Задача MediaPipe Face Detector позволяет обнаруживать лица на изображении или видео. Эту задачу можно использовать для поиска лиц и черт лица в кадре. В этой задаче используется модель машинного обучения (ML), которая работает с отдельными изображениями или непрерывным потоком изображений. Задача выводит расположение лица, а также следующие ключевые точки лица: левый глаз, правый глаз, кончик носа, рот, трагиция левого глаза и трагиция правого глаза.
Пример кода, описанный в этой инструкции, доступен на GitHub . Дополнительные сведения о возможностях, моделях и параметрах конфигурации этой задачи см. в разделе Обзор .
Пример кода
Пример кода задач MediaPipe — это простая реализация приложения Face Detector для Android. В примере используется камера на физическом устройстве Android для обнаружения лиц в непрерывном видеопотоке. Приложение также может распознавать лица на изображениях и видео из галереи устройства.
Вы можете использовать это приложение в качестве отправной точки для своего собственного приложения для Android или обращаться к нему при изменении существующего приложения. Пример кода Face Detector размещен на GitHub .
Загрузите код
Следующие инструкции показывают, как создать локальную копию кода примера с помощью инструмента командной строки git .
Чтобы загрузить пример кода:
- Клонируйте репозиторий git, используя следующую команду:
git clone https://github.com/google-ai-edge/mediapipe-samples
- При желании настройте свой экземпляр git на использование разреженной проверки, чтобы у вас были только файлы для примера приложения Face Detector:
cd mediapipe git sparse-checkout init --cone git sparse-checkout set examples/face_detector/android
После создания локальной версии кода примера вы можете импортировать проект в Android Studio и запустить приложение. Инструкции см. в Руководстве по установке для Android .
Ключевые компоненты
Следующие файлы содержат ключевой код для этого примера приложения для обнаружения лиц:
- FaceDetectorHelper.kt — инициализирует детектор лиц и обрабатывает выбор модели и делегата.
- CameraFragment.kt — управляет камерой устройства и обрабатывает входные данные изображения и видео.
- GalleryFragment.kt — взаимодействует с
OverlayView
для отображения выходного изображения или видео. - OverlayView.kt — реализует отображение с ограничивающими рамками для обнаруженных лиц.
Настраивать
В этом разделе описаны ключевые шаги по настройке среды разработки и проектов кода специально для использования Face Detector. Общие сведения о настройке среды разработки для использования задач MediaPipe, включая требования к версии платформы, см. в руководстве по настройке для Android .
Зависимости
Задача «Детектор лиц» использует библиотеку com.google.mediapipe:tasks-vision
. Добавьте эту зависимость в файл build.gradle
вашего приложения Android:
dependencies {
implementation 'com.google.mediapipe:tasks-vision:latest.release'
}
Модель
Для задачи «Детектор лиц MediaPipe» требуется пакет обученной модели, совместимый с этой задачей. Дополнительную информацию о доступных обученных моделях для Face Detector смотрите в разделе «Модели » обзора задач.
Выберите и загрузите модель и сохраните ее в каталоге вашего проекта:
<dev-project-root>/src/main/assets
Укажите путь к модели в параметре ModelAssetPath
. В примере кода модель определена в файле FaceDetectorHelper.kt
:
val modelName = "face_detection_short_range.tflite"
baseOptionsBuilder.setModelAssetPath(modelName)
Создать задачу
Задача MediaPipe Face Detector использует функцию createFromOptions()
для настройки задачи. Функция createFromOptions()
принимает значения параметров конфигурации. Дополнительные сведения о параметрах конфигурации см. в разделе Параметры конфигурации .
Детектор лиц поддерживает следующие типы входных данных: неподвижные изображения, видеофайлы и прямые видеопотоки. При создании задачи вам необходимо указать режим работы, соответствующий вашему типу входных данных. Выберите вкладку, соответствующую вашему типу входных данных, чтобы узнать, как создать задачу и выполнить вывод.
Изображение
val baseOptionsBuilder = BaseOptions.builder().setModelAssetPath(modelName) val baseOptions = baseOptionBuilder.build() val optionsBuilder = FaceDetector.FaceDetectorOptions.builder() .setBaseOptions(baseOptionsBuilder.build()) .setMinDetectionConfidence(threshold) .setRunningMode(RunningMode.IMAGE) val options = optionsBuilder.build() FaceDetector = FaceDetector.createFromOptions(context, options)
Видео
val baseOptionsBuilder = BaseOptions.builder().setModelAssetPath(modelName) val baseOptions = baseOptionBuilder.build() val optionsBuilder = FaceDetector.FaceDetectorOptions.builder() .setBaseOptions(baseOptionsBuilder.build()) .setMinDetectionConfidence(threshold) .setRunningMode(RunningMode.VIDEO) val options = optionsBuilder.build() FaceDetector = FaceDetector.createFromOptions(context, options)
Прямая трансляция
val baseOptionsBuilder = BaseOptions.builder().setModelAssetPath(modelName) val baseOptions = baseOptionBuilder.build() val optionsBuilder = FaceDetector.FaceDetectorOptions.builder() .setBaseOptions(baseOptionsBuilder.build()) .setMinDetectionConfidence(threshold) .setResultListener(this::returnLivestreamResult) .setErrorListener(this::returnLivestreamError) .setRunningMode(RunningMode.LIVE_STREAM) val options = optionsBuilder.build() FaceDetector = FaceDetector.createFromOptions(context, options)
Реализация примера кода Face Detector позволяет пользователю переключаться между режимами обработки. Такой подход усложняет код создания задачи и может не подойти для вашего варианта использования. Вы можете увидеть этот код в функции setupFaceDetector()
в файле FaceDetectorHelper.kt
.
Варианты конфигурации
Эта задача имеет следующие параметры конфигурации для приложений Android:
Название опции | Описание | Диапазон значений | Значение по умолчанию |
---|---|---|---|
runningMode | Устанавливает режим выполнения задачи. Есть три режима: ИЗОБРАЖЕНИЕ: Режим для ввода одного изображения. ВИДЕО: Режим декодированных кадров видео. LIVE_STREAM: режим прямой трансляции входных данных, например, с камеры. В этом режиме необходимо вызвать resultListener, чтобы настроить прослушиватель на асинхронное получение результатов. | { IMAGE, VIDEO, LIVE_STREAM } | IMAGE |
minDetectionConfidence | Минимальный показатель достоверности, позволяющий считать обнаружение лица успешным. | Float [0,1] | 0.5 |
minSuppressionThreshold | Минимальный, не максимальный порог подавления для обнаружения лиц, который считается перекрытым. | Float [0,1] | 0.3 |
resultListener | Настраивает прослушиватель результатов на асинхронное получение результатов обнаружения, когда Детектор лиц находится в режиме прямой трансляции. Может использоваться только в том случае, если для режима работы установлено значение LIVE_STREAM . | N/A | Not set |
errorListener | Устанавливает дополнительный прослушиватель ошибок. | N/A | Not set |
Подготовьте данные
Face Detector работает с изображениями, видеофайлами и видеопотоками в реальном времени. Задача выполняет предварительную обработку входных данных, включая изменение размера, поворот и нормализацию значений.
Следующий код демонстрирует, как передать данные для обработки. Эти примеры включают подробную информацию о том, как обрабатывать данные из изображений, видеофайлов и потоков видео в реальном времени.
Изображение
import com.google.mediapipe.framework.image.BitmapImageBuilder import com.google.mediapipe.framework.image.MPImage // Convert the input Bitmap object to an MPImage object to run inference val mpImage = BitmapImageBuilder(image).build()
Видео
import com.google.mediapipe.framework.image.BitmapImageBuilder import com.google.mediapipe.framework.image.MPImage val argb8888Frame = if (frame.config == Bitmap.Config.ARGB_8888) frame else frame.copy(Bitmap.Config.ARGB_8888, false) // Convert the input Bitmap object to an MPImage object to run inference val mpImage = BitmapImageBuilder(argb8888Frame).build()
Прямая трансляция
import com.google.mediapipe.framework.image.BitmapImageBuilder import com.google.mediapipe.framework.image.MPImage // Convert the input Bitmap object to an MPImage object to run inference val mpImage = BitmapImageBuilder(rotatedBitmap).build()
В примере кода Face Detector подготовка данных осуществляется в файле FaceDetectorHelper.kt
.
Запустить задачу
В зависимости от типа данных, с которыми вы работаете, используйте метод faceDetector.detect...()
, специфичный для этого типа данных. Используйте detect()
для отдельных изображений, detectForVideo()
для кадров в видеофайлах и detectAsync()
для видеопотоков. Когда вы выполняете обнаружения в видеопотоке, убедитесь, что вы запускаете обнаружения в отдельном потоке, чтобы избежать блокировки потока пользовательского интерфейса.
В следующих примерах кода показаны простые примеры запуска Face Detector в различных режимах данных:
Изображение
val result = faceDetector.detect(mpImage)
Видео
val timestampMs = i * inferenceIntervalMs faceDetector.detectForVideo(mpImage, timestampMs) .let { detectionResult -> resultList.add(detectionResult) }
Прямая трансляция
val mpImage = BitmapImageBuilder(rotatedBitmap).build() val frameTime = SystemClock.uptimeMillis() faceDetector.detectAsync(mpImage, frameTime)
Обратите внимание на следующее:
- При работе в режиме видео или режиме прямой трансляции вы должны предоставить метку времени входного кадра задаче «Детектор лиц».
- При работе в режиме изображения или видео задача «Детектор лиц» блокирует текущий поток до завершения обработки входного изображения или кадра. Чтобы избежать блокировки пользовательского интерфейса, выполняйте обработку в фоновом потоке.
- При работе в режиме прямой трансляции задача «Детектор лиц» возвращается немедленно и не блокирует текущий поток. Он будет вызывать прослушиватель результатов с результатом обнаружения каждый раз, когда завершает обработку входного кадра. Если функция обнаружения вызывается, когда задача «Детектор лиц» занята обработкой другого кадра, задача будет игнорировать новый входной кадр.
В примере кода Face Detector функции detect
, detectForVideo
и detectAsync
определены в файле FaceDetectorHelper.kt
.
Обработка и отображение результатов
Детектор лиц возвращает объект FaceDetectorResult
для каждого запуска обнаружения. Объект результата содержит ограничивающие рамки для обнаруженных лиц и оценку достоверности для каждого обнаруженного лица.
Ниже показан пример выходных данных этой задачи:
FaceDetectionResult:
Detections:
Detection #0:
BoundingBox:
origin_x: 126
origin_y: 100
width: 463
height: 463
Categories:
Category #0:
index: 0
score: 0.9729152917861938
NormalizedKeypoints:
NormalizedKeypoint #0:
x: 0.18298381567001343
y: 0.2961040139198303
NormalizedKeypoint #1:
x: 0.3302789330482483
y: 0.29289937019348145
... (6 keypoints for each face)
Detection #1:
BoundingBox:
origin_x: 616
origin_y: 193
width: 430
height: 430
Categories:
Category #0:
index: 0
score: 0.9251380562782288
NormalizedKeypoints:
NormalizedKeypoint #0:
x: 0.6151331663131714
y: 0.3713381886482239
NormalizedKeypoint #1:
x: 0.7460576295852661
y: 0.38825345039367676
... (6 keypoints for each face)
На следующем изображении показана визуализация результатов задачи:
Изображение без ограничивающих рамок см. в исходном изображении .
Пример кода Face Detector демонстрирует, как отображать результаты, возвращаемые задачей. Дополнительные сведения см. в классе OverlayView
.