument total_generation_steps dans gemma.sampler.Sampler correspond au nombre d'étapes effectuées lors de la génération d'une réponse. Pour vous assurer que l'entrée correspond au format d'entraînement, utilisez le préfixe Translate this into French:\n avec un caractère de retour à la ligne à la fin. Cela indique au modèle de commencer la traduction.

sampler(
    ["Translate this into French:\nHello, my name is Morgane.\n"],
    total_generation_steps=100,
    ).text
["C'est Bonjour, mon nom est Morgane.C'est Bonjour, mon nom est Morgane."]

En savoir plus