Descripción general
CustomOpDispatcher es el reemplazo de la API para definir operaciones personalizadas de CPU y resolutores de operaciones personalizados en LiteRT. Proporciona una interfaz más limpia para integrar operaciones personalizadas en modelos de LiteRT.
¿Por qué usar CustomOpDispatcher?
Enfoque tradicional (obsoleto)
Antes, los desarrolladores debían hacer lo siguiente:
- Cómo crear estructuras de
TfLiteRegistrationde forma manual - Implementa funciones de devolución de llamada específicas de TFLite (init, prepare, invoke, free)
- Trabajar directamente con estructuras de TFLite de bajo nivel (
TfLiteContext,TfLiteNode,TfLiteTensor) - Usa
MutableOpResolver::AddCustom()directamente
Nuevo enfoque de CustomOpDispatcher
El CustomOpDispatcher proporciona lo siguiente:
- Capa de abstracción limpia sobre los elementos internos de TFLite
- Integración con el modelo compilado de LiteRT
Flujo
┌─────────────────┐
│ User Custom Op │ (Your implementation)
└────────┬────────┘
│
▼
┌─────────────────────────┐
│ LiteRtCustomOpKernel │ (C API interface)
└────────┬────────────────┘
│
▼
┌─────────────────────────┐
│ CustomOpDispatcher │ (Bridge layer)
└────────┬────────────────┘
│
▼
┌─────────────────────────┐
│ TfLiteRegistration │ (TFLite runtime)
└─────────────────────────┘
Componentes y archivos clave
Implementación principal
- runtime/custom_op_dispatcher.h: Encabezado de la clase del despachador principal
- runtime/custom_op_dispatcher.cc: Implementación que une LiteRT a TFLite
Encabezados de API
- c/litert_custom_op_kernel.h: API de C para la interfaz del kernel de la operación personalizada
- cc/litert_custom_op_kernel.h: Wrapper de C++ que proporciona una interfaz orientada a objetos
Sistema de opciones
- core/options.h: Estructura de opciones principales con
CustomOpOption
- c/litert_options.h: API de C para administrar opciones de compilación
- cc/litert_options.h: Wrapper de C++ para la administración de opciones
Ejemplos de pruebas
- cc/litert_custom_op_test.cc: Ejemplo de uso de la API de C++
- c/litert_custom_op_test.cc: Ejemplo de uso de la API de C
Referencia de la API
Interfaz del kernel principal (API en C)
typedef struct {
LiteRtStatus (*Init)(void* user_data, const void* init_data,
size_t init_data_size);
LiteRtStatus (*GetOutputLayouts)(void* user_data, size_t num_inputs,
const LiteRtLayout* input_layouts,
size_t num_outputs,
LiteRtLayout* output_layouts);
LiteRtStatus (*Run)(void* user_data, size_t num_inputs,
const LiteRtTensorBuffer* inputs, size_t num_outputs,
LiteRtTensorBuffer* outputs);
LiteRtStatus (*Destroy)(void* user_data);
} LiteRtCustomOpKernel;
Clase base abstracta de C++
class CustomOpKernel {
public:
virtual const std::string& OpName() const = 0;
virtual int OpVersion() const = 0;
virtual Expected<void> Init(const void* init_data, size_t init_data_size) = 0;
virtual Expected<void> GetOutputLayouts(
const std::vector<Layout>& input_layouts,
std::vector<Layout>& output_layouts) = 0;
virtual Expected<void> Run(const std::vector<TensorBuffer>& inputs,
std::vector<TensorBuffer>& outputs) = 0;
virtual Expected<void> Destroy() = 0;
};
Guía de implementación
Paso 1: Define tu operación personalizada
Implementación en C++
#include "litert/cc/litert_custom_op_kernel.h"
class MyCustomOpKernel : public litert::CustomOpKernel {
public:
const std::string& OpName() const override {
return op_name_;
}
int OpVersion() const override {
return 1;
}
Expected<void> Init(const void* init_data, size_t init_data_size) override {
// Initialize any persistent state
return {};
}
Expected<void> GetOutputLayouts(
const std::vector<Layout>& input_layouts,
std::vector<Layout>& output_layouts) override {
// Define output tensor shapes based on inputs
output_layouts[0] = input_layouts[0];
return {};
}
Expected<void> Run(const std::vector<TensorBuffer>& inputs,
std::vector<TensorBuffer>& outputs) override {
// Lock input buffers for reading
LITERT_ASSIGN_OR_RETURN(auto input_lock,
TensorBufferScopedLock::Create<float>(
inputs[0], TensorBuffer::LockMode::kRead));
// Lock output buffer for writing
LITERT_ASSIGN_OR_RETURN(auto output_lock,
TensorBufferScopedLock::Create<float>(
outputs[0], TensorBuffer::LockMode::kWrite));
const float* input_data = input_lock.second;
float* output_data = output_lock.second;
// Perform computation
// ... your custom operation logic ...
return {};
}
Expected<void> Destroy() override {
// Clean up resources
return {};
}
private:
const std::string op_name_ = "MyCustomOp";
};
Implementación en C
#include "litert/c/litert_custom_op_kernel.h"
LiteRtStatus MyOp_Init(void* user_data, const void* init_data,
size_t init_data_size) {
// Initialize state
return kLiteRtStatusOk;
}
LiteRtStatus MyOp_GetOutputLayouts(void* user_data, size_t num_inputs,
const LiteRtLayout* input_layouts,
size_t num_outputs,
LiteRtLayout* output_layouts) {
// Set output shape to match first input
output_layouts[0] = input_layouts[0];
return kLiteRtStatusOk;
}
LiteRtStatus MyOp_Run(void* user_data, size_t num_inputs,
const LiteRtTensorBuffer* inputs, size_t num_outputs,
LiteRtTensorBuffer* outputs) {
// Lock buffers
void* input_addr;
LITERT_RETURN_IF_ERROR(LiteRtLockTensorBuffer(
inputs[0], &input_addr, kLiteRtTensorBufferLockModeRead));
void* output_addr;
LITERT_RETURN_IF_ERROR(LiteRtLockTensorBuffer(
outputs[0], &output_addr, kLiteRtTensorBufferLockModeWrite));
// Perform computation
float* in = (float*)input_addr;
float* out = (float*)output_addr;
// ... your custom operation logic ...
// Unlock buffers
LITERT_RETURN_IF_ERROR(LiteRtUnlockTensorBuffer(inputs[0]));
LITERT_RETURN_IF_ERROR(LiteRtUnlockTensorBuffer(outputs[0]));
return kLiteRtStatusOk;
}
LiteRtStatus MyOp_Destroy(void* user_data) {
// Clean up
return kLiteRtStatusOk;
}
Paso 2: Registra la operación personalizada
Registro de C++
#include "litert/cc/litert_environment.h"
#include "litert/cc/litert_compiled_model.h"
#include "litert/cc/litert_options.h"
// Create environment
LITERT_ASSERT_OK_AND_ASSIGN(Environment env, Environment::Create({}));
// Load model
Model model = /* load your model */;
// Create options and register custom op
LITERT_ASSERT_OK_AND_ASSIGN(Options options, Options::Create());
options.SetHardwareAccelerators(kLiteRtHwAcceleratorCpu);
// Register custom op kernel
MyCustomOpKernel my_custom_op;
ASSERT_TRUE(options.AddCustomOpKernel(my_custom_op));
// Create compiled model with custom op
LITERT_ASSERT_OK_AND_ASSIGN(CompiledModel compiled_model,
CompiledModel::Create(env, model, options));
Registro de C
#include "litert/c/litert_environment.h"
#include "litert/c/litert_compiled_model.h"
#include "litert/c/litert_options.h"
// Create options
LiteRtOptions options;
LiteRtCreateOptions(&options);
LiteRtSetOptionsHardwareAccelerators(options, kLiteRtHwAcceleratorCpu);
// Define kernel
LiteRtCustomOpKernel kernel = {
.Init = MyOp_Init,
.GetOutputLayouts = MyOp_GetOutputLayouts,
.Run = MyOp_Run,
.Destroy = MyOp_Destroy,
};
// Register custom op
LiteRtAddCustomOpKernelOption(options, "MyCustomOp", 1, &kernel, NULL);
// Create environment
LiteRtEnvironment env;
LiteRtCreateEnvironment(0, NULL, &env);
// Create compiled model
LiteRtCompiledModel compiled_model;
LiteRtCreateCompiledModel(env, model, options, &compiled_model);
Paso 3: Ejecuta el modelo
Ejecución de C++
// Create buffers
LITERT_ASSERT_OK_AND_ASSIGN(auto input_buffers,
compiled_model.CreateInputBuffers());
LITERT_ASSERT_OK_AND_ASSIGN(auto output_buffers,
compiled_model.CreateOutputBuffers());
// Fill input data
input_buffers[0].Write<float>(your_input_data);
// Run inference
compiled_model.Run(input_buffers, output_buffers);
// Read output
LITERT_ASSERT_OK_AND_ASSIGN(auto lock,
TensorBufferScopedLock::Create<const float>(
output_buffers[0], TensorBuffer::LockMode::kRead));
const float* results = lock.second;
Ejecución en C
// Create buffers (see test files for complete buffer creation)
LiteRtTensorBuffer input_buffers[num_inputs];
LiteRtTensorBuffer output_buffers[num_outputs];
// ... buffer creation code ...
// Write input data
void* input_addr;
LiteRtLockTensorBuffer(input_buffers[0], &input_addr,
kLiteRtTensorBufferLockModeWrite);
memcpy(input_addr, your_data, data_size);
LiteRtUnlockTensorBuffer(input_buffers[0]);
// Run inference
LiteRtRunCompiledModel(compiled_model, 0, num_inputs, input_buffers,
num_outputs, output_buffers);
// Read output
void* output_addr;
LiteRtLockTensorBuffer(output_buffers[0], &output_addr,
kLiteRtTensorBufferLockModeRead);
// Process output_addr
LiteRtUnlockTensorBuffer(output_buffers[0]);