Visualizza su ai.google.dev | Esegui in Google Colab | Apri in Vertex AI | Visualizza il codice sorgente su GitHub |
Questo tutorial dimostra come perfezionare il modello 2B Instruct di RecurrentGemma per un'attività di traduzione inglese-francese utilizzando la libreria recurrentgemma
di Google DeepMind, JAX (una libreria di calcolo numerico ad alte prestazioni), Flax (la libreria di rete neurale basata su JAX), Chex (una libreria di utilità per la scrittura di un set di dati JAX Text-based e l'ottimizzazione JAX JAX) del testo affidabile e l'ottimizzazione di testo JAX1NT3.Optax Sebbene Flax non sia utilizzato direttamente in questo blocco note, Flax è stato utilizzato per creare Gemma.
La libreria recurrentgemma
è stata scritta con JAX, Flax, Orbax (una libreria basata su JAX per funzionalità di addestramento come il checkpoint) e SentencePiece (una libreria tokenizzatore/detokenizzatore).
Questo blocco note può essere eseguito su Google Colab con la GPU T4 (vai a Modifica > Impostazioni blocco note > nella sezione Acceleratore hardware seleziona GPU T4).
Configurazione
Le sezioni seguenti spiegano i passaggi per preparare un blocco note all'utilizzo di un modello RecurrentGemma, tra cui l'accesso al modello, l'ottenimento di una chiave API e la configurazione del runtime del blocco note.
Configura l'accesso a Kaggle per Gemma
Per completare questo tutorial, devi prima seguire le istruzioni di configurazione simili alla configurazione di Gemma con alcune eccezioni:
- Ottieni l'accesso a RecurrentGemma (invece di Gemma) su kaggle.com.
- Seleziona un runtime Colab con risorse sufficienti per eseguire il modello RecurrentGemma.
- Genera e configura un nome utente e una chiave API Kaggle.
Dopo aver completato la configurazione di RecurrentGemma, passa alla sezione successiva, in cui imposterai le variabili di ambiente per il tuo ambiente Colab.
Imposta le variabili di ambiente
Imposta le variabili di ambiente per KAGGLE_USERNAME
e KAGGLE_KEY
. Quando viene visualizzata la richiesta "Vuoi concedere l'accesso?" messaggi, accetti di fornire l'accesso al secret.
import os
from google.colab import userdata # `userdata` is a Colab API.
os.environ["KAGGLE_USERNAME"] = userdata.get('KAGGLE_USERNAME')
os.environ["KAGGLE_KEY"] = userdata.get('KAGGLE_KEY')
Installa la libreria recurrentgemma
Al momento l'accelerazione hardware Colab senza costi è insufficiente per eseguire questo blocco note. Se utilizzi Colab Pay As You Go o Colab Pro, fai clic su Modifica > Impostazioni blocco note > Seleziona GPU A100 > Salva per attivare l'accelerazione hardware.
Successivamente, devi installare la libreria recurrentgemma
di Google DeepMind da github.com/google-deepmind/recurrentgemma
. Se ricevi un errore relativo al " resolver di dipendenze di pip", in genere puoi ignorarlo.
pip install -q git+https://github.com/google-deepmind/recurrentgemma.git
Importa librerie
Questo blocco note utilizza Flax (per le reti neurali), il nucleo JAX, SentencePiece (per la tokenizzazione), Chex (una libreria di utilità per scrivere codice JAX affidabile), Optax (la libreria di elaborazione e ottimizzazione dei gradienti) e set di dati TensorFlow.
import pathlib
from typing import Any, Mapping, Iterator
import enum
import functools
import chex
import jax
import jax.numpy as jnp
import optax
import tensorflow as tf
import tensorflow_datasets as tfds
import sentencepiece as spm
from recurrentgemma import jax as recurrentgemma
Carica il modello RecurrentGemma
- Carica il modello RecurrentGemma con
kagglehub.model_download
, che accetta tre argomenti:
handle
: l'handle del modello di Kagglepath
: (stringa facoltativa) il percorso localeforce_download
: (booleano facoltativo) forza a scaricare di nuovo il modello
RECURRENTGEMMA_VARIANT = '2b-it' # @param ['2b', '2b-it'] {type:"string"}
import kagglehub
RECURRENTGEMMA_PATH = kagglehub.model_download(f'google/recurrentgemma/flax/{RECURRENTGEMMA_VARIANT}')
Downloading from https://www.kaggle.com/api/v1/models/google/recurrentgemma/flax/2b-it/1/download... 100%|██████████| 3.85G/3.85G [00:50<00:00, 81.5MB/s] Extracting model files...
print('RECURRENTGEMMA_VARIANT:', RECURRENTGEMMA_VARIANT)
RECURRENTGEMMA_VARIANT: 2b-it
- Controlla la posizione dei pesi del modello e del tokenizzatore, quindi imposta le variabili di percorso. La directory del tokenizzatore si troverà nella directory principale in cui hai scaricato il modello, mentre i pesi del modello saranno in una sottodirectory. Ad esempio:
- Il file
tokenizer.model
sarà in/LOCAL/PATH/TO/recurrentgemma/flax/2b-it/1
). - il checkpoint del modello sarà in
/LOCAL/PATH/TO/recurrentgemma/flax/2b-it/1/2b-it
).
CKPT_PATH = os.path.join(RECURRENTGEMMA_PATH, RECURRENTGEMMA_VARIANT)
TOKENIZER_PATH = os.path.join(RECURRENTGEMMA_PATH, 'tokenizer.model')
print('CKPT_PATH:', CKPT_PATH)
print('TOKENIZER_PATH:', TOKENIZER_PATH)
CKPT_PATH: /root/.cache/kagglehub/models/google/recurrentgemma/flax/2b-it/1/2b-it TOKENIZER_PATH: /root/.cache/kagglehub/models/google/recurrentgemma/flax/2b-it/1/tokenizer.model
Carica e prepara il set di dati MTNT e il tokenizzatore Gemma
Utilizzerai il set di dati MTNT (Machine Translation of Noisy Text), disponibile nei set di dati TensorFlow.
Scarica la porzione del set di dati dall'inglese al francese del set di dati MTNT, quindi prova due esempi. Ogni campione nel set di dati contiene due voci: src
: la frase originale in inglese; e dst
: la traduzione francese corrispondente.
ds = tfds.load("mtnt/en-fr", split="train")
ds = ds.take(2)
ds = ds.as_numpy_iterator()
for idx, example in enumerate(ds):
print(f'Example {idx}:')
for key, val in example.items():
print(f'{key}: {val}')
print()
Downloading and preparing dataset 35.08 MiB (download: 35.08 MiB, generated: 11.33 MiB, total: 46.41 MiB) to /root/tensorflow_datasets/mtnt/en-fr/1.0.0... Dl Completed...: 0 url [00:00, ? url/s] Dl Size...: 0 MiB [00:00, ? MiB/s] Extraction completed...: 0 file [00:00, ? file/s] Generating splits...: 0%| | 0/3 [00:00<?, ? splits/s] Generating train examples...: 0%| | 0/35692 [00:00<?, ? examples/s] Shuffling /root/tensorflow_datasets/mtnt/en-fr/1.0.0.incompleteJLH33K/mtnt-train.tfrecord*...: 0%| … Generating test examples...: 0%| | 0/1020 [00:00<?, ? examples/s] Shuffling /root/tensorflow_datasets/mtnt/en-fr/1.0.0.incompleteJLH33K/mtnt-test.tfrecord*...: 0%| |… Generating valid examples...: 0%| | 0/811 [00:00<?, ? examples/s] Shuffling /root/tensorflow_datasets/mtnt/en-fr/1.0.0.incompleteJLH33K/mtnt-valid.tfrecord*...: 0%| … Dataset mtnt downloaded and prepared to /root/tensorflow_datasets/mtnt/en-fr/1.0.0. Subsequent calls will reuse this data. Example 0: dst: b'Le groupe de " toutes les \xc3\xa9toiles potentielles de la conf\xc3\xa9rence de l\'Est mais qui ne s\'en sortent pas dans le groupe de l\'Ouest ".' src: b'The group of \xe2\x80\x9ceastern conference potential all stars but not making it in the West\xe2\x80\x9d group.' Example 1: dst: b"Kameron est-elle un peu aigrie de son manque de temps \xc3\xa0 l'\xc3\xa9cran ?" src: b'Is Kameron a Little Salty About Her Lack of Air Time?'
Carica il tokenizzatore Gemma, creato con sentencepiece.SentencePieceProcessor
:
vocab = spm.SentencePieceProcessor()
vocab.Load(TOKENIZER_PATH)
True
Personalizza SentencePieceProcessor
per l'attività di traduzione dall'inglese al francese. Dato che ottimizzerai la parte inglese del modello RecurrentGemma (Griffin), dovrai apportare alcune modifiche, come ad esempio:
Prefisso di input: l'aggiunta di un prefisso comune a ogni input segnala l'attività di traduzione. Ad esempio, puoi utilizzare un prompt con un prefisso come
Translate this into French: [INPUT_SENTENCE]
.Il suffisso di inizio della traduzione: l'aggiunta di un suffisso alla fine di ogni prompt indica al modello Gemma esattamente quando iniziare il processo di traduzione. Dovrebbe bastare una nuova riga.
Token del modello linguistico: i modelli RecurrentGemma (Griffin) si aspettano un "inizio della sequenza" all'inizio di ogni sequenza. Allo stesso modo, devi aggiungere una "fine della sequenza" alla fine di ogni esempio di addestramento.
Crea un wrapper personalizzato attorno a SentencePieceProcessor
come segue:
class GriffinTokenizer:
"""A custom wrapper around a SentencePieceProcessor."""
def __init__(self, spm_processor: spm.SentencePieceProcessor):
self._spm_processor = spm_processor
@property
def pad_id(self) -> int:
"""Fast access to the pad ID."""
return self._spm_processor.pad_id()
def tokenize(
self,
example: str | bytes,
prefix: str = '',
suffix: str = '',
add_eos: bool = True,
) -> jax.Array:
"""
A tokenization function.
Args:
example: Input string to tokenize.
prefix: Prefix to add to the input string.
suffix: Suffix to add to the input string.
add_eos: If True, add an end of sentence token at the end of the output
sequence.
Returns:
Tokens corresponding to the input string.
"""
int_list = [self._spm_processor.bos_id()]
int_list.extend(self._spm_processor.EncodeAsIds(prefix + example + suffix))
if add_eos:
int_list.append(self._spm_processor.eos_id())
return jnp.array(int_list, dtype=jnp.int32)
def tokenize_tf_op(
self,
str_tensor: tf.Tensor,
prefix: str = '',
suffix: str = '',
add_eos: bool = True,
) -> tf.Tensor:
"""A TensforFlow operator for the `tokenize` function."""
encoded = tf.numpy_function(
self.tokenize,
[str_tensor, prefix, suffix, add_eos],
tf.int32)
encoded.set_shape([None])
return encoded
def to_string(self, tokens: jax.Array) -> str:
"""Convert an array of tokens to a string."""
return self._spm_processor.EncodeIds(tokens.tolist())
Prova creando un'istanza del tuo nuovo GriffinTokenizer
personalizzato e applicandolo su un piccolo campione del set di dati MTNT:
def tokenize_source(tokenizer, example: tf.Tensor):
return tokenizer.tokenize_tf_op(
example,
prefix='Translate this into French:\n',
suffix='\n',
add_eos=False
)
def tokenize_destination(tokenizer, example: tf.Tensor):
return tokenizer.tokenize_tf_op(example, add_eos=True)
tokenizer = GriffinTokenizer(vocab)
ds = tfds.load("mtnt/en-fr",split="train")
ds = ds.take(2)
ds = ds.map(lambda x: {
'src': tokenize_source(tokenizer, x['src']),
'dst': tokenize_destination(tokenizer, x['dst'])
})
ds = ds.as_numpy_iterator()
for idx, example in enumerate(ds):
print(f'Example {idx}:')
for key, val in example.items():
print(f'{key}: {val}')
print()
Example 0: src: [ 2 49688 736 1280 6987 235292 108 651 2778 576 1080 104745 11982 5736 832 8995 901 780 3547 665 575 573 4589 235369 2778 235265 108] dst: [ 2 2025 29653 581 664 16298 1437 55563 41435 7840 581 683 111452 581 533 235303 9776 4108 2459 679 485 235303 479 6728 579 1806 2499 709 29653 581 533 235303 101323 16054 1] Example 1: src: [ 2 49688 736 1280 6987 235292 108 2437 87150 477 476 11709 230461 8045 3636 40268 576 4252 4897 235336 108] dst: [ 2 213606 477 1455 235290 3510 748 8268 191017 2809 581 2032 69972 581 11495 1305 533 235303 65978 1654 1]
Crea un caricatore di dati per l'intero set di dati MTNT:
@chex.dataclass(frozen=True)
class TrainingInput:
# Input tokens provided to the model.
input_tokens: jax.Array
# A mask that determines which tokens contribute to the target loss
# calculation.
target_mask: jax.Array
class DatasetSplit(enum.Enum):
TRAIN = 'train'
VALIDATION = 'valid'
class MTNTDatasetBuilder:
"""A data loader for the MTNT dataset."""
N_ITEMS = {DatasetSplit.TRAIN: 35_692, DatasetSplit.VALIDATION: 811}
BUFFER_SIZE_SHUFFLE = 10_000
TRANSLATION_PREFIX = 'Translate this into French:\n'
TRANSLATION_SUFFIX = '\n'
def __init__(self,
tokenizer : GriffinTokenizer,
max_seq_len: int):
"""A constructor.
Args:
tokenizer: The tokenizer to use.
max_seq_len: The size of each sequence in a given batch.
"""
self._tokenizer = tokenizer
self._base_data = {
DatasetSplit.TRAIN: tfds.load("mtnt/en-fr",split="train"),
DatasetSplit.VALIDATION: tfds.load("mtnt/en-fr",split="valid"),
}
self._max_seq_len = max_seq_len
def _tokenize_source(self, example: tf.Tensor):
"""A tokenization function for the source."""
return self._tokenizer.tokenize_tf_op(
example, prefix=self.TRANSLATION_PREFIX, suffix=self.TRANSLATION_SUFFIX,
add_eos=False
)
def _tokenize_destination(self, example: tf.Tensor):
"""A tokenization function for the French translation."""
return self._tokenizer.tokenize_tf_op(example, add_eos=True)
def _pad_up_to_max_len(self,
input_tensor: tf.Tensor,
pad_value: int | bool,
) -> tf.Tensor:
"""Pad the given tensor up to sequence length of a batch."""
seq_len = tf.shape(input_tensor)[0]
to_pad = tf.maximum(self._max_seq_len - seq_len, 0)
return tf.pad(
input_tensor, [[0, to_pad]], mode='CONSTANT', constant_values=pad_value,
)
def _to_training_input(
self,
src_tokens: jax.Array,
dst_tokens: jax.Array,
) -> TrainingInput:
"""Build a training input from a tuple of source and destination tokens."""
# The input sequence fed to the model is simply the concatenation of the
# source and the destination.
tokens = tf.concat([src_tokens, dst_tokens], axis=0)
# You want to prevent the model from updating based on the source (input)
# tokens. To achieve this, add a target mask to each input.
q_mask = tf.zeros_like(src_tokens, dtype=tf.bool)
a_mask = tf.ones_like(dst_tokens, dtype=tf.bool)
mask = tf.concat([q_mask, a_mask], axis=0)
# If the output tokens sequence is smaller than the target sequence size,
# then pad it with pad tokens.
tokens = self._pad_up_to_max_len(tokens, self._tokenizer.pad_id)
# You don't want to perform the backward on the pad tokens.
mask = self._pad_up_to_max_len(mask, False)
return TrainingInput(input_tokens=tokens, target_mask=mask)
def get_train_dataset(self, batch_size: int, num_epochs: int):
"""Build the training dataset."""
# Tokenize each sample.
ds = self._base_data[DatasetSplit.TRAIN].map(
lambda x : (self._tokenize_source(x['src']),
self._tokenize_destination(x['dst']))
)
# Convert them to training inputs.
ds = ds.map(lambda x, y: self._to_training_input(x, y))
# Remove the samples which are too long.
ds = ds.filter(lambda x: tf.shape(x.input_tokens)[0] <= self._max_seq_len)
# Shuffle the dataset.
ds = ds.shuffle(buffer_size=self.BUFFER_SIZE_SHUFFLE)
# Repeat if necessary.
ds = ds.repeat(num_epochs)
# Build batches.
ds = ds.batch(batch_size, drop_remainder=True)
return ds
def get_validation_dataset(self, batch_size: int):
"""Build the validation dataset."""
# Same as the training dataset, but no shuffling and no repetition
ds = self._base_data[DatasetSplit.VALIDATION].map(
lambda x : (self._tokenize_source(x['src']),
self._tokenize_destination(x['dst']))
)
ds = ds.map(lambda x, y: self._to_training_input(x, y))
ds = ds.filter(lambda x: tf.shape(x.input_tokens)[0] <= self._max_seq_len)
ds = ds.batch(batch_size, drop_remainder=True)
return ds
Prova MTNTDatasetBuilder
creando di nuovo un'istanza per il valore GriffinTokenizer
personalizzato, applicandolo al set di dati MTNT e campionando due esempi:
dataset_builder = MTNTDatasetBuilder(tokenizer, max_seq_len=20)
ds = dataset_builder.get_train_dataset(3, 1)
ds = ds.take(2)
ds = ds.as_numpy_iterator()
for idx, example in enumerate(ds):
print(f'Example {idx}:')
for key, val in example.items():
print(f'{key}: {val}')
print()
WARNING:tensorflow:Mapping types may not work well with tf.nest. Prefer using MutableMapping for <class '__main__.TrainingInput'> WARNING:tensorflow:Mapping types may not work well with tf.nest. Prefer using MutableMapping for <class '__main__.TrainingInput'> WARNING:tensorflow:Mapping types may not work well with tf.nest. Prefer using MutableMapping for <class '__main__.TrainingInput'> Example 0: input_tokens: [[ 2 49688 736 1280 6987 235292 108 12583 665 235265 108 2 6151 94975 1320 6238 235265 1 0 0] [ 2 49688 736 1280 6987 235292 108 4899 29960 11270 108282 235265 108 2 4899 79025 11270 108282 1 0] [ 2 49688 736 1280 6987 235292 108 26620 235265 108 2 26620 235265 1 0 0 0 0 0 0]] target_mask: [[False False False False False False False False False False False True True True True True True True False False] [False False False False False False False False False False False False False True True True True True True False] [False False False False False False False False False False True True True True False False False False False False]] Example 1: input_tokens: [[ 2 49688 736 1280 6987 235292 108 527 5174 1683 235336 108 2 206790 581 20726 482 2208 1654 1] [ 2 49688 736 1280 6987 235292 108 28484 235256 235336 108 2 120500 13832 1654 1 0 0 0 0] [ 2 49688 736 1280 6987 235292 108 235324 235304 2705 235265 108 2 235324 235304 19963 235265 1 0 0]] target_mask: [[False False False False False False False False False False False False True True True True True True True True] [False False False False False False False False False False False True True True True True False False False False] [False False False False False False False False False False False False True True True True True True False False]]
Configura il modello
Prima di iniziare a perfezionare il modello Gemma, devi configurarlo.
Carica il checkpoint del modello RecurrentGemma (Griffin) con il metodo recurrentgemma.jax.utils.load_parameters
:
params = recurrentgemma.load_parameters(CKPT_PATH, "single_device")
Per caricare automaticamente la configurazione corretta dal checkpoint del modello RecurrentGemma, utilizza recurrentgemma.GriffinConfig.from_flax_params_or_variables
:
config = recurrentgemma.GriffinConfig.from_flax_params_or_variables(params)
Crea un'istanza del modello Griffin con recurrentgemma.jax.Griffin
:
model = recurrentgemma.Griffin(config)
Crea un sampler
con recurrentgemma.jax.Sampler
sopra il checkpoint/le ponderazioni del modello RecurrentGemma e il tokenizzatore per verificare se il modello può eseguire la traduzione:
sampler = recurrentgemma.Sampler(model=model, vocab=vocab, params=params)
Ottimizza il modello
In questa sezione imparerai a:
- Utilizza la classe
gemma.transformer.Transformer
per creare la funzione forwarding pass e loss. - Costruire i vettori della maschera di posizione e attenzione per i token
- Crea una funzione dei passaggi di addestramento con Flax.
- Creare il passaggio di convalida senza tornare indietro.
- Creare il loop di addestramento.
- Ottimizza il modello Gemma.
Definisci il progresso in avanti e la funzione di perdita utilizzando recurrentgemma.jax.griffin.Griffin
. Il componente RecurrentGemma Griffin
eredita da flax.linen.Module
e offre due metodi essenziali:
init
: inizializza i parametri del modello.apply
: esegue la funzione__call__
del modello utilizzando un determinato set di parametri.
Poiché utilizzi pesi Gemma preaddestrati, non è necessario utilizzare la funzione init
.
def forward_and_loss_fn(
params,
*,
model: recurrentgemma.Griffin,
input_tokens: jax.Array, # Shape [B, L]
input_mask: jax.Array, # Shape [B, L]
positions: jax.Array, # Shape [B, L]
) -> jax.Array:
"""Forward pass and loss function.
Args:
params: model's input parameters.
model: Griffin model to call.
input_tokens: input tokens sequence, shape [B, L].
input_mask: tokens to ignore when computing the loss, shape [B, L].
positions: relative position of each token, shape [B, L].
Returns:
Softmax cross-entropy loss for the next-token prediction task.
"""
batch_size = input_tokens.shape[0]
# Forward pass on the input data.
# No attention cache is needed here.
# Exclude the last step as it does not appear in the targets.
logits, _ = model.apply(
{"params": params},
tokens=input_tokens[:, :-1],
segment_pos=positions[:, :-1],
cache=None,
)
# Similarly, the first token cannot be predicteds.
target_tokens = input_tokens[:, 1:]
target_mask = input_mask[:, 1:]
# Convert the target labels into one-hot encoded vectors.
one_hot = jax.nn.one_hot(target_tokens, logits.shape[-1])
# Don't update on unwanted tokens.
one_hot = one_hot * target_mask.astype(one_hot.dtype)[...,None]
# Normalization factor.
norm_factor = batch_size * (jnp.sum(target_mask) + 1e-8)
# Return the negative log-likelihood loss (NLL) function.
return -jnp.sum(jax.nn.log_softmax(logits) * one_hot) / norm_factor
Crea la funzione train_step
che esegue il passaggio a ritroso e aggiorna i parametri del modello di conseguenza, dove:
jax.value_and_grad
consente di valutare la funzione di perdita e i gradienti durante i passaggi in avanti e indietro.optax.apply_updates
serve per aggiornare i parametri.
Params = Mapping[str, Any]
def get_positions(example: jax.Array, pad_id : int) -> jax.Array:
"""Builds the position vector from the given tokens."""
pad_mask = example != pad_id
positions = jnp.cumsum(pad_mask, axis=-1)
# Subtract one for all positions from the first valid one as they are
# 0-indexed
positions = positions - (positions >= 1)
return positions
@functools.partial(
jax.jit,
static_argnames=['model', 'optimizer'],
donate_argnames=['params', 'opt_state'],
)
def train_step(
model: recurrentgemma.Griffin,
params: Params,
optimizer: optax.GradientTransformation,
opt_state: optax.OptState,
pad_id: int,
example: TrainingInput,
) -> tuple[jax.Array, Params, optax.OptState]:
"""The train step.
Args:
model: The RecurrentGemma (Griffin) model.
params: The model's input parameters.
optimizer: The Optax optimizer to use.
opt_state: The input optimizer's state.
pad_id: The ID of the pad token.
example: The input batch.
Returns:
Training loss, updated parameters, updated optimizer state.
"""
positions = get_positions(example.input_tokens, pad_id)
# Forward and backward passes.
train_loss, grads = jax.value_and_grad(forward_and_loss_fn)(
params,
model=model,
input_tokens=example.input_tokens,
input_mask=example.target_mask,
positions=positions,
)
# Update the parameters.
updates, opt_state = optimizer.update(grads, opt_state, params)
params = optax.apply_updates(params, updates)
return train_loss, params, opt_state
Crea la funzione validation_step
senza il passaggio a ritroso:
@functools.partial(jax.jit, static_argnames=['model'])
def validation_step(
model: recurrentgemma.Griffin,
params: Params,
pad_id: int,
example: TrainingInput,
) -> jax.Array:
return forward_and_loss_fn(
params,
model=model,
input_tokens=example.input_tokens,
input_mask=example.target_mask,
positions=get_positions(example.input_tokens, pad_id),
)
Definisci il loop di addestramento:
def train_loop(
model: recurrentgemma.Griffin,
params: Params,
optimizer: optax.GradientTransformation,
train_ds: Iterator[TrainingInput],
validation_ds: Iterator[TrainingInput],
num_steps: int | None = None,
eval_every_n: int = 20,
):
opt_state = jax.jit(optimizer.init)(params)
step_counter = 0
avg_loss=0
# The first round of the validation loss.
n_steps_eval = 0
eval_loss = 0
for val_example in validation_ds.as_numpy_iterator():
eval_loss += validation_step(
model, params, dataset_builder._tokenizer.pad_id, val_example
)
n_steps_eval += 1
print(f"Start, validation loss: {eval_loss/n_steps_eval}")
for train_example in train_ds:
train_loss, params, opt_state = train_step(
model=model,
params=params,
optimizer=optimizer,
opt_state=opt_state,
pad_id=dataset_builder._tokenizer.pad_id,
example=train_example,
)
step_counter += 1
avg_loss += train_loss
if step_counter % eval_every_n == 0:
eval_loss = 0
n_steps_eval = 0
val_iterator = validation_ds.as_numpy_iterator()
for val_example in val_iterator:
eval_loss += validation_step(
model,
params,
dataset_builder._tokenizer.pad_id,
val_example,
)
n_steps_eval +=1
avg_loss /= eval_every_n
eval_loss /= n_steps_eval
print(f"STEP {step_counter} training loss: {avg_loss} - eval loss: {eval_loss}")
avg_loss=0
if num_steps is not None and step_counter > num_steps:
break
return params
Qui devi scegliere un ottimizzatore (Optax). Per i dispositivi con memoria ridotta, dovresti usare SGD, in quanto ha un ingombro di memoria molto inferiore. Per ottenere le migliori prestazioni di ottimizzazione, prova Adam-W. In questo esempio, per il checkpoint 2b-it
vengono forniti gli iperparametri ottimali per ogni ottimizzatore per l'attività specifica in questo blocco note.
def griffin_weight_decay_mask(params_like: optax.Params) -> Any:
# Don't put weight decay on the RGLRU, the embeddings and any biases
def enable_weight_decay(path: list[Any], _: Any) -> bool:
# Parameters in the LRU and embedder
path = [dict_key.key for dict_key in path]
if 'rg_lru' in path or 'embedder' in path:
return False
# All biases and scales
if path[-1] in ('b', 'scale'):
return False
return True
return jax.tree_util.tree_map_with_path(enable_weight_decay, params_like)
optimizer_choice = "sgd"
if optimizer_choice == "sgd":
optimizer = optax.sgd(learning_rate=1e-3)
num_steps = 300
elif optimizer_choice == "adamw":
optimizer = optax.adamw(
learning_rate=1e-4,
b2=0.96,
eps=1e-8,
weight_decay=0.1,
mask=griffin_weight_decay_mask,
)
num_steps = 100
else:
raise ValueError(f"Unknown optimizer: {optimizer_choice}")
Prepara i set di dati di addestramento e convalida:
# Choose a small sequence length size, so that everything fits in memory.
num_epochs = 1
batch_size = 1
sequence_length = 32
# Make the dataset builder.
tokenizer = GriffinTokenizer(vocab)
dataset_builder= MTNTDatasetBuilder(tokenizer, sequence_length + 1)
# Build the training dataset.
train_ds = dataset_builder.get_train_dataset(
batch_size=batch_size,
num_epochs=num_epochs,
).as_numpy_iterator()
# Build the validation dataset, with a limited number of samples for this demo.
validation_ds = dataset_builder.get_validation_dataset(
batch_size=batch_size,
).take(50)
Inizia a ottimizzare il modello RecurrentGemma (Griffin) con un numero limitato di passaggi (num_steps
):
trained_params = train_loop(
model=model,
params=params,
optimizer=optimizer,
train_ds=train_ds,
validation_ds=validation_ds,
num_steps=num_steps,
)
Start, validation loss: 7.894117832183838 /usr/local/lib/python3.10/dist-packages/jax/_src/interpreters/mlir.py:920: UserWarning: Some donated buffers were not usable: ShapedArray(int32[1,33]), ShapedArray(bool[1,33]), ShapedArray(int32[], weak_type=True). See an explanation at https://jax.readthedocs.io/en/latest/faq.html#buffer_donation. warnings.warn("Some donated buffers were not usable:" STEP 20 training loss: 4.592616081237793 - eval loss: 2.847407102584839 STEP 40 training loss: 2.7537424564361572 - eval loss: 2.9258534908294678 STEP 60 training loss: 2.835618257522583 - eval loss: 2.4382340908050537 STEP 80 training loss: 2.6322107315063477 - eval loss: 2.3696839809417725 STEP 100 training loss: 1.8703256845474243 - eval loss: 2.355681896209717 STEP 120 training loss: 2.7280433177948 - eval loss: 2.4059958457946777 STEP 140 training loss: 2.3047447204589844 - eval loss: 2.083082914352417 STEP 160 training loss: 2.3432137966156006 - eval loss: 2.095074415206909 STEP 180 training loss: 2.1081202030181885 - eval loss: 2.006460189819336 STEP 200 training loss: 2.5359647274017334 - eval loss: 1.9667452573776245 STEP 220 training loss: 2.202195644378662 - eval loss: 1.9440618753433228 STEP 240 training loss: 2.756615400314331 - eval loss: 2.1073737144470215 STEP 260 training loss: 2.5128934383392334 - eval loss: 2.117241859436035 STEP 280 training loss: 2.73045015335083 - eval loss: 1.9159646034240723 STEP 300 training loss: 2.0918595790863037 - eval loss: 1.9742532968521118
Sia la perdita di addestramento che quella di convalida dovrebbero essere diminuite a ogni conteggio dei passi.
Per assicurarti che l'input corrisponda al formato di addestramento, ricordati di utilizzare il prefisso Translate this into French:\n
e un carattere di nuova riga alla fine. Ciò indica al modello di iniziare la traduzione.
sampler.params = trained_params
output = sampler(
["Translate this into French:\nHello, my name is Morgane.\n"],
total_generation_steps=100,
)
print(output.text[0])
/usr/local/lib/python3.10/dist-packages/jax/_src/interpreters/mlir.py:920: UserWarning: Some donated buffers were not usable: ShapedArray(int32[1,16]). See an explanation at https://jax.readthedocs.io/en/latest/faq.html#buffer_donation. warnings.warn("Some donated buffers were not usable:" Mais je m'appelle Morgane.
Scopri di più
- Puoi scoprire di più sulla libreria
recurrentgemma
di Google DeepMind su GitHub, che contiene docstring dei metodi e dei moduli che hai utilizzato in questo tutorial, ad esempiorecurrentgemma.jax.load_parameters
,recurrentgemma.jax.Griffin
erecurrentgemma.jax.Sampler
. - Le seguenti librerie dispongono di siti di documentazione proprietari: JAX principale, Flax, Chex, Optax e Orbax.
- Per la documentazione relativa al tokenizzatore/detokenizzatore
sentencepiece
, consulta il repository GitHubsentencepiece
di Google. - Per la documentazione relativa a
kagglehub
, dai un'occhiata aREADME.md
nel repository GitHubkagglehub
di Kaggle. - Scopri come utilizzare i modelli Gemma con Vertex AI di Google Cloud.
- Se utilizzi Google Cloud TPU (v3-8 e successive), assicurati di eseguire anche l'aggiornamento al pacchetto
jax[tpu]
più recente (!pip install -U jax[tpu] -f https://storage.googleapis.com/jax-releases/libtpu_releases.html
), riavvia il runtime e controlla che le versionijax
ejaxlib
corrispondano (!pip list | grep jax
). In questo modo è possibile evitare i casi in cuiRuntimeError
può verificarsi a causa della mancata corrispondenza tra le versioni dijaxlib
ejax
. Per ulteriori istruzioni sull'installazione di JAX, consulta la documentazione JAX. - Dai un'occhiata a RecurrentGemma: Moving Past Transformers for Efficient Open Language Models di Google DeepMind.
- Leggi il documento Griffin: mixare le ricorrenza lineari recintate con Documento Local Attention for Efficient Language Models di Google DeepMind per saperne di più sull'architettura del modello utilizzata da RecurrentGemma.